151
|
Zhou C, Pourmal S, Pavletich NP. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa. eLife 2015; 4. [PMID: 26491943 PMCID: PMC4716839 DOI: 10.7554/elife.09832] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 12/04/2022] Open
Abstract
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI:http://dx.doi.org/10.7554/eLife.09832.001 DNA carries the genetic information that is essential for organisms to survive and reproduce. It is made of two strands that twist together to form a double helix. However, these strands can be damaged when the DNA is copied before a cell divides, or by exposure to radiation or hazardous chemicals. To prevent this damage from causing serious harm to an organism, cells activate processes that rapidly repair the damaged DNA. “Homologous recombination” is one way in which cells can repair damage that has caused both strands of the DNA to break in a particular place. In the first step, several enzymes trim one of the two DNA strands at each broken end to leave single stranded “tails”. Dna2 is one enzyme that is involved in making these tails, but it can only bind to single-stranded DNA so it only acts after another enzyme has made some initial cuts. The exposed single stranded DNA then searches for an intact copy of itself elsewhere in the genome, which promotes its repair. It is important that only one of the two DNA strands is trimmed at each end otherwise the repair will fail. A protein called Rpa is bound to the DNA and is required for Dna2 to correctly trim the DNA. However, it is not clear exactly how Rpa2 regulates Dna2. Zhou et al. used a technique called X-ray crystallography to analyze the three-dimensional structures of Dna2 when it is bound to single stranded DNA and when it is bound to Rpa. The experiments show that Dna2 adopts a cylindrical shape with a tunnel through which the single-stranded DNA passes through. The region of Dna2 that is capable of trimming DNA – which is called the nuclease domain – is embedded within the tunnel. The entrance to the tunnel is too narrow to allow double-stranded DNA to enter, so this explains why Dna2 can only act on double-stranded DNA that already has a small single-stranded section at the end. Inside the tunnel, Dna2 displaces Rpa from one of the strands, which allows Dna2 to trim the DNA. However, other molecules of Rpa remain firmly bound to the other strand to protect it from Dna2. These enzymes also act in a similar way to trim DNA before it is copied in preparation for cell division. Zhou et al.’s findings provide an explanation for how Rpa determines which strand of DNA is trimmed by Dna2. Further work is needed to understand how Dna2 and Rpa work with other enzymes to trim DNA. DOI:http://dx.doi.org/10.7554/eLife.09832.002
Collapse
Affiliation(s)
- Chun Zhou
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sergei Pourmal
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nikola P Pavletich
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
152
|
PTEN regulates RPA1 and protects DNA replication forks. Cell Res 2015; 25:1189-204. [PMID: 26403191 DOI: 10.1038/cr.2015.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/07/2023] Open
Abstract
Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication.
Collapse
|
153
|
Forment JV, Jackson SP. A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells. Nat Protoc 2015; 10:1297-307. [PMID: 26226461 PMCID: PMC4743064 DOI: 10.1038/nprot.2015.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, to make it easier to quantify and to allow a streamlined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (takes no more than a working day from sample collection to quantification), requires less starting material compared with standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy.
Collapse
Affiliation(s)
- Josep V. Forment
- The Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, and The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen P. Jackson
- The Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, and The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
154
|
Zuazua-Villar P, Ganesh A, Phear G, Gagou ME, Meuth M. Extensive RPA2 hyperphosphorylation promotes apoptosis in response to DNA replication stress in CHK1 inhibited cells. Nucleic Acids Res 2015; 43:9776-87. [PMID: 26271993 PMCID: PMC4787776 DOI: 10.1093/nar/gkv835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/06/2015] [Indexed: 11/14/2022] Open
Abstract
The replication protein A (RPA)-ssDNA complex formed at arrested replication forks recruits key proteins to activate the ATR-CHK1 signalling cascade. When CHK1 is inhibited during DNA replication stress, RPA2 is extensively hyperphosphorylated. Here, we investigated the role of RPA2 hyperphosphorylation in the fate of cells when CHK1 is inhibited. We show that proteins normally involved in DNA repair (RAD51) or control of RPA phosphorylation (the PP4 protein phosphatase complex) are not recruited to the genome after treatment with CHK1 and DNA synthesis inhibitors. This is not due to RPA2 hyperphosphorylation as suppression of this response does not restore loading suggesting that recruitment requires active CHK1. To determine whether RPA2 hyperphosphorylation protects stalled forks from collapse or induction of apoptosis in CHK1 inhibited cells during replication stress, cells expressing RPA2 genes mutated at key phosphorylation sites were characterized. Mutant RPA2 rescued cells from RPA2 depletion and reduced the level of apoptosis induced by treatment with CHK1 and replication inhibitors however the incidence of double strand breaks was not affected. Our data indicate that RPA2 hyperphosphorylation promotes cell death during replication stress when CHK1 function is compromised but does not appear to be essential for replication fork integrity.
Collapse
Affiliation(s)
- Pedro Zuazua-Villar
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Anil Ganesh
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Geraldine Phear
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Mary E Gagou
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Mark Meuth
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
155
|
β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation. PLoS Pathog 2015; 11:e1004687. [PMID: 25803638 PMCID: PMC4372404 DOI: 10.1371/journal.ppat.1004687] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Recent work has explored a putative role for the E6 protein from some β-human papillomavirus genus (β-HPVs) in the development of non-melanoma skin cancers, specifically β-HPV 5 and 8 E6. Because these viruses are not required for tumor maintenance, they are hypothesized to act as co-factors that enhance the mutagenic capacity of UV-exposure by disrupting the repair of the resulting DNA damage. Supporting this proposal, we have previously demonstrated that UV damage signaling is hindered by β-HPV 5 and 8 E6 resulting in an increase in both thymine dimers and UV-induced double strand breaks (DSBs). Here we show that β-HPV 5 and 8 E6 further disrupt the repair of these DSBs and provide a mechanism for this attenuation. By binding and destabilizing a histone acetyltransferase, p300, β-HPV 5 and 8 E6 reduce the enrichment of the transcription factor at the promoter of two genes critical to the homology dependent repair of DSBs (BRCA1 and BRCA2). The resulting diminished BRCA1/2 transcription not only leads to lower protein levels but also curtails the ability of these proteins to form repair foci at DSBs. Using a GFP-based reporter, we confirm that this reduced foci formation leads to significantly diminished homology dependent repair of DSBs. By deleting the p300 binding domain of β-HPV 8 E6, we demonstrate that the loss of robust repair is dependent on viral-mediated degradation of p300 and confirm this observation using a combination of p300 mutants that are β-HPV 8 E6 destabilization resistant and p300 knock-out cells. In conclusion, this work establishes an expanded ability of β-HPV 5 and 8 E6 to attenuate UV damage repair, thus adding further support to the hypothesis that β-HPV infections play a role in skin cancer development by increasing the oncogenic potential of UV exposure. Human Papillomaviruses are a family of viruses with over 100 different members that infect mucous membranes and skin. Infections with some of these viruses are linked to cancers of the cervix and oropharynx. In this work, we explore the question of whether other members of this virus family may also contribute to skin cancer by inhibiting the ability of cells to repair the damage caused from UV exposure. Here, we build on our previous work showing that the E6 protein from two of these viruses (β-HPV 5 and 8) reduces the cellular response to UV damage by decreasing the abundance of two cellular proteins (p300 and ATR) involved in repairing the UV-damaged DNA, leading to more double strand DNA breaks following UV exposure. Here we show that the loss of p300 has further deleterious consequences, specifically that it results in diminished expression of two proteins (BRCA1 and BRCA2) involved in the repair of double strand breaks. Our data shows that this results in fewer BRCA1 and BRCA2 repair foci forming at sites of damage and ultimately in attenuated repair of these lesions. Together, this work provides further support for a link between β-HPV infections and skin cancer.
Collapse
|
156
|
The DNA damage response and checkpoint adaptation in Saccharomyces cerevisiae: distinct roles for the replication protein A2 (Rfa2) N-terminus. Genetics 2015; 199:711-27. [PMID: 25595672 PMCID: PMC4349066 DOI: 10.1534/genetics.114.173211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to DNA damage, two general but fundamental processes occur in the cell: (1) a DNA lesion is recognized and repaired, and (2) concomitantly, the cell halts the cell cycle to provide a window of opportunity for repair to occur. An essential factor for a proper DNA-damage response is the heterotrimeric protein complex Replication Protein A (RPA). Of particular interest is hyperphosphorylation of the 32-kDa subunit, called RPA2, on its serine/threonine-rich amino (N) terminus following DNA damage in human cells. The unstructured N-terminus is often referred to as the phosphorylation domain and is conserved among eukaryotic RPA2 subunits, including Rfa2 in Saccharomyces cerevisiae. An aspartic acid/alanine-scanning and genetic interaction approach was utilized to delineate the importance of this domain in budding yeast. It was determined that the Rfa2 N-terminus is important for a proper DNA-damage response in yeast, although its phosphorylation is not required. Subregions of the Rfa2 N-terminus important for the DNA-damage response were also identified. Finally, an Rfa2 N-terminal hyperphosphorylation-mimetic mutant behaves similarly to another Rfa1 mutant (rfa1-t11) with respect to genetic interactions, DNA-damage sensitivity, and checkpoint adaptation. Our data indicate that post-translational modification of the Rfa2 N-terminus is not required for cells to deal with "repairable" DNA damage; however, post-translational modification of this domain might influence whether cells proceed into M-phase in the continued presence of unrepaired DNA lesions as a "last-resort" mechanism for cell survival.
Collapse
|
157
|
Li P, Ma X, Adams IR, Yuan P. A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis 2015; 6:e1588. [PMID: 25569105 PMCID: PMC4669749 DOI: 10.1038/cddis.2014.551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Prolonged culture of embryonic stem cells (ESCs) leads them to adopt embryonal carcinoma cell features, creating enormous dangers for their further application. The mechanism involved in ESC stability has not, however, been extensively studied. We previously reported that SMAD family member 3 (Smad3) has an important role in maintaining mouse ESC stability, as depletion of Smad3 results in cancer cell-like properties in ESCs and Smad3-/- ESCs are prone to grow large, malignant teratomas. To understand how Smad3 contributes to ESC stability, we performed microarray analysis to compare the transcriptome of wild-type and Smad3-/- ESCs. We found that Rif1 (RAP1-associated protein 1), a factor important for genomic stability, is significantly upregulated in Smad3-/- ESCs. The expression level of Rif1 needs to be tightly controlled in ESCs, as a low level of Rif1 is associated with ESC differentiation, but a high level of Rif1 is linked to ESC transformation. In ESCs, Oct4 activates Rif1, whereas Smad3 represses its expression. Oct4 recruits Smad3 to bind to Rif1 promoter, but Smad3 joining facilitates the loading of a polycomb complex that generates a repressive epigenetic modification on Rif1 promoter, and thus maintains the expression of Rif1 at a proper level in ESCs. Interestingly, Rif1 short hairpin RNA (shRNA)-transduced Smad3-/- ESCs showed less malignant properties than the control shRNA-transduced Smad3-/- ESCs, suggesting a critical role of Rif1 in maintaining the stability of ESCs during proliferation.
Collapse
Affiliation(s)
- P Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - X Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - I R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - P Yuan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
158
|
Sugitani N, Chazin WJ. Characteristics and concepts of dynamic hub proteins in DNA processing machinery from studies of RPA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:206-211. [PMID: 25542993 DOI: 10.1016/j.pbiomolbio.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA).
Collapse
Affiliation(s)
- Norie Sugitani
- Center for Structural Biology and Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Walter J Chazin
- Center for Structural Biology and Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
159
|
Nocua PA, Ramirez CA, Barreto GE, González J, Requena JM, Puerta CJ. Leishmania braziliensis replication protein A subunit 1: molecular modelling, protein expression and analysis of its affinity for both DNA and RNA. Parasit Vectors 2014; 7:573. [PMID: 25498946 PMCID: PMC4269926 DOI: 10.1186/s13071-014-0573-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022] Open
Abstract
Background Replication factor A (RPA) is a single-strand DNA binding protein involved in DNA replication, recombination and repair processes. It is composed by the subunits RPA-1, RPA-2 and RPA-3; the major DNA-binding activity resides in the subunit 1 of the heterotrimeric RPA complex. In yeast and higher eukaryotes, besides the three basic structural DNA-binding domains, the RPA-1 subunit contains an N-terminal region involved in protein-protein interactions with a fourth DNA-binding domain. Remarkably, the N-terminal extension is absent in the RPA-1 of the pathogenic protozoan Leishmania (Leishmania) amazonensis; however, the protein maintains its ability to bind ssDNA. In a recent work, we identify Leishmania (Viannia) braziliensis RPA-1 by its specific binding to the untranslated regions of the HSP70 mRNAs, suggesting that this protein might be also an RNA-binding protein. Methods Both rLbRPA-1 purified by His-tag affinity chromatography as well as the in vitro transcribed L. braziliensis 3′ HSP70-II UTR were used to perform pull down assays to asses nucleic acid binding properties. Also, homology modeling was carried out to construct the LbRPA-1 tridimensional structure to search relevant amino acid residues to bind nucleic acids. Results In this work, after obtaining the recombinant L. braziliensis RPA-1 protein under native conditions, competitive and non-competitive pull-down assays confirmed the single-stranded DNA binding activity of this protein and demonstrated its interaction with the 3′ UTR from the HSP70-II mRNA. As expected, this protein exhibits a high affinity for ssDNA, but we have found that RPA-1 interacts also with RNA. Additionally, we carried out a structural analysis of L. braziliensis RPA-1 protein using the X-ray diffraction structure of Ustilago maydis homologous protein as a template. Our results indicate that, in spite of the evolutionary divergence between both organisms, the structure of these two RPA-1 proteins seems to be highly conserved. Conclusion The LbRPA-1 protein is a ssDNA binding protein, but also it shows affinity in vitro for the HSP70 mRNA; this finding supports a possible in vivo role in the HSP70 mRNA metabolism. On the other hand, the three dimensional model of Leishmania RPA-1 serves as a starting point for both functional analysis and its exploration as a chemotherapeutic target to combat leishmaniasis.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia.
| | - Cesar A Ramirez
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia.
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia.
| |
Collapse
|
160
|
Nguyen B, Sokoloski J, Galletto R, Elson EL, Wold MS, Lohman TM. Diffusion of human replication protein A along single-stranded DNA. J Mol Biol 2014; 426:3246-3261. [PMID: 25058683 DOI: 10.1016/j.jmb.2014.07.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1~5000nt(2) s(-1) at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
161
|
Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors. Oncogene 2014; 34:2887-96. [PMID: 25043304 DOI: 10.1038/onc.2014.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/08/2014] [Accepted: 06/09/2014] [Indexed: 01/27/2023]
Abstract
While DNA damage response pathways are well characterized in cancer cells, much less is known about their status in normal cells. These pathways protect tumour cells from DNA damage and replication stress and consequently present potential therapeutic targets. Here we characterize the response of human telomerase reverse transcriptase (hTERT)-immortalized normal human urothelial (NHU) and bladder cancer cell lines to agents that disrupt the DNA damage response. Effects of replication and DNA damage response inhibitors on cell cycle progression, checkpoint induction and apoptosis were analysed in hTERT-NHU and bladder cancer cell lines. The primary signalling cascade responding to replication stress in malignant cells (ataxia telangiectasia-mutated (ATM) and Rad3-related-checkpoint kinase 1 (ATR-CHK1)) is not activated in hTERT-NHU cells after treatment with a replication inhibitor and these cells do not depend upon CHK1 for protection from apoptosis during replication stress. Instead, ATM signalling is rapidly activated under these conditions. Intriguingly, an ATM inhibitor suppressed S-phase checkpoint activation after exposure to replication inhibitors and stopped entry of cells into S-phase indicating G1 checkpoint activation. Consistent with this, hTERT-NHU cells treated with the ATM inhibitor showed increased levels of cyclin-dependent kinase inhibitor p19(INK4D), reduced levels of cyclin D1 and CDK4, and reduced phosphorylation of the retinoblastoma protein. In contrast, a bladder cancer cell line cotreated with ATM and replication inhibitors progressed more slowly through S phase and showed a marked increase in apoptosis. Taken together, our findings suggest that ATM and CHK1 signalling cascades have different roles in tumour and normal epithelial cells, confirming these as promising therapeutic targets.
Collapse
|
162
|
Abstract
SIGNIFICANCE Ionizing radiation (IR) is an effective and commonly employed treatment in the management of more than half of human malignancies. Because IR's ability to control tumors mainly relies on DNA damage, the cell's DNA damage response and repair (DRR) processes may hold the key to determining tumor responses. IR-induced DNA damage activates a number of DRR signaling cascades that control cell cycle arrest, DNA repair, and the cell's fate. DNA double-strand breaks (DSBs) generated by IR are the most lethal form of damage, and are mainly repaired via either homologous recombination (HR) or nonhomologous end-joining (NHEJ) pathways. RECENT ADVANCES In recent years, immense effort to understand and exploit the differences in the use of these repair pathways between tumors and normal cells will allow for an increase in tumor cell killing and a decrease in normal tissue injury. CRITICAL ISSUES Regulation of the two major DSB repair mechanisms (HR and NHEJ) and new strategies, which may improve the therapeutic ratio of radiation by differentially targeting HR and NHEJ function in tumor and normal tissues, is of intense interest currently, and is the focus of this article. FUTURE DIRECTIONS By utilizing the strategies outlined above, it may be possible to exploit differences between tumor and somatic cell DRR pathways, specifically their DSB repair mechanisms, to improve the therapeutic ratio of IR.
Collapse
Affiliation(s)
- Wil L Santivasi
- Department of Radiation Oncology, The Ohio State University College of Medicine , Columbus, Ohio
| | | |
Collapse
|
163
|
Enhanced Radiosensitivity and G2/M Arrest were Observed in Radioresistant Esophageal Cancer Cells by Knocking Down RPA Expression. Cell Biochem Biophys 2014; 70:887-91. [DOI: 10.1007/s12013-014-9995-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
164
|
Ren W, Chen H, Sun Q, Tang X, Lim SC, Huang J, Song H. Structural basis of SOSS1 complex assembly and recognition of ssDNA. Cell Rep 2014; 6:982-991. [PMID: 24630995 DOI: 10.1016/j.celrep.2014.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 01/03/2023] Open
Abstract
The SOSS1 complex comprising SOSSA, SOSSB1, and SOSSC senses single-stranded DNA (ssDNA) and promotes repair of DNA double-strand breaks (DSBs). But how SOSS1 is assembled and recognizes ssDNA remains elusive. The crystal structure of the N-terminal half of SOSSA (SOSSAN) in complex with SOSSB1 and SOSSC showed that SOSSAN serves as a scaffold to bind both SOSSB1 and SOSSC for assembly of the SOSS1 complex. The structures of SOSSAN/B1 in complex with a 12 nt ssDNA and SOSSAN/B1/C in complex with a 35 nt ssDNA showed that SOSSB1 interacts with both SOSSAN and ssDNA via two distinct surfaces. Recognition of ssDNA with a length of up to nine nucleotides is mediated solely by SOSSB1, whereas neither SOSSC nor SOSSAN are critical for ssDNA binding. These results reveal the structural basis of SOSS1 assembly and provide a framework for further study of the mechanism governing longer ssDNA recognition by the SOSS1 complex during DSB repair.
Collapse
Affiliation(s)
- Wendan Ren
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hongxia Chen
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Qiangzu Sun
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Siew Choo Lim
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
165
|
Carvalho JFS, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 2014; 18:427-58. [PMID: 24491188 DOI: 10.1517/14728222.2014.882900] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. AREAS COVERED HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. EXPERT OPINION Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
Collapse
Affiliation(s)
- João F S Carvalho
- Erasmus MC Cancer Institute, Department of Genetics, Department of Radiation Oncology, Cancer Genomics Netherlands , PO Box 2040, 3000 CA Rotterdam , The Netherlands
| | | |
Collapse
|
166
|
Wan L, Huang J. The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem 2014; 289:6619-6626. [PMID: 24443570 DOI: 10.1074/jbc.m113.543439] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSO4 core complex is composed of PSO4/PRP19/SNEV, CDC5L, PLRG1, and BCAS2/SPF27. Besides its well defined functions in pre-mRNA splicing, the PSO4 complex has been shown recently to participate in the DNA damage response. However, the specific role for the PSO4 complex in the DNA damage response pathways is still not clear. Here we show that both the BCAS2 and PSO4 subunits of the PSO4 complex directly interact and colocalize with replication protein A (RPA). Depletion of BCAS2 or PSO4 impairs the recruitment of ATR-interacting protein (ATRIP) to DNA damage sites and compromises CHK1 activation and RPA2 phosphorylation. Moreover, we demonstrate that both the RPA1-binding ability of BCAS2 and the E3 ligase activity of PSO4 are required for efficient accumulation of ATRIP at DNA damage sites and the subsequent CHK1 activation and RPA2 phosphorylation. Our results suggest that the PSO4 complex functionally interacts with RPA and plays an important role in the DNA damage response.
Collapse
Affiliation(s)
- Li Wan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
167
|
Kubota S, Fukumoto Y, Ishibashi K, Soeda S, Kubota S, Yuki R, Nakayama Y, Aoyama K, Yamaguchi N, Yamaguchi N. Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage. J Biol Chem 2014; 289:5730-46. [PMID: 24421316 DOI: 10.1074/jbc.m113.546655] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimosine is an effective cell synchronization reagent used for arresting cells in late G1 phase. However, the mechanism underlying mimosine-induced G1 cell cycle arrest remains unclear. Using highly synchronous cell populations, we show here that mimosine blocks S phase entry through ATM activation. HeLa S3 cells are exposed to thymidine for 15 h, released for 9 h by washing out the thymidine, and subsequently treated with 1 mM mimosine for a further 15 h (thymidine → mimosine). In contrast to thymidine-induced S phase arrest, mimosine treatment synchronizes >90% of cells at the G1-S phase boundary by inhibiting the transition of the prereplication complex to the preinitiation complex. Mimosine treatment activates ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint signaling without inducing DNA damage. Inhibition of ATM activity is found to induce mimosine-arrested cells to enter S phase. In addition, ATM activation by mimosine treatment is mediated by reactive oxygen species (ROS). These results suggest that, upon mimosine treatment, ATM blocks S phase entry in response to ROS, which prevents replication fork stalling-induced DNA damage.
Collapse
Affiliation(s)
- Shoichi Kubota
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Won KJ, Im JY, Yun CO, Chung KS, Kim YJ, Lee JS, Jung YJ, Kim BK, Song KB, Kim YH, Chun HK, Jung KE, Kim MH, Won M. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma. Int J Cancer 2013; 134:2595-604. [DOI: 10.1002/ijc.28600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Kyoung-Jae Won
- Medical Genomics Research Center; KRIBB; Daejeon Korea
- Functional Genomics; University of Science and Technology; Daejeon Korea
| | - Joo-Young Im
- Medical Genomics Research Center; KRIBB; Daejeon Korea
| | - Chae-Ok Yun
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul Korea
| | - Kyung-Sook Chung
- Medical Genomics Research Center; KRIBB; Daejeon Korea
- Functional Genomics; University of Science and Technology; Daejeon Korea
| | | | - Jung-Sun Lee
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul Korea
| | - Young-Jin Jung
- Medical Genomics Research Center; KRIBB; Daejeon Korea
- Functional Genomics; University of Science and Technology; Daejeon Korea
| | - Bo-Kyung Kim
- Medical Genomics Research Center; KRIBB; Daejeon Korea
| | - Kyung Bin Song
- Department of Food Science and Technology; Chungnam National University; Daejon Korea
| | - Young-Ho Kim
- Colorectal Cancer Center; Samsung Medical Center; Seoul Korea
| | - Ho-Kyung Chun
- Colorectal Cancer Center; Samsung Medical Center; Seoul Korea
| | - Kyeong Eun Jung
- ST Pharm. Co., Ltd; Sihwa Industrial Complex 1; Kyunggido Korea
| | - Moon-Hee Kim
- ST Pharm. Co., Ltd; Sihwa Industrial Complex 1; Kyunggido Korea
| | - Misun Won
- Medical Genomics Research Center; KRIBB; Daejeon Korea
- Functional Genomics; University of Science and Technology; Daejeon Korea
| |
Collapse
|
169
|
Liong M, Hoang AN, Chung J, Gural N, Ford CB, Min C, Shah RR, Ahmad R, Fernandez-Suarez M, Fortune SM, Toner M, Lee H, Weissleder R. Magnetic barcode assay for genetic detection of pathogens. Nat Commun 2013; 4:1752. [PMID: 23612293 DOI: 10.1038/ncomms2745] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/15/2013] [Indexed: 02/07/2023] Open
Abstract
The task of rapidly identifying patients infected with Mycobacterium tuberculosis in resource-constrained environments remains a challenge. A sensitive and robust platform that does not require bacterial isolation or culture is critical in making informed diagnostic and therapeutic decisions. Here we introduce a platform for the detection of nucleic acids based on a magnetic barcoding strategy. PCR-amplified mycobacterial genes are sequence-specifically captured on microspheres, labelled by magnetic nanoprobes and detected by nuclear magnetic resonance. All components are integrated into a single, small fluidic cartridge for streamlined on-chip operation. We use this platform to detect M. tuberculosis and identify drug-resistance strains from mechanically processed sputum samples within 2.5 h. The specificity of the assay is confirmed by detecting a panel of clinically relevant non-M. tuberculosis bacteria, and the clinical utility is demonstrated by the measurements in M. tuberculosis-positive patient specimens. Combined with portable systems, the magnetic barcode assay holds promise to become a sensitive, high-throughput and low-cost platform for point-of-care diagnostics.
Collapse
Affiliation(s)
- Monty Liong
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
The BRCT domain and the specific loop 1 of human Polμ are targets of Cdk2/cyclin A phosphorylation. DNA Repair (Amst) 2013; 12:824-34. [DOI: 10.1016/j.dnarep.2013.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 12/18/2022]
|
171
|
The complexity of DNA double strand breaks is a critical factor enhancing end-resection. DNA Repair (Amst) 2013; 12:936-46. [PMID: 24041488 DOI: 10.1016/j.dnarep.2013.08.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 11/22/2022]
Abstract
DNA double strand breaks (DSBs) induced by ionizing radiation (IR) are deleterious damages. Two major pathways repair DSBs in human cells, DNA non-homologous end-joining (NHEJ) and homologous recombination (HR). It has been suggested that the balance between the two repair pathways varies depending on the chromatin structure surrounding the damage site and/or the complexity of damage at the DNA break ends. Heavy ion radiation is known to induce complex-type DSBs, and the efficiency of NHEJ in repairing these DSBs was shown to be diminished. Taking advantage of the ability of high linear energy transfer (LET) radiation to produce complex DSBs effectively, we investigated how the complexity of DSB end structure influences DNA damage responses. An early step in HR is the generation of 3'-single strand DNA (SSD) via a process of DNA end resection that requires CtIP. To assess this process, we analyzed the level of phosphorylated CtIP, as well as RPA phosphorylation and focus formation, which occur on the exposed SSD. We show that complex DSBs efficiently activate DNA end resection. After heavy ion beam irradiation, resection signals appear both in the vicinity of heterochromatic areas, which is also observed after X-irradiation, and additionally in euchromatic areas. Consequently, ~85% of complex DSBs are subjected to resection in heavy ion particle tracks. Furthermore, around 20-40% of G1 cells exhibit resection signals. Taken together, our observations reveal that the complexity of DSB ends is a critical factor regulating the choice of DSB repair pathway and drastically alters the balance toward resection-mediated rejoining. As demonstrated here, studies on DNA damage responses induced by heavy ion radiation provide an important tool to shed light on mechanisms regulating DNA end resection.
Collapse
|
172
|
Wang Y, Musich PR, Serrano MA, Zou Y, Zhang J, Zhu MY. Effects of DSP4 on the noradrenergic phenotypes and its potential molecular mechanisms in SH-SY5Y cells. Neurotox Res 2013; 25:193-207. [PMID: 23996700 DOI: 10.1007/s12640-013-9421-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/04/2013] [Accepted: 08/17/2013] [Indexed: 02/08/2023]
Abstract
Dopamine β-hydroxylase (DBH) and norepinephrine (NE) transporter (NET) are the noradrenergic phenotypes for their functional importance to noradrenergic neurons. It is known that in vivo N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) treatment induces degeneration of noradrenergic terminals by interacting with NET and depleting intracellular NE. However, DSP4's precise mechanism of action remains unclear. In this study various biochemical approaches were employed to test the hypothesis that DSP4 down-regulates the expression of DBH and NET, and to determine molecular mechanisms that may be involved. The results showed that treatment of SH-SY5Y neuroblastoma cells with DSP4 significantly decreased mRNA and protein levels of DBH and NET. DSP4-induced reduction of DBH mRNA and proteins, as well as NET proteins showed a time- and concentration-dependent manner. Flow cytometric analysis demonstrated that DSP4-treated cells were arrested predominantly in the S-phase, which was reversible. The arrest was confirmed by several DNA damage response markers (phosphorylation of H2AX and p53), suggesting that DSP4 causes replication stress which triggers cell cycle arrest via the S-phase checkpoints. Moreover, the comet assay verified that DSP4 induced single-strand DNA breaks. In summary, the present study demonstrated that DSP4 down-regulates the noradrenergic phenotypes, which may be mediated by its actions on DNA replication, leading to replication stress and cell cycle arrest. These action mechanisms of DSP4 may account for its degenerative consequence after systematic administration for animal models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| | | | | | | | | | | |
Collapse
|
173
|
Kavanagh JN, Redmond KM, Schettino G, Prise KM. DNA double strand break repair: a radiation perspective. Antioxid Redox Signal 2013; 18:2458-72. [PMID: 23311752 DOI: 10.1089/ars.2012.5151] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules. RECENT ADVANCES Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes. CRITICAL ISSUES Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms. FUTURE DIRECTIONS An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.
Collapse
Affiliation(s)
- Joy N Kavanagh
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | |
Collapse
|
174
|
Chaudhury I, Sareen A, Raghunandan M, Sobeck A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 2013; 41:6444-59. [PMID: 23658231 PMCID: PMC3711430 DOI: 10.1093/nar/gkt348] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fanconi Anemia (FA) and Bloom Syndrome share overlapping phenotypes including spontaneous chromosomal abnormalities and increased cancer predisposition. The FA protein pathway comprises an upstream core complex that mediates recruitment of two central players, FANCD2 and FANCI, to sites of stalled replication forks. Successful fork recovery depends on the Bloom’s helicase BLM that participates in a larger protein complex (‘BLMcx’) containing topoisomerase III alpha, RMI1, RMI2 and replication protein A. We show that FANCD2 is an essential regulator of BLMcx functions: it maintains BLM protein stability and is crucial for complete BLMcx assembly; moreover, it recruits BLMcx to replicating chromatin during normal S-phase and mediates phosphorylation of BLMcx members in response to DNA damage. During replication stress, FANCD2 and BLM cooperate to promote restart of stalled replication forks while suppressing firing of new replication origins. In contrast, FANCI is dispensable for FANCD2-dependent BLMcx regulation, demonstrating functional separation of FANCD2 from FANCI.
Collapse
Affiliation(s)
- Indrajit Chaudhury
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
175
|
Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 2013; 19:200-7. [PMID: 23708066 PMCID: PMC3668666 DOI: 10.1097/ppo.0b013e318292e4e3] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, there have been multiple breakthroughs in our understanding of lung cancer biology. Despite significant advances in molecular targeted therapies, DNA-damaging cytotoxic therapies will remain the mainstay of lung cancer management for the near future. Similar to the concept of personalized targeted therapies, there is mounting evidence that perturbations in DNA repair pathways are common in lung cancers, altering the resistance of the affected tumors to many chemotherapeutics as well as radiation. Defects in DNA repair may be due to a multitude of mechanisms including gene mutations, epigenetic events, and alterations in signal transduction pathways such as epidermal growth factor receptor and phosphoinositide 3-kinase/AKT. Functional biomarkers that assess the subcellular localization of central repair proteins in response to DNA damage may prove useful for individualization of cytotoxic therapies including poly(adenosine diphosphate-ribose) polymerase inhibitors. A better mechanistic understanding of cellular sensitivity and resistance to DNA damaging agents should facilitate the development of novel, individualized treatment approaches. Absolute resistance to radiation therapy, however, does not exist. To some extent, radiation therapy will always have to remain unselective and indiscriminant to eradicate persistent, drug-resistant tumor stem cell pools.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA 02114
| | - Christopher G. Azzoli
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA 02114
| | - Wil L. Santivasi
- Department of Radiation Oncology, College of Medicine, Ohio State University, Columbus, OH 43210
| | - Fen Xia
- Department of Radiation Oncology, College of Medicine, Ohio State University, Columbus, OH 43210
| |
Collapse
|
176
|
A Relationship Between Replication Protein A and Occurrence and Prognosis of Esophageal Carcinoma. Cell Biochem Biophys 2013; 67:175-80. [DOI: 10.1007/s12013-013-9530-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
177
|
Yin JY, Dong ZZ, Liu RY, Chen J, Liu ZQ, Zhang JT. Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a. Carcinogenesis 2013; 34:1224-31. [PMID: 23393223 DOI: 10.1093/carcin/bgt052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RPA2 is a subunit of a trimeric replication protein A (RPA) complex important for DNA repair and replication. Although it is known that RPA activity is regulated by post-translational modification, whether RPA expression is regulated and the mechanism therein is currently unknown. eIF3a, the largest subunit of eIF3, is an important player in translational control and has been suggested to regulate translation of a subset of messenger RNAs important for tumorigenesis, metastasis, cell cycle progression, drug response and DNA repair. In the present study, we show that RPA2 expression is regulated at translational level via internal ribosome entry site (IRES)-mediated initiation in response to DNA damage. We also found that eIF3a suppresses RPA2 synthesis and inhibits its cellular IRES activity by directly binding to the IRES element of RPA2 located at -50 to -150 bases upstream of the translation start site. Taken together, we conclude that RPA2 expression is translationally regulated via IRES and by eIF3a and that this regulation is partly accountable for cellular response to DNA damage and survival.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
178
|
Shi W, Bain AL, Schwer B, Al-Ejeh F, Smith C, Wong L, Chai H, Miranda MS, Ho U, Kawaguchi M, Miura Y, Finnie JW, Wall M, Heierhorst J, Wicking C, Spring KJ, Alt FW, Khanna KK. Essential developmental, genomic stability, and tumour suppressor functions of the mouse orthologue of hSSB1/NABP2. PLoS Genet 2013; 9:e1003298. [PMID: 23408915 PMCID: PMC3567186 DOI: 10.1371/journal.pgen.1003298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/16/2012] [Indexed: 12/15/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) regulate multiple DNA transactions, including replication, transcription, and repair. We recently identified SSB1 as a novel protein critical for the initiation of ATM signaling and DNA double-strand break repair by homologous recombination. Here we report that germline Ssb1(-/-) embryos die at birth from respiratory failure due to severe rib cage malformation and impaired alveolar development, coupled with additional skeletal defects. Unexpectedly, Ssb1(-/-) fibroblasts did not exhibit defects in Atm signaling or γ-H2ax focus kinetics in response to ionizing radiation (IR), and B-cell specific deletion of Ssb1 did not affect class-switch recombination in vitro. However, conditional deletion of Ssb1 in adult mice led to increased cancer susceptibility with broad tumour spectrum, impaired male fertility with testicular degeneration, and increased radiosensitivity and IR-induced chromosome breaks in vivo. Collectively, these results demonstrate essential roles of Ssb1 in embryogenesis, spermatogenesis, and genome stability in vivo.
Collapse
Affiliation(s)
- Wei Shi
- Queensland Institute of Medical Research, Herston, Australia
| | - Amanda L. Bain
- Queensland Institute of Medical Research, Herston, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
| | - Bjoern Schwer
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fares Al-Ejeh
- Queensland Institute of Medical Research, Herston, Australia
| | - Corey Smith
- Queensland Institute of Medical Research, Herston, Australia
| | - Lee Wong
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Hua Chai
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mariska S. Miranda
- Queensland Institute of Medical Research, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
| | - Uda Ho
- Queensland Institute of Medical Research, Herston, Australia
| | - Makoto Kawaguchi
- Department of Bioregulation and Molecular Neurobiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Miura
- Department of Bioregulation and Molecular Neurobiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - John W. Finnie
- SA Pathology, Institute of Medical and Veterinary Science, Adelaide, Australia
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Melbourne, Australia
- Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
| | - Jörg Heierhorst
- Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
- St. Vincent's Institute, Fitzroy, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Kevin J. Spring
- Queensland Institute of Medical Research, Herston, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
- School of Medicine, University of Queensland, Herston, Australia
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, Herston, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
- School of Medicine, University of Queensland, Herston, Australia
- * E-mail:
| |
Collapse
|
179
|
The natural absence of RPA1N domain did not impair Leishmania amazonensis RPA-1 participation in DNA damage response and telomere protection. Parasitology 2013; 140:547-59. [DOI: 10.1017/s0031182012002028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARYWe have previously shown that the subunit 1 of Leishmania amazonensis RPA (LaRPA-1) alone binds the G-rich telomeric strand and is structurally different from other RPA-1. It is analogous to telomere end-binding proteins described in model eukaryotes whose homologues were not identified in the protozoan´s genome. Here we show that LaRPA-1 is involved with damage response and telomere protection although it lacks the RPA1N domain involved with the binding with multiple checkpoint proteins. We induced DNA double-strand breaks (DSBs) in Leishmania using phleomycin. Damage was confirmed by TUNEL-positive nuclei and triggered a G1/S cell cycle arrest that was accompanied by nuclear accumulation of LaRPA-1 and RAD51 in the S phase of hydroxyurea-synchronized parasites. DSBs also increased the levels of RAD51 in non-synchronized parasites and of LaRPA-1 and RAD51 in the S phase of synchronized cells. More LaRPA-1 appeared immunoprecipitating telomeres in vivo and associated in a complex containing RAD51, although this interaction needs more investigation. RAD51 apparently co-localized with few telomeric clusters but it did not immunoprecipitate telomeric DNA. These findings suggest that LaRPA-1 and RAD51 work together in response to DNA DSBs and at telomeres, upon damage, LaRPA-1 works probably to prevent loss of single-stranded DNA and to assume a capping function.
Collapse
|
180
|
Santivasi WL, Xia F. The role and clinical significance of DNA damage response and repair pathways in primary brain tumors. Cell Biosci 2013; 3:10. [PMID: 23388100 PMCID: PMC3573923 DOI: 10.1186/2045-3701-3-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023] Open
Abstract
Primary brain tumors, in particular, glioblastoma multiforme (GBM), continue to have dismal survivability despite advances in treating other neoplasms. The goal of new anti-glioma therapy development is to increase their therapeutic ratios by enhancing tumor control and/or decreasing the severity and incidence of side effects. Because radiotherapy and most chemotherapy agents rely on DNA damage, the cell's DNA damage repair and response (DRR) pathways may hold the key to new therapeutic strategies. DNA double-strand breaks (DSBs) generated by ionizing radiation and chemotherapeutic agents are the most lethal form of damage, and are repaired via either homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. Understanding and exploitation of the differences in the use of these repair pathways between tumor and normal brain cells will allow for an increase in tumor cell killing and decreased normal tissue damage. A literature review and discussion on new strategies which can improve the anti-glioma therapeutic ratio by differentially targeting HR and NHEJ function in tumor and normal neuronal tissues is the focus of this article.
Collapse
Affiliation(s)
- Wil L Santivasi
- Department of Radiation Oncology, The Ohio State University College of Medicine, 072A Starling Loving Hall, 300 W, 10th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
181
|
Fiume L, Vettraino M, Carnicelli D, Arfilli V, Di Stefano G, Brigotti M. Galloflavin prevents the binding of lactate dehydrogenase A to single stranded DNA and inhibits RNA synthesis in cultured cells. Biochem Biophys Res Commun 2013; 430:466-9. [DOI: 10.1016/j.bbrc.2012.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
|
182
|
Fan J, Pavletich NP. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 2012; 26:2337-47. [PMID: 23070815 DOI: 10.1101/gad.194787.112] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Replication protein A (RPA) is the main eukaryotic ssDNA-binding protein with essential roles in DNA replication, recombination, and repair. RPA maintains the DNA as single-stranded and also interacts with other DNA-processing proteins, coordinating their assembly and disassembly on DNA. RPA binds to ssDNA in two conformational states with opposing affinities for DNA and proteins. The RPA-protein interactions are compatible with a low DNA affinity state that involves DNA-binding domain A (DBD-A) and DBD-B but not with the high DNA affinity state that additionally engages DBD-C and DBD-D. The structure of the high-affinity RPA-ssDNA complex reported here shows a compact quaternary structure held together by a four-way interface between DBD-B, DBD-C, the intervening linker (BC linker), and ssDNA. The BC linker binds into the DNA-binding groove of DBD-B, mimicking DNA. The associated conformational change and partial occlusion of the DBD-A-DBA-B protein-protein interaction site establish a mechanism for the allosteric coupling of RPA-DNA and RPA-protein interactions.
Collapse
Affiliation(s)
- Jie Fan
- Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | | |
Collapse
|
183
|
Tang KF, Ren H. The role of dicer in DNA damage repair. Int J Mol Sci 2012; 13:16769-78. [PMID: 23222681 PMCID: PMC3546719 DOI: 10.3390/ijms131216769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/07/2023] Open
Abstract
Dicer is the key component of the RNA interference pathway. Our group and others have reported that knockdown or knockout of Dicer leads to DNA damage in mammalian cells. Two groups recently showed that efficiency of DNA damage repair was greatly reduced in Dicer-deficient cells and that Dicer-dependent small RNAs (~21 nucleotides) produced from the sequences in the vicinity of DNA double-strand break sites were essential for DNA damage repair. Moreover, accumulating data have suggested that miroRNAs play pivotal roles in DNA damage repair. In this review, we discuss the molecular mechanisms by which loss of Dicer leads to DNA damage, as well as the role of Dicer in tumorigenesis.
Collapse
Affiliation(s)
- Kai-Fu Tang
- Authors to whom correspondence should be addressed; E-Mails: (K.-F.T.); (H.R.); Tel.: +86-577-8883-1271 (K.-F.T.); +86-236-369-3029 (H.R.); Fax: +86-577-8883-1359 (K.-F.T.); +86-236-370-3790 (H.R.)
| | - Hong Ren
- Authors to whom correspondence should be addressed; E-Mails: (K.-F.T.); (H.R.); Tel.: +86-577-8883-1271 (K.-F.T.); +86-236-369-3029 (H.R.); Fax: +86-577-8883-1359 (K.-F.T.); +86-236-370-3790 (H.R.)
| |
Collapse
|
184
|
Abstract
DNA damage in cells is often the result of constant genotoxic insult. Nevertheless, efficient DNA repair pathways are able to maintain genomic integrity. Over the past decade it has been revealed that it is not only kinase signalling pathways which play a central role in this process, but also the different post-translational modifications at lysine residues of histone (chromatin) and non-histone proteins. These lysine modifications include acetylation, methylation, ubiquitination and SUMOylation. Genomic instability is often the major cause of different diseases, especially cancer, where lysine modifications are altered and thereby have an impact on the various DNA repair mechanisms. This chapter will discuss the recent advances in our understanding of the role of different lysine modifications in DNA repair and its physiological consequences.
Collapse
|
185
|
Namkoong S, Lee EJ, Jang IS, Park J. Elevated level of human RPA interacting protein α (hRIPα) in cervical tumor cells is involved in cell proliferation through regulating RPA transport. FEBS Lett 2012; 586:3753-60. [PMID: 23010595 DOI: 10.1016/j.febslet.2012.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded DNA binding protein that is essential for DNA replication, repair, and recombination, and human RPA interacting protein α (hRIPα) is the nuclear transporter of RPA. Here, we report the regulatory role of hRIPα protein in cell proliferation. Western blot analysis revealed that the level of hRIPα was frequently elevated in cervical tumors tissues and hRIPα knockdown by siRNA inhibited cellular proliferation through deregulation of the cell cycle. In addition, overexpression of hRIPα resulted in increased clonogenicity. These results indicate that hRIPα is involved in cell proliferation through regulation of RPA transport.
Collapse
Affiliation(s)
- Sim Namkoong
- Division of Biological Science and Technology, Yonsei University, Wonju 220-100, Republic of Korea
| | | | | | | |
Collapse
|
186
|
Forment JV, Walker RV, Jackson SP. A high-throughput, flow cytometry-based method to quantify DNA-end resection in mammalian cells. Cytometry A 2012; 81:922-8. [PMID: 22893507 PMCID: PMC3601416 DOI: 10.1002/cyto.a.22155] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/25/2022]
Abstract
Replication protein A (RPA) is an essential trimeric protein complex that binds to single-stranded DNA (ssDNA) in eukaryotic cells and is involved in various aspects of cellular DNA metabolism, including replication and repair. Although RPA is ubiquitously expressed throughout the cell cycle, it localizes to DNA replication forks during S phase, and is recruited to sites of DNA damage when regions of ssDNA are exposed. During DNA double-strand break (DSB) repair by homologous recombination (HR), RPA recruitment to DNA damage sites depends on a process termed DNA-end resection. Consequently, RPA recruitment to sub-nuclear regions bearing DSBs has been used as readout for resection and for ongoing HR. Quantification of RPA recruitment by immunofluorescence-based microscopy techniques is time consuming and requires extensive image analysis of relatively small populations of cells. Here, we present a high-throughput flow-cytometry method that allows the use of RPA staining to measure cell proliferation and DNA-damage repair by HR in an unprecedented, unbiased and quantitative manner. © 2012 International Society for Advancement of Cytometry
Collapse
Affiliation(s)
- Josep V Forment
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, United Kingdom.
| | | | | |
Collapse
|
187
|
Nakada S, Yonamine RM, Matsuo K. RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1. Cancer Res 2012; 72:4974-83. [PMID: 22865450 DOI: 10.1158/0008-5472.can-12-1057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor protein BRCA1 localizes to sites of DNA double-strand breaks (DSB), promoting repair by homologous recombination through the recruitment of DNA damage repair proteins. In normal cells, homologous recombination largely depends on BRCA1. However, assembly of the pivotal homologous recombination regulator RAD51 can occur independently of BRCA1 in the absence of 53BP1, another DNA damage response protein. How this assembly process proceeds is unclear, but important to understand in tumor cell settings where BRCA1 is disabled. Here we report that RNF8 regulates BRCA1-independent homologous recombination in 53BP1-depleted cells. RNF8 depletion suppressed the recruitment of RAD51 to DSB sites without affecting assembly or phosphorylation of the replication protein RPA in neocarzinostatin-treated or X-ray-irradiated BRCA1/53BP1-depleted cells. Furthermore, RNF8/BRCA1/53BP1-depleted cells exhibited less efficient homologous recombination than BRCA1/53BP1-depleted cells. Intriguingly, neither RNF8 nor its relative RNF168 were required for RAD51 assembly at DSB sites in 53BP1-expressing cells. Moreover, RNF8-independent RAD51 assembly was found to be regulated by BRCA1. Together, our findings indicate a tripartite regulation of homologous recombination by RNF8, BRCA1, and 53BP1. In addition, our results predict that RNF8 inhibition may be a useful treatment of BRCA1-mutated/53BP1(low) cancers, which are considered resistant to treatment by PARP1 inhibitors and of marked current clinical interest.
Collapse
Affiliation(s)
- Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | | | |
Collapse
|
188
|
Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off. Cell Biol Int 2012; 36:713-20. [PMID: 22578086 DOI: 10.1042/cbi20110633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.
Collapse
|
189
|
An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks. EMBO J 2012; 31:3768-83. [PMID: 22820947 DOI: 10.1038/emboj.2012.195] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022] Open
Abstract
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.
Collapse
|
190
|
Yang J, Bachrati CZ, Hickson ID, Brown GW. BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity. PLoS One 2012; 7:e41208. [PMID: 22911760 PMCID: PMC3401101 DOI: 10.1371/journal.pone.0041208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022] Open
Abstract
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.
Collapse
Affiliation(s)
- Jay Yang
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Csanad Z. Bachrati
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ian D. Hickson
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
191
|
Serrano MA, Li Z, Dangeti M, Musich PR, Patrick S, Roginskaya M, Cartwright B, Zou Y. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 2012; 32:2452-62. [PMID: 22797063 PMCID: PMC3651755 DOI: 10.1038/onc.2012.257] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two distinct DNA double-strand break (DSB) repair pathways. Here we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.
Collapse
Affiliation(s)
- M A Serrano
- Department of Biochemistry and Molecular Biology, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol 2012; 86:9520-6. [PMID: 22740399 DOI: 10.1128/jvi.00247-12] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human papillomaviruses (HPV) activate the ataxia telangiectasia mutated (ATM)-dependent DNA damage response to induce viral genome amplification upon epithelial differentiation. Our studies show that along with members of the ATM pathway, HPV proteins also localize factors involved in homologous DNA recombination to distinct nuclear foci that contain HPV genomes and cellular replication factors. These studies indicate that HPV activates the ATM pathway to recruit repair factors to viral genomes and allow for efficient replication.
Collapse
|
193
|
Biswas-Fiss EE, Kukiratirat J, Biswas SB. Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein. BMC BIOCHEMISTRY 2012; 13:10. [PMID: 22698072 PMCID: PMC3464605 DOI: 10.1186/1471-2091-13-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Single-stranded DNA binding proteins (SSB) are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase. RESULTS We have cloned and purified SSB from Bacillus anthracis (SSB(BA)). In the absence of DNA, at concentrations ≤100 μg/ml, SSB(BA) did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSB(BA) bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT)(70) binding suggested that SSB(BA) forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure. CONCLUSIONS Unlike other prokaryotic SSB proteins, SSB(BA) from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSB(BA) retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSB(BA) appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSB(BA) could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.
Collapse
Affiliation(s)
- Esther E Biswas-Fiss
- Department of Molecular Biology, School of Osteopathic Medicine & Graduate School of Biomedical Sciences, University of Medicine & Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | | | |
Collapse
|
194
|
p53 Ser15 phosphorylation disrupts the p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. Biochem J 2012; 443:811-20. [PMID: 22288499 DOI: 10.1042/bj20111627] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular stressors are known to inhibit the p53-RPA70 (replication protein A, 70 kDa subunit) complex, and RPA70 increases cellular DNA repair in cancer cells. We hypothesized that regulation of RPA70-mediated DNA repair might be responsible for the inhibition of apoptosis in hypoxic tumours. We have shown that, in cancer cells, hypoxia disrupts the p53-RPA70 complex, thereby enhancing RPA70-mediated NER (nucleotide excision repair)/NHEJ (non-homologous end-joining) repair. In normal cells, RPA70 binds to the p53-NTD (N-terminal domain), whereas this binding is disrupted in hypoxia. Phosphorylation of p53-NTD is a crucial event in dissociating both NTD-RPA70 and p53-RPA70 complexes. Serial mutations at serine and threonine residues in the NTD confirm that p53(Ser15) phosphorylation induces dissociation of the p53-RPA70 complex in hypoxia. DNA-PK (DNA-dependent protein kinase) is shown to induce p53(Ser15) phosphorylation, thus enhancing RPA70-mediated NER/NHEJ repair. Furthermore, RPA70 gene silencing induces significant increases in cellular apoptosis in the resistant hypoxic cancer cells. We have thus elucidated a novel pathway showing how DNA-PK-mediated p53(Ser15) phosphorylation dissociates the p53-RPA70 complex, thus enhancing NER/NHEJ repair, which causes resistance to apoptosis in hypoxic cancer cells. This novel finding may open new strategies in developing cancer therapeutics on the basis of the regulation of RPA70-mediated NER/NHEJ repair.
Collapse
|
195
|
4E-BP3 regulates eIF4E-mediated nuclear mRNA export and interacts with replication protein A2. FEBS Lett 2012; 586:2260-6. [DOI: 10.1016/j.febslet.2012.05.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/30/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
|
196
|
Li XH, Ha CT, Fu D, Xiao M. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence. PLoS One 2012; 7:e36604. [PMID: 22629318 PMCID: PMC3356368 DOI: 10.1371/journal.pone.0036604] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/03/2012] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1) was highly expressed in human osteoblast cell line (hFOB) cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR) and p21 expression and protected these cells from radiation-induced premature senescence (PS). The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP) after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB) interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.
Collapse
Affiliation(s)
- Xiang Hong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Cam T. Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
197
|
The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. Biochem J 2012; 440:293-300. [PMID: 21846330 DOI: 10.1042/bj20100991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hSuv3 (human Suv3) helicase has been shown to be a major player in mitochondrial RNA surveillance and decay, but its physiological role might go beyond this functional niche. hSuv3 has been found to interact with BLM (Bloom's syndrome protein) and WRN (Werner's syndrome protein), members of the RecQ helicase family involved in multiple DNA metabolic processes, and in protection and stabilization of the genome. In the present study, we have addressed the possible role of hSuv3 in genome maintenance by examining its potential association with key interaction partners of the RecQ helicases. By analysis of hSuv3 co-IP (co-immunoprecipitation) complexes, we identify two new interaction partners of hSuv3: the RPA (replication protein A) and FEN1 (flap endonuclease 1). Utilizing an in vitro biochemical assay we find that low amounts of RPA inhibit helicase activity of hSuv3 on a forked substrate. Another single-strand-binding protein, mtSSB (mitochondrial single-strand-binding protein), fails to affect hSuv3 activity, indicating that the functional interaction is specific for hSuv3 and RPA. Further in vitro studies demonstrate that the flap endonuclease activity of FEN1 is stimulated by hSuv3 independently of flap length. hSuv3 is generally thought to be a mitochondrial helicase, but the physical and functional interactions between hSuv3 and known RecQ helicase-associated proteins strengthen the hypothesis that hSuv3 may play a significant role in nuclear DNA metabolism as well.
Collapse
|
198
|
Prakash A, Borgstahl GEO. The structure and function of replication protein A in DNA replication. Subcell Biochem 2012; 62:171-96. [PMID: 22918586 DOI: 10.1007/978-94-007-4572-8_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA's roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Given Medical Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | |
Collapse
|
199
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
200
|
Detection of posttranslational modifications of replication protein A. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 922:193-204. [PMID: 22976188 DOI: 10.1007/978-1-62703-032-8_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Replication Protein A (RPA) is a single-strand DNA-binding protein that is found in all eukaryotes. RPA is subjected to multiple posttranslational modifications including serine- and threonine-phosphorylation, poly-ADP ribosylation, and SUMOylation. These modifications are believed to regulate RPA activity through modulating interactions with DNA and partner proteins. This article describes two methods used to detect posttranslational modified RPA: immunofluorescence and immmuoblotting.
Collapse
|