151
|
Xiang D, Li Y, Lin Y. Circular RNA circCCDC66 Contributes to Malignant Phenotype of Osteosarcoma by Sponging miR-338-3p to Upregulate the Expression of PTP1B. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4637109. [PMID: 32851074 PMCID: PMC7439191 DOI: 10.1155/2020/4637109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
In recent years, the mechanism of cancer research has become hotspots of life science and medicine, especially due to the rapid development of molecular medicine and bioinformatics research. Similarly, the molecular mechanism also has received increasing attention in osteosarcoma (OS) research. Also, a considerable amount of research confirmed that circular RNAs (circRNAs) could regulate cancer cell growth and metastasis. This study aimed to explore the effect of a circRNA, circCCDC66, on OS and reveal its potential molecular mechanism. High circCCDC66 expression level was found in OS patient-derived tissue samples and OS cell lines by qRT-PCR. The abilities cell proliferation and metastatic of U2OS and SW1353 cells were then assessed by Cell Counting Kit-8 and transwell assay, respectively. The interaction between circCCDC66 and its target miRNAs were verified by the dual-luciferase reporter assay. Through functional experiments, we found that circCCDC66 knockdown promoted the inhibition of cell proliferation and metastatic of OS cell lines. From mechanistic perspective, circCCDC66 upregulated PTP1B by sponging miR-338-3p. Collectively, our findings demonstrated that circCCDC66 contributed to malignant behaviors of OS cells by miR-338-3p/PTP1B pathway, which suggested circCCDC66/miR-338-3p/PTP1B axis might be a potential therapeutic target.
Collapse
Affiliation(s)
- Deng Xiang
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yugang Li
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yanshui Lin
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| |
Collapse
|
152
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
153
|
Tanisawa K, Wang G, Seto J, Verdouka I, Twycross-Lewis R, Karanikolou A, Tanaka M, Borjesson M, Di Luigi L, Dohi M, Wolfarth B, Swart J, Bilzon JLJ, Badtieva V, Papadopoulou T, Casasco M, Geistlinger M, Bachl N, Pigozzi F, Pitsiladis Y. Sport and exercise genomics: the FIMS 2019 consensus statement update. Br J Sports Med 2020; 54:969-975. [PMID: 32201388 PMCID: PMC7418627 DOI: 10.1136/bjsports-2019-101532] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
Rapid advances in technologies in the field of genomics such as high throughput DNA sequencing, big data processing by machine learning algorithms and gene-editing techniques are expected to make precision medicine and gene-therapy a greater reality. However, this development will raise many important new issues, including ethical, moral, social and privacy issues. The field of exercise genomics has also advanced by incorporating these innovative technologies. There is therefore an urgent need for guiding references for sport and exercise genomics to allow the necessary advancements in this field of sport and exercise medicine, while protecting athletes from any invasion of privacy and misuse of their genomic information. Here, we update a previous consensus and develop a guiding reference for sport and exercise genomics based on a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis. This SWOT analysis and the developed guiding reference highlight the need for scientists/clinicians to be well-versed in ethics and data protection policy to advance sport and exercise genomics without compromising the privacy of athletes and the efforts of international sports federations. Conducting research based on the present guiding reference will mitigate to a great extent the risks brought about by inappropriate use of genomic information and allow further development of sport and exercise genomics in accordance with best ethical standards and international data protection principles and policies. This guiding reference should regularly be updated on the basis of new information emerging from the area of sport and exercise medicine as well as from the developments and challenges in genomics of health and disease in general in order to best protect the athletes, patients and all other relevant stakeholders.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Jane Seto
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ioanna Verdouka
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Antonia Karanikolou
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Mats Borjesson
- Department of Neuroscience and Physiology, Center for Health and Performance, Goteborg University, Göteborg, Sweden
- Sahlgrenska University Hospital/Ostra, Göteborg, Sweden
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Michiko Dohi
- Sport Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Bernd Wolfarth
- Department of Sport Medicine, Humboldt University and Charité University School of Medicine, Berlin, Germany
| | - Jeroen Swart
- UCT Research Unit for Exercise Science and Sports Medicine, Cape Town, South Africa
| | | | - Victoriya Badtieva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
- Moscow Research and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| | - Theodora Papadopoulou
- Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK
- British Association of Sport and Exercise Medicine, Doncaster, UK
| | | | - Michael Geistlinger
- Unit of International Law, Department of Constitutional, International and European Law, University of Salzburg, Salzburg, Salzburg, Austria
| | - Norbert Bachl
- Institute of Sports Science, University of Vienna, Vienna, Austria
- Austrian Institute of Sports Medicine, Vienna, Austria
| | - Fabio Pigozzi
- Sport Medicine Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| |
Collapse
|
154
|
Fan W, Shang J, Li F, Sun Y, Yuan S, Liu JX. IDSSIM: an lncRNA functional similarity calculation model based on an improved disease semantic similarity method. BMC Bioinformatics 2020; 21:339. [PMID: 32736513 PMCID: PMC7430881 DOI: 10.1186/s12859-020-03699-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background It has been widely accepted that long non-coding RNAs (lncRNAs) play important roles in the development and progression of human diseases. Many association prediction models have been proposed for predicting lncRNA functions and identifying potential lncRNA-disease associations. Nevertheless, among them, little effort has been attempted to measure lncRNA functional similarity, which is an essential part of association prediction models. Results In this study, we presented an lncRNA functional similarity calculation model, IDSSIM for short, based on an improved disease semantic similarity method, highlight of which is the introduction of information content contribution factor into the semantic value calculation to take into account both the hierarchical structures of disease directed acyclic graphs and the disease specificities. IDSSIM and three state-of-the-art models, i.e., LNCSIM1, LNCSIM2, and ILNCSIM, were evaluated by applying their disease semantic similarity matrices and the lncRNA functional similarity matrices, as well as corresponding matrices of human lncRNA-disease associations coming from either lncRNADisease database or MNDR database, into an association prediction method WKNKN for lncRNA-disease association prediction. In addition, case studies of breast cancer and adenocarcinoma were also performed to validate the effectiveness of IDSSIM. Conclusions Results demonstrated that in terms of ROC curves and AUC values, IDSSIM is superior to compared models, and can improve accuracy of disease semantic similarity effectively, leading to increase the association prediction ability of the IDSSIM-WKNKN model; in terms of case studies, most of potential disease-associated lncRNAs predicted by IDSSIM can be confirmed by databases and literatures, implying that IDSSIM can serve as a promising tool for predicting lncRNA functions, identifying potential lncRNA-disease associations, and pre-screening candidate lncRNAs to perform biological experiments. The IDSSIM code, all experimental data and prediction results are available online at https://github.com/CDMB-lab/IDSSIM.
Collapse
Affiliation(s)
- Wenwen Fan
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Junliang Shang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China.
| | - Feng Li
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Yan Sun
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Shasha Yuan
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Jin-Xing Liu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China
| |
Collapse
|
155
|
Shao Z, Gao D, Chen L, Ding W, Yu Q. Non‑coding RNAs that regulate the Wnt/β‑catenin signaling pathway in gastric cancer: Good cop, bad cop? (Review). Oncol Rep 2020; 44:1314-1321. [PMID: 32945460 DOI: 10.3892/or.2020.7705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer‑related mortality worldwide. Despite remarkable progress in the diagnosis and treatment of GC, a large number of cases are diagnosed as advanced GC, and treatment failure occurs. Emerging evidence has shown that non‑coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non‑coding RNAs (lncRNAs), play a vital role in the tumorigenesis and development of GC. Moreover, the pathogenesis of GC is closely related to aberrant activation of the Wnt (Wingless‑type MMTV integration site family) signaling pathway. ncRNAs serve as potential novel biomarkers in the clinical examination, prognosis and therapeutic targeting of GC. Furthermore, dysregulation of ncRNAs has been demonstrated to affect tumor initiation, epithelial‑mesenchymal transition (EMT), angiogenesis, tumor development, invasion, metastasis and resistance to therapy via the Wnt/β‑catenin signaling pathway. This review focuses on the role of ncRNAs in modulating the Wnt/β‑catenin signaling pathway in the pathogenesis of GC, which may provide a reference for the clinical diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhaozhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
156
|
Lozano-Vidal N, Bink DI, Boon RA. Long noncoding RNA in cardiac aging and disease. J Mol Cell Biol 2020; 11:860-867. [PMID: 31152659 PMCID: PMC6884711 DOI: 10.1093/jmcb/mjz046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the main cause of morbidity and mortality in Western society and present an important age-related risk. With the constant rise in life expectancy, prevalence of CVD in the population will likely increase further. New therapies, especially in the elderly, are needed to combat CVD. This review is focused on the role of long noncoding RNA (lncRNA) in CVD. RNA sequencing experiments in the past decade showed that most RNA does not code for protein, but many RNAs function as ncRNA. Here, we summarize the recent findings of lncRNA regulation in the diseased heart. The potential use of these RNAs as biomarkers of cardiac disease prediction is also discussed.
Collapse
Affiliation(s)
- Noelia Lozano-Vidal
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Diewertje I Bink
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands.,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
| |
Collapse
|
157
|
Sun D, Li T, Xin H, An J, Yang J, Lin J, Meng X, Wang B, Ozaki T, Yu M, Zhu Y. miR-489-3p inhibits proliferation and migration of bladder cancer cells through downregulation of histone deacetylase 2. Oncol Lett 2020; 20:8. [PMID: 32774482 PMCID: PMC7405606 DOI: 10.3892/ol.2020.11869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Since human bladder cancer (BC) is a common malignancy of the urinary system with poor prognosis, it is crucial to clarify the molecular mechanisms of BC development and progression. To the best of our knowledge, the current study demonstrated for the first time that miR-489-3p suppressed BC cell-derived tumor growth in vivo via the downregulation of histone deacetylase 2 (HDAC2). According to the results, expression levels of miR-489-3p were lower in BC tissues compared with corresponding normal tissues. Expression of miR-489-3p mimics in BC-derived T24 and 5637 cells resulted in a significant reduction in proliferation and migration rates. Furthermore, bioinformatics analyses indicated that HDAC2 may be a potential downstream target of miR-489-3p. In contrast to miR-489-3p, HDAC2 was expressed at higher levels in BC tissues compared with corresponding normal tissues. Additionally, small interfering RNA-mediated knockdown of HDAC2 caused a marked decrease in the proliferation and migration rates of T24 and 5637 cells. Consistent with these observations, expression of miR-489-3p mimics attenuated the growth of xenograft tumors arising from T24 cells and resulted in HDAC2 downregulation. In conclusion, the results of the current study indicated that the miR-489-3p/HDAC2 axis serves a role in the development and/or the progression of BC and may be a potential molecular target for the development of a novel strategy to treat patients with BC.
Collapse
Affiliation(s)
- Dan Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianren Li
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haotian Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun An
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jieping Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Toshinori Ozaki
- Department of DNA Damage Signaling, Research Center, The 5th Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Meng Yu
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
158
|
Stefanou IK, Gazouli M, Zografos GC, Toutouzas KG. Role of non-coding RNAs in pathogenesis of gastrointestinal stromal tumors. World J Meta-Anal 2020; 8:233-244. [DOI: 10.13105/wjma.v8.i3.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
|
159
|
Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells 2020; 9:cells9061419. [PMID: 32517366 PMCID: PMC7349410 DOI: 10.3390/cells9061419] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are essential for several tumor progression-related processes, including the epithelial–mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive role of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470. Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Our findings indicate that exosome-derived LINC00960 and LINC02470 from high-grade bladder cancer cells promote the malignant behaviors of recipient low-grade bladder cancer cells and induce EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.
Collapse
|
160
|
Huang Y, Zhuang Q, Zhuang W. Mortal Obligate RNA Transcript Inhibits Cancer Cell Invasion and Migration in Lung Adenocarcinoma by Downregulating miRNA-223. Cancer Biother Radiopharm 2020; 35:345-350. [PMID: 32160014 DOI: 10.1089/cbr.2019.3244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Mortal obligate RNA transcript (MORT), a long noncoding RNA, has been reported as a potential tumor suppressor in many types of cancer. The functions of MORT involved in lung adenocarcinoma (LUAD) were investigated in this study. Materials and Methods: A total of 67 patients with LUAD (adenocarcinoma) were recruited in this study. Quantitative reverse transcription-polymerase chain reaction was used to assess gene expression. Cell transfections were used to analyze gene interactions. Transwell migration and invasion assay were carried out to analyze cell migration and invasion. Results: MORT was downregulated, whereas miRNA-223 was upregulated in LUAD. Expression of MORT was significantly affected by tumor metastasis but not by the size of tumors. Expression of miRNA-223 and MORT was inversely correlated in LUAD tissue samples. LUAD cells overexpressing MORT showed downregulated miRNA-223, whereas the expression of MORT was not significantly affected by overexpression of miRNA-223. Besides, overexpression of MORT inhibited, whereas overexpression of miRNA-223 promoted the invasion and migration of LUAD cells. Overexpression of miRNA-223 inhibited the effects of overexpressing MORT on cell invasion and migration. Conclusions: Therefore, MORT may inhibit cancer cell invasion and migration in LUAD by downregulating miRNA-223.
Collapse
Affiliation(s)
- Yunjian Huang
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou City, P.R. China
| | - Qingyang Zhuang
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou City, P.R. China
| | - Wu Zhuang
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou City, P.R. China
| |
Collapse
|
161
|
Grixti JM, Ayers D. Long noncoding RNAs and their link to cancer. Noncoding RNA Res 2020; 5:77-82. [PMID: 32490292 PMCID: PMC7256057 DOI: 10.1016/j.ncrna.2020.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 02/09/2023] Open
Abstract
The central dogma of molecular biology, developed from the study of simple organisms such as Escherichia coli, has up until recently been that RNA functions mainly as an information intermediate between a DNA sequence (gene), localized in the cell nucleus, serving as a template for the transcription of messenger RNAs, which in turn translocate into the cytoplasm and act as blueprints for the translation of their encoded proteins. There are a number of classes of non-protein coding RNAs (ncRNAs) which are essential for gene expression to function. The specific number of ncRNAs within the human genome is unknown. ncRNAs are classified on the basis of their size. Transcripts shorter than 200 nucleotides, referred to as ncRNAs, which group includes miRNAs, siRNAs, piRNAs, etc, have been extensively studied. Whilst transcripts with a length ranging between 200 nt up to 100 kilobases, referred to as lncRNAs, make up the second group, and are recently receiving growing concerns. LncRNAs play important roles in a variety of biological processes, regulating physiological functions of organisms, including epigenetic control of gene regulation, transcription and post-transcription, affecting various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. LncRNAs are also capable of tuning gene expression and impact cellular signalling cascades, play crucial roles in promoter-specific gene regulation, and X-chromosome inactivation. Furthermore, it has been reported that lncRNAs interact with DNA, RNA, and/or protein molecules, and regulate chromatin organisation, transcriptional and post-transcriptional regulation. Consequently, they are differentially expressed in tumours, and they are directly linked to the transformation of healthy cells into tumour cells. As a result of their key functions in a wide range of biological processes, lncRNAs are becoming rising stars in biology and medicine, possessing potential active roles in various oncologic diseases, representing a gold mine of potential new biomarkers and drug targets.
Collapse
Affiliation(s)
- Justine M. Grixti
- Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, L69 6ZB, UK, United Kingdom
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester, M13 9PL, UK, United Kingdom
| |
Collapse
|
162
|
Gupta N, Jadhav S, Tan KL, Saw G, Mallilankaraman KB, Dheen ST. miR-142-3p Regulates BDNF Expression in Activated Rodent Microglia Through Its Target CAMK2A. Front Cell Neurosci 2020; 14:132. [PMID: 32508597 PMCID: PMC7253665 DOI: 10.3389/fncel.2020.00132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia, the innate immune effector cells of the mammalian central nervous system (CNS), are involved in the development, homeostasis, and pathology of CNS. Microglia become activated in response to various insults and injuries and protect the CNS by phagocytosing the invading pathogens, dead neurons, and other cellular debris. Recent studies have demonstrated that the epigenetic mechanisms ensure the coordinated regulation of genes involved in microglial activation. In this study, we performed a microRNA (miRNA) microarray in activated primary microglia derived from rat pup's brain and identified differentially expressed miRNAs targeting key genes involved in cell survival, apoptosis, and inflammatory responses. Interestingly, miR-142-3p, one of the highly up-regulated miRNAs in microglia upon lipopolysaccharide (LPS)-mediated activation, compared to untreated primary microglia cells was predicted to target Ca2+/calmodulin dependent kinase 2a (CAMK2A). Further, luciferase reporter assay confirmed that miR-142-3p targets the 3'UTR of Camk2a. CAMK2A has been implicated in regulating the expression of brain-derived neurotrophic factor (BDNF) and long-term potentiation (LTP), a cellular mechanism underlying memory and learning. Given this, this study further focused on understanding the miR-142-3p mediated regulation of the CAMK2A-BDNF pathway via Cyclic AMP-responsive element-binding protein (CREB) in activated microglia. The results revealed that CAMK2A was downregulated in activated microglia, suggesting an inverse relationship between miR-142-3p and Camk2a in activated microglia. Overexpression of miR-142-3p in microglia was found to decrease the expression of CAMK2A and subsequently BDNF through regulation of CREB phosphorylation. Functional analysis through shRNA-mediated stable knockdown of CAMK2A in microglia confirmed that the regulation of BDNF by miR-142-3p is via CAMK2A. Overall, this study provides a database of differentially expressed miRNAs in activated primary microglia and reveals that microglial miR-142-3p regulates the CAMK2A-CREB-BDNF pathway which is involved in synaptic plasticity.
Collapse
Affiliation(s)
- Neelima Gupta
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shweta Jadhav
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai-Leng Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Genevieve Saw
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karthik Babu Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
163
|
Opposite regulation of piRNAs, rRNAs and miRNAs in the blood after subarachnoid hemorrhage. J Mol Med (Berl) 2020; 98:887-896. [PMID: 32424559 PMCID: PMC7297814 DOI: 10.1007/s00109-020-01922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 10/28/2022]
Abstract
Multiple classes of small RNAs (sRNAs) are expressed in the blood and are involved in the regulation of pivotal cellular processes. We aimed to elucidate the expression patterns and functional roles of sRNAs in the systemic response to intracranial aneurysm (IA) rupture. We used next-generation sequencing to analyze the expression of sRNAs in patients in the acute phase of IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. The patterns of alterations in sRNA expression were analyzed in the context of clinically relevant information regarding the biological consequences of IA rupture. We identified 542 differentially expressed sRNAs (108 piRNAs, 99 rRNAs, 90 miRNAs, 43 scRNAs, 36 tRNAs, and 32 snoRNAs) among the studied groups with notable differences in upregulated and downregulated sRNAs between the groups and sRNAs categories. piRNAs and rRNAs showed a substantial decrease in RNA abundance that was sustained after IA rupture, whereas miRNAs were largely upregulated. Downregulated sRNA genes included piR-31080, piR-57947, 5S rRNA, LSU-rRNA, and SSU-rRNA s. Remarkable enrichment in the representation of transcription factor binding sites was revealed in genomic locations of the regulated sRNA. We found strong overrepresentation of glucocorticoid receptor, retinoid x receptor alpha, and estrogen receptor alpha binding sites at the locations of downregulated piRNAs, tRNAs, and rRNAs. This report, although preliminary and largely proof-of-concept, is the first to describe alterations in sRNAs abundance levels in response to IA rupture in humans. The obtained results indicate novel mechanisms that may constitute another level of control of the inflammatory response. KEY MESSAGES: A total of 542 sRNAs were differentially expressed after aneurysmal SAH comparing with controls piRNAs and rRNAs were upregulated and miRNAs were downregulated after IA rupture The regulated sRNA showed an enrichment in the representation of some transcription factor binding sites piRNAs, tRNAs, and rRNAs showed an overrepresentation for GR, RXRA, and ERALPHA binding sites.
Collapse
|
164
|
Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:91. [PMID: 32430042 PMCID: PMC7236474 DOI: 10.1186/s13046-020-01594-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors globally. Angiogenesis is a key event maintaining tumor cell survival and aggressiveness. The expression of vascular endothelial growth factor A (VEGFA), one of the most significant tumor cell-secreted proangiogenic factors, is frequently upregulated in CRC. Methods The MTT assay was used to detect the viability of CRC cells. Transwell assays were performed to detect the invasion capacity of target cells. Relative protein levels were determined by immunoblotting. Pathological characteristics of tissues were detected by H&E staining and immunohistochemical (IHC) staining. A RIP assay was conducted to validate the predicted binding between genes. Results We observed that circ-001971 expression was dramatically increased in CRC tissue samples and cells. Circ-001971 knockdown suppressed the capacity of CRC cells to proliferate and invade and HUVEC tube formation in vitro, as well as tumor growth in mice bearing SW620 cell-derived tumors in vivo. The expression of circ-001971 and VEGFA was dramatically increased whereas the expression of miR-29c-3p was reduced in tumor tissue samples. Circ-001971 relieved miR-29c-3p-induced inhibition of VEGFA by acting as a ceRNA, thereby aggravating the proliferation, invasion and angiogenesis of CRC. Consistent with the above findings, the expression of VEGFA was increased, whereas the expression of miR-29c-3p was decreased in tumor tissue samples. miR-29c-3p had a negative correlation with both circ-001971 and VEGFA, while circ-001971 was positively correlated with VEGFA. Conclusions In conclusion, the circ-001971/miR-29c-3p axis modulated CRC cell proliferation, invasion, and angiogenesis by targeting VEGFA.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiguo Huang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangmin Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaogang Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mu Zhang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
165
|
Small RNA Sequencing Analysis of miRNA Expression Reveals Novel Insihts into Root Formation under Root Restriction Cultivation in Grapevine ( Vitis vinifera L.). Int J Mol Sci 2020; 21:ijms21103513. [PMID: 32429227 PMCID: PMC7278995 DOI: 10.3390/ijms21103513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Root restriction cultivation (RRC) can influence plant root architecture, but its root phenotypic changes and molecular mechanisms are still unknown. In this study, phenotype observations of grapevine root under RRC and control cultivation (nRC) at 12 time points were conducted, and the root phenotype showed an increase of adventitious and lateral root numbers and root tip degeneration after RRC cultivation from 70 days after planting (DAP). The 70 and 125 DAP sampling of two different cultivations, named nR70, RR70, nR125, and RR125, were selected for small RNA sequencing. A total of 153 known miRNAs and 119 predicted novel miRNAs were obtained. Furthermore, BLAST was used to predict the novel miRNAs with miRBase databases using the default parameters; 96 of the 119 predicted novel miRNAs were similar to other species, and the remaining 23 grapevine-specific novel miRNAs were obtained. There were 26, 33, 26, and 32 miRNAs that were differentially expressed in different comparison groups (RR70 vs. nR70, RR125 vs. nR125, nR125 vs. nR70 and RR125 vs. RR70). Target genes prediction of differentially expressed miRNAs was annotated on a variety of biological processes, and 24 participated in root development. Moreover, multiple miRNAs were found to jointly regulate lateral root development under root restriction conditions. The miRNA expression pattern comparison between RRC and nRC may provide a framework for the future analysis of miRNAs associated with root development in grapevine.
Collapse
|
166
|
Wang W, Tang X, Qu H, He Q. Translation regulatory long non-coding RNA 1 represents a potential prognostic biomarker for colorectal cancer. Oncol Lett 2020; 19:4077-4087. [PMID: 32391108 PMCID: PMC7204641 DOI: 10.3892/ol.2020.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted a lot of attention for their role in the development, progression and prognosis of colorectal cancer (CRC). However, little is known on the clinical significance of the translation regulatory lncRNA 1 (TRERNA1) in CRC. The present study aimed to explore the clinical value of TRERNA1 in patients with CRC. A total of 89 cancer-associated lncRNA genes were analyzed using the RT2 lncRNA PCR array Human Cancer PathwayFinder. Following the PCR array, reverse transcription-quantitative (RT-q)PCR was conducted to identify the differential expression of TRERNA1 between 130 CRC and corresponding non-tumorous adjacent tissues. Additionally, the association between TRERNA1 expression and clinical characteristics was analyzed. Furthermore, TRERNA1 expression was knocked down via small interfering RNAs. The results of the PCR array and RT-qPCR revealed that TRERNA1 expression was significantly upregulated in CRC tissues compared with in adjacent normal tissues. TRERNA1 upregulation was positively associated with distant metastasis, perineural invasion, TNM stage, node metastasis stage and tumor diameter. Multivariate analysis revealed that patients with higher TRERNA1 expression had a shorter overall survival (OS) time and a less favorable prognosis compared with those in the low TRERNA1 expression group. Knockdown of TRERNA1 inhibited invasion and metastasis of CRC cells via regulating Snail expression. In conclusion, TRERNA1 expression was upregulated in CRC tissues. High expression levels of TRERNA1 may be associated with poor OS times, a less favorable prognosis and lymph node metastasis in patients with CRC. TRERNA1 may therefore serve as a useful and novel biomarker for CRC lymph node metastasis and prognosis.
Collapse
Affiliation(s)
- Weijia Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of General Surgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qingsi He
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
167
|
Wood ME, Farina NH, Ahern TP, Cuke ME, Stein JL, Stein GS, Lian JB. Towards a more precise and individualized assessment of breast cancer risk. Aging (Albany NY) 2020; 11:1305-1316. [PMID: 30787204 PMCID: PMC6402518 DOI: 10.18632/aging.101803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Many clinically based models are available for breast cancer risk assessment; however, these models are not particularly useful at the individual level, despite being designed with that intent. There is, therefore, a significant need for improved, precise individualized risk assessment. In this Research Perspective, we highlight commonly used clinical risk assessment models and recent scientific advances to individualize risk assessment using precision biomarkers. Genome-wide association studies have identified >100 single nucleotide polymorphisms (SNPs) associated with breast cancer risk, and polygenic risk scores (PRS) have been developed by several groups using this information. The ability of a PRS to improve risk assessment is promising; however, validation in both genetically and ethnically diverse populations is needed. Additionally, novel classes of biomarkers, such as microRNAs, may capture clinically relevant information based on epigenetic regulation of gene expression. Our group has recently identified a circulating-microRNA signature predictive of long-term breast cancer in a prospective cohort of high-risk women. While progress has been made, the importance of accurate risk assessment cannot be understated. Precision risk assessment will identify those women at greatest risk of developing breast cancer, thus avoiding overtreatment of women at average risk and identifying the most appropriate candidates for chemoprevention or surgical prevention.
Collapse
Affiliation(s)
- Marie E Wood
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont Medical Center, Burlington, VT 05405, USA
| | - Nicholas H Farina
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Biochemistry, and The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Thomas P Ahern
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Biochemistry, and The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Surgery, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Melissa E Cuke
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont Medical Center, Burlington, VT 05405, USA
| | - Janet L Stein
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Biochemistry, and The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gary S Stein
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Biochemistry, and The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Surgery, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jane B Lian
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA.,Department of Biochemistry, and The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
168
|
Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. J Clin Med 2020; 9:E1309. [PMID: 32370117 PMCID: PMC7291215 DOI: 10.3390/jcm9051309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a chronic gynecological disease, affecting up to 10% of reproductive-age women. The exact cause of the disease is unknown; however, it is a heritable condition affected by multiple genetic, epigenetic, and environmental factors. Previous studies reported variations in the epigenetic patterns of numerous genes known to be involved in the aberrant modulation of cell cycle steroidogenesis, abnormal hormonal, immune and inflammatory status in endometriosis, apoptosis, adhesion, angiogenesis, proliferation, immune and inflammatory processes, response to hypoxia, steroidogenic pathway and hormone signaling are involved in the pathogenesis of endometriosis. Accumulating evidence suggest that various epigenetic aberrations may contribute to the pathogenesis of endometriosis. Among them, DNA methyltransferases, histone deacetylators, and non-coding microRNAs demonstrate differential expression within endometriotic lesions and in the endometrium of patients with endometriosis. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may contribute to the discovery of a useful prognostic biomarker, which could aid in the future earlier detection, timely diagnosis, and initiation of a new approach to the treatment of endometriosis, as well as inform us about the effectiveness of treatment and the stage of the disease. As the etiology of endometriosis is highly complex and still far from being fully elucidated, the presented review focuses on different approaches to identify the genetic and epigenetic links of endometriosis and its pathogenesis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; Poland;
- Department of Operative and Conservative Gynecology, K. Jonscher Memorial Hospital, Milionowa 14, 93-113 Lodz, Poland
| | - Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
169
|
Jiang H, Wang J, Li M, Lan W, Wu FX, Pan Y. miRTRS: A Recommendation Algorithm for Predicting miRNA Targets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1032-1041. [PMID: 30281478 DOI: 10.1109/tcbb.2018.2873299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
microRNAs (miRNAs) are small and important non-coding RNAs that regulate gene expression in transcriptional and post-transcriptional level by combining with their targets (genes). Predicting miRNA targets is an important problem in biological research. It is expensive and time-consuming to identify miRNA targets by using biological experiments. Many computational methods have been proposed to predict miRNA targets. In this study, we develop a novel method, named miRTRS, for predicting miRNA targets based on a recommendation algorithm. miRTRS can predict targets for an isolated (new) miRNA with miRNA sequence similarity, as well as isolated (new) targets for a miRNA with gene sequence similarity. Furthermore, when compared to supervised machine learning methods, miRTRS does not need to select negative samples. We use 10-fold cross validation and independent datasets to evaluate the performance of our method. We compared miRTRS with two most recently published methods for miRNA target prediction. The experimental results have shown that our method miRTRS outperforms competing prediction methods in terms of AUC and other evaluation metrics.
Collapse
|
170
|
Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of Circulating Tumor Cells in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:117-134. [PMID: 32304083 DOI: 10.1007/978-3-030-35805-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
171
|
Zhao YH, Liu YL, Fei KL, Li P. Long non-coding RNA HOTAIR modulates the progression of preeclampsia through inhibiting miR-106 in an EZH2-dependent manner. Life Sci 2020; 253:117668. [PMID: 32320706 DOI: 10.1016/j.lfs.2020.117668] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
Abstract
AIMS Preeclampsia (PE) accounts for the foremost cause of maternal and fetal mortality worldwide, whereas, there are no effective treatments for the disease yet. Long non-coding RNAs (lncRNAs) play critical roles in various human disorders, including PE. Here, we identified an up-regulated lncRNA HOTAIR, and explored its underlying mechanisms in PE. MAIN METHODS qRT-PCR analysis was used to examine HOTAIR expression in PE tissues and cell lines. Trophoblast proliferation was examined by colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assays. Trophoblast migration and invasion was determined by transwell and wound healing assays. Bioinformatics analysis was performed to verify the regulation HOTAIR on miRNAs. The interaction between HOTAIR and EZH2 was detected using RNA immunoprecipitation assay (RIP). Chromatin immunoprecipitation (CHIP) assay was also performed to verify that the negative regulation of HOTAIR on miR-106a was dependent on the epigenetic repressor EZH2. KEY FINDINGS HOTAIR was up-regulated in PE placenta tissues, which repressed the proliferation, migration and invasion of trophoblast cells. HOTAIR significantly repressed miR-106a expression and the reduced miR-106a level was also observed in placentas from PE patients. Additionally, miR-106a mimic enhanced the migration and invasion of trophoblast cells. Further mechanistic analyses implied that the action of HOTAIR is moderately attributable to its repression of miR-106a via association with EZH2. SIGNIFICANCE High level of HOTAIR repressed the proliferation, migration and invasion of trophoblast cells through targeting miR-106 in an EZH2-dependent manner, which may provide new insights into the roles of HOTAIR and miR-106a as potential regulators in PE.
Collapse
Affiliation(s)
- Yan-Hua Zhao
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - Yue-Lan Liu
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - Kui-Lin Fei
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
172
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
173
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
174
|
Xing Z, Li S, Liu Z, Zhang C, Bai Z. CTCF-induced upregulation of HOXA11-AS facilitates cell proliferation and migration by targeting miR-518b/ACTN4 axis in prostate cancer. Prostate 2020; 80:388-398. [PMID: 31971633 DOI: 10.1002/pros.23953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Testified as crucial participators in different types of human malignancies, long noncoding RNAs (lncRNAs) have been revealed to exert a significant effect on the complicated courses of tumor progression. Although existing literatures have revealed the oncogenic role of lncRNA homeobox A11 antisense RNA (HOXA11-AS) in multiple cancers, the underlying role of HOXA11-AS in prostate cancer (PCa) and its potential molecular mechanism remains poorly understood. AIM To decipher the molecular performance of HOXA11-AS in PCa. METHODS The expression of HOXA11-AS, miR-518b and actinin alpha 4 (ACTN4) was detected by a real-time quantitative polymerase chain reaction. Colony formation, EdU, flow cytometry, wound healing, and transwell assays were utilized to explore the biological role of HOXA11-AS in PCa. The interaction between RNAs (CCCTC-binding factor [CTCF], HOXA11-AS, miR-518b, and ACTN4) was tested via chromatin immunoprecipitation, luciferase reporter and RNA immunoprecipitation assays. RESULTS HOXA11-AS in PCa cells was expressed at high levels. Silenced HOXA11-AS in PCa cells could lead to a significant elevation in the abilities of cell proliferation and migration whereas a remarkable declination in cell apoptosis capability. Subsequent molecular mechanism assays confirmed that HOXA11-AS bound with miR-518b and negatively regulates miR-518b expression. Besides, HOXA11-AS could regulate the expression of ACTN4 by sponging miR-518b. Moreover, rescued-function assays revealed that miR-518b inhibition or ACTN4 upregulation reversed the repressive effect of HOXA11-AS knockdown on PCa progression. Furthermore, CTCF was validated to activate HOXA11-AS transcription in PCa cells. CONCLUSIONS CTCF-induced upregulation of HOXA11-AS facilitates PCa progression via miR-518b/ACTN4 axis, providing a new target for PCa treatment.
Collapse
Affiliation(s)
- Zengshu Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Sailian Li
- Department of Gastroenterology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Zhenxiang Liu
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Chong Zhang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| |
Collapse
|
175
|
Novikov IB, Wilkins AD, Lichtarge O. An Evolutionary Trace method defines functionally important bases and sites common to RNA families. PLoS Comput Biol 2020; 16:e1007583. [PMID: 32208421 PMCID: PMC7092961 DOI: 10.1371/journal.pcbi.1007583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
Functional non-coding (fnc)RNAs are nucleotide sequences of varied lengths, structures, and mechanisms that ubiquitously influence gene expression and translation, genome stability and dynamics, and human health and disease. Here, to shed light on their functional determinants, we seek to exploit the evolutionary record of variation and divergence read from sequence comparisons. The approach follows the phylogenetic Evolutionary Trace (ET) paradigm, first developed and extensively validated on proteins. We assigned a relative rank of importance to every base in a study of 1070 functional RNAs, including the ribosome, and observed evolutionary patterns strikingly similar to those seen in proteins, namely, (1) the top-ranked bases clustered in secondary and tertiary structures. (2) In turn, these clusters mapped functional regions for catalysis, binding proteins and drugs, post-transcriptional modification, and deleterious mutations. (3) Moreover, the quantitative quality of these clusters correlated with the identification of functional regions. (4) As a result of this correlation, smoother structural distributions of evolutionary important nucleotides improved functional site predictions. Thus, in practice, phylogenetic analysis can broadly identify functional determinants in RNA sequences and functional sites in RNA structures, and reveal details on the basis of RNA molecular functions. As example of application, we report several previously undocumented and potentially functional ET nucleotide clusters in the ribosome. This work is broadly relevant to studies of structure-function in ribonucleic acids. Additionally, this generalization of ET shows that evolutionary constraints among sequence, structure, and function are similar in structured RNA and proteins. RNA ET is currently available as part of the ET command-line package, and will be available as a web-server. Traditionally, RNA has been delegated to the role of an intermediate between DNA and proteins. However, we now recognize that RNAs are broadly functional beyond their role in translation, and that a number of diverse classes exist. Because functional, non-coding RNAs are prevalent in biology and impact human health, it is important to better understand their functional determinants. However, the classical solution to this problem, targeted mutagenesis, is time-consuming and scales poorly. We propose an alternative computational approach to this problem, the Evolutionary Trace method. Previously developed and validated for proteins, Evolutionary Trace examines evolutionary history of a molecule and predicts evolutionarily important residues in the sequence. We apply Evolutionary Trace to a set of diverse RNAs, and find that the evolutionarily important nucleotides cluster on the three-dimensional structure, and that these clusters closely overlap functional sites. We also find that the clustering property can be used to refine and improve predictions. These findings are in close agreement with our observations of Evolutionary Trace in proteins, and suggest that structured functional RNAs and proteins evolve under similar constraints. In practice, the approach is to be used by RNA researches seeking insight into their molecule of interest, and the Evolutionary Trace program, along with a working example, is available at https://github.com/LichtargeLab/RNA_ET_ms.
Collapse
Affiliation(s)
- Ilya B. Novikov
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Angela D. Wilkins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
176
|
Bedi K, Paulsen MT, Wilson TE, Ljungman M. Characterization of novel primary miRNA transcription units in human cells using Bru-seq nascent RNA sequencing. NAR Genom Bioinform 2020; 2:lqz014. [PMID: 31709421 PMCID: PMC6824518 DOI: 10.1093/nargab/lqz014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/07/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key contributors to gene regulatory networks. Because miRNAs are processed from RNA polymerase II transcripts, insight into miRNA regulation requires a comprehensive understanding of the regulation of primary miRNA transcripts. We used Bru-seq nascent RNA sequencing and hidden Markov model segmentation to map primary miRNA transcription units (TUs) across 32 human cell lines, allowing us to describe TUs encompassing 1443 miRNAs from miRBase and 438 from MirGeneDB. We identified TUs for 61 miRNAs with an unknown CAGE TSS signal for MirGeneDB miRNAs. Many primary transcripts containing miRNA sequences failed to generate mature miRNAs, suggesting that miRNA biosynthesis is under both transcriptional and post-transcriptional control. In addition to constitutive and cell-type specific TU expression regulated by differential promoter usage, miRNA synthesis can be regulated by transcription past polyadenylation sites (transcriptional read through) and promoter divergent transcription (PROMPTs). We identified 197 miRNA TUs with novel promoters, 97 with transcriptional read-throughs and 3 miRNA TUs that resemble PROMPTs in at least one cell line. The miRNA TU annotation data resource described here reveals a greater complexity in miRNA regulation than previously known and provides a framework for identifying cell-type specific differences in miRNA transcription in cancer and cell transition states.
Collapse
Affiliation(s)
- Karan Bedi
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Department of Pathology and Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
177
|
Reconstruction of a lncRNA-Associated ceRNA Network in Endothelial Cells under Circumferential Stress. Cardiol Res Pract 2020; 2020:1481937. [PMID: 32148949 PMCID: PMC7042510 DOI: 10.1155/2020/1481937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Numerous studies have highlighted that long noncoding RNA (lncRNA) can indirectly regulate the expression of mRNAs by binding to microRNA (miRNA). LncRNA-associated ceRNA networks play a vital role in the initiation and progression of several pathological mechanisms. However, the lncRNA-miRNA-mRNA ceRNA network in endothelial cells under cyclic stretch is seldom studied. Methods The miRNA, mRNA, and lncRNA expression profiles of 6 human umbilical vein endothelial cells (HUVECs) under circumferential stress were obtained by next-generation sequencing (NGS). We identified the differential expression of miRNAs, mRNAs, and lncRNAs using the R software package GDCRNATools. Cytoscape was adopted to construct a lncRNA-miRNA-mRNA ceRNA network. In addition, through GO and KEGG pathway annotations, we analyzed gene functions and their related pathways. We also adopted ELISA and TUNEL to investigate the effect of si-NEAT1 on endothelial inflammation and apoptosis. Results We recognized a total of 32978 lncRNAs, 1046 miRNAs, and 31958 mRNAs in 6 samples; among them, 155 different expressed lncRNAs, 74 different expressed miRNAs, and 960 different mRNAs were adopted. Based on the established theory, the ceRNA network was composed of 13 lncRNAs, 44 miRNAs, and 115 mRNAs. We constructed and visualized a lncRNA-miRNA-mRNA network, and the top 20 nodes are identified after calculating their degrees. The nodes with most degrees in three kinds of RNAs are hsa-miR-4739, NEAT1, and MAP3K2. Functional analysis showed that different biological processes enriched in biological regulation, response to stimulus and cell communication. Pathway analysis was mainly enriched in longevity regulating, cell cycle, mTOR, and FoxO signaling pathway. Circumferential stress can significantly downregulate NEAT1, and after transducing si-NEAT1 for 24 h, inflammatory cytokine IL-6 and MCP-1 were significantly increased; furthermore, fewer TUNEL-positive cells were found in the si-NEAT1 treated group. Conclusions The establishing of a ceRNA network can help further understand the mechanism of vein graft failure. Our data demonstrated that NEAT1 may be a core factor among the mechanical stress factors and that cyclic stress can significantly reduce expression of NEAT1, give rise to inflammation in the early stage of endothelial dysfunction, and promote EC apoptosis, which may play an essential role in vein graft failure.
Collapse
|
178
|
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2020; 15:327-345. [PMID: 30894700 DOI: 10.1038/s41581-019-0135-6] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
179
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|
180
|
The Epigenetics of the Endocannabinoid System. Int J Mol Sci 2020; 21:ijms21031113. [PMID: 32046164 PMCID: PMC7037698 DOI: 10.3390/ijms21031113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ES) is a cell-signalling system widely distributed in biological tissues that includes endogenous ligands, receptors, and biosynthetic and hydrolysing machineries. The impairment of the ES has been associated to several pathological conditions like behavioural, neurological, or metabolic disorders and infertility, suggesting that the modulation of this system may be critical for the maintenance of health status and disease treatment. Lifestyle and environmental factors can exert long-term effects on gene expression without any change in the nucleotide sequence of DNA, affecting health maintenance and influencing both disease load and resistance. This potentially reversible "epigenetic" modulation of gene expression occurs through the chemical modification of DNA and histone protein tails or the specific production of regulatory non-coding RNA (ncRNA). Recent findings demonstrate the epigenetic modulation of the ES in biological tissues; in the same way, endocannabinoids, phytocannabinoids, and cannabinoid receptor agonists and antagonists induce widespread or gene-specific epigenetic changes with the possibility of trans-generational epigenetic inheritance in the offspring explained by the transmission of deregulated epigenetic marks in the gametes. Therefore, this review provides an update on the epigenetics of the ES, with particular attention on the emerging role in reproduction and fertility.
Collapse
|
181
|
Wang Z, Huang C, Zhang A, Lu C, Liu L. Overexpression of circRNA_100290 promotes the progression of laryngeal squamous cell carcinoma through the miR-136-5p/RAP2C axis. Biomed Pharmacother 2020; 125:109874. [PMID: 32014687 DOI: 10.1016/j.biopha.2020.109874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) exert critical functions in tumorigenesis and tumor development, but whether and how circRNAs contribute to laryngeal squamous cell carcinoma (LSCC) is unclear. In this study, we explored the function and mechanisms of circRNA_100290 in LSCC. Tissue samples were obtained from 40 patients with LSCC. The expression of circRNA_100290 and other targets was measured through quantitative reverse transcription-polymerase chain reaction and western blot analysis. Cell proliferation, colony-forming ability, and apoptosis were tested using CCK-8 assay and EdU assay, colony formation assay, and flow cytometry, respectively. Cell migration and invasion were detected by Transwell assay. Moreover, the interactions between circRNA_100290, miR-136-5p, and RAP2C were analyzed by bioinformatics, and verified by dual-luciferase reporter assays. Here, we found that circRNA_100290 expression was significantly upregulated in LSCC tissues and cell lines compared with the normal controls. Expression of circRNA_100290 positively correlated with advanced TNM stage and lymph node metastasis in LSCC patients. In cell culture, upregulation of circRNA_100290 promoted LSCC cell proliferation, migration, and invasion, while it inhibited cell apoptosis; downregulating circRNA_100290 exerted the opposite effects. In vivo, circRNA_100290 overexpression dramatically promoted tumor growth. Mechanistically, circRNA_100290 may act as a sponge of miR-136-5p, and inhibiting miR-136-5p in LSCC cells indeed reversed the effects of circRNA_100290 downregulation. The RAS oncogene RAP2C was predicted to be a target of miR-136-5p, and downregulating RAP2C in LSCC cells partially reversed the oncogenic effects of circRNA_100290 overexpression or miR-136-5p decrease. Our findings suggest that circRNA_100290 promotes LSCC progression by targeting the miR-136-5p/RAP2C axis, which may lead to the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Chaoping Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Aobo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Cheng Lu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| |
Collapse
|
182
|
Mondal P, Natesh J, Kamal MA, Meeran SM. Non-coding RNAs in Lung Cancer Chemoresistance. Curr Drug Metab 2020; 20:1023-1032. [DOI: 10.2174/1389200221666200106105201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lung cancer is the leading cause of cancer-associated death worldwide with limited
treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations
of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics
used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the
treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the
prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs
(ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various
tumor-suppressor genes and oncogenes.
Result:
The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with
the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs
(lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to
regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma
progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers
and therapeutic targets for lung cancer.
Conclusion:
Targeting ncRNAs could be an effective approach for the development of novel therapeutics against
lung cancer and to overcome the chemoresistance.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
183
|
Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among Iranian population: an overview. Cell Biosci 2020; 10:6. [PMID: 31956395 PMCID: PMC6961246 DOI: 10.1186/s13578-020-0373-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer is associated with various genetic and environmental risk factors. Beside the mutations or aberrant expression of protein-coding genes, the genetic deregulation of non-coding RNAs has also an important role during tumor progression and metastasis. Long non-coding RNAs (lncRNAs) are a class of ncRNAs larger than 200 nucleotides that may function as tumor-suppressor or oncogene. MAIN BODY There is a raising trend of cancer incidence among Iranian population during the last decades. Therefore, it is required to prepare a general population specific panel of genetic markers for the early detection of cancer in this population. The tissue-specific expression characteristics and high stability in body fluids highlight the lncRNAs as efficient diagnostic and prognostic noninvasive biomarkers in cancer. In present review we summarized all of the lncRNAs which have been reported until now in different tumors among Iranian patients. CONCLUSIONS This review paves the way of introducing a population based noninvasive diagnostic panel of lncRNAs for the early detection of tumor cells among Iranian population.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
184
|
Lee K, Kang JH, Kim HM, Ahn J, Lim H, Lee J, Jeon WJ, Lee JH, Kim KB. Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane. NANO CONVERGENCE 2020; 7:1. [PMID: 31930443 PMCID: PMC6955385 DOI: 10.1186/s40580-019-0212-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/08/2019] [Indexed: 05/17/2023]
Abstract
A method to directly collect negatively charged nucleic acids, such as DNA and RNA, in the biosamples simply by applying an electric field in between the sample and collection buffer separated by the nanofilter membrane is proposed. The nanofilter membrane was made of low-stress silicon nitride with a thickness of 100 nm, and multiple pores were perforated in a highly arranged pattern using nanoimprint technology with a pore size of 200 nm and a pore density of 7.22 × 108/cm2. The electrophoretic transport of hsa-mir-93-5p across the membrane was confirmed in pure microRNA (miRNA) mimic solution using quantitative reverse transcription-polymerase chain reactions (qRT-PCR). Consistency of the collected miRNA quantity, stability of the system during the experiment, and yield and purity of the prepared sample were discussed in detail to validate the effectiveness of the electrical protocol. Finally, in order to check the applicability of this method to clinical samples, liquid biopsy process was demonstrated by evaluating the miRNA levels in sera of hepatocellular carcinoma patients and healthy controls. This efficient system proposed a simple, physical idea in preparation of nucleic acid from biosamples, and demonstrated its compatibility to biological downstream applications such as qRT-PCR as the conventional nucleic acid extraction protocols.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Hyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junhyoung Ahn
- Department of Nano Manufacturing Technology, Nano Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Hyungjun Lim
- Department of Nano Manufacturing Technology, Nano Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
- Department of Nanomechatronics, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - JaeJong Lee
- Department of Nano Manufacturing Technology, Nano Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
- Department of Nanomechatronics, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Wan-Jin Jeon
- Heimbiotek Inc., Seongnam, Gyeonggi-do, 13486, Republic of Korea
| | - Jae-Hoon Lee
- Heimbiotek Inc., Seongnam, Gyeonggi-do, 13486, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
185
|
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that normally do not encode proteins. circRNAs are involved in many physiological processes as well as the pathogenesis of diseases. Cardiac fibrosis is increasingly recognized as a pathological force in advanced heart diseases. A growing number of studies have reported that the occurrence and development of cardiac fibrosis is closely associated with the regulation of circRNAs. This review summarizes the current understanding of circRNA biogenesis and function and will highlight the recent updates regarding the involvement of circRNAs in cardiac fibrosis, and their potential as emerging biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| |
Collapse
|
186
|
Upadhyaya KC, Kumar A. Perspectives on the human genome. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
187
|
Ren Y, Li W, Liu S, Li Z, Wang J, Yang H, Xu Y. A Weighted Gene Co-expression Network Analysis Reveals lncRNA Abnormalities in the Peripheral Blood Associated With Ultra-High-Risk for Psychosis. Front Psychiatry 2020; 11:580307. [PMID: 33384626 PMCID: PMC7769947 DOI: 10.3389/fpsyt.2020.580307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: The primary study aim was to identify long non-coding RNA (lncRNA) abnormalities associated with ultra-high-risk (UHR) for psychosis based on a weighted gene co-expression network analysis. Methods: UHR patients were screened by the structured interview for prodromal syndromes (SIPS). We performed a WGCNA analysis on lncRNA and mRNA microarray profiles generated from the peripheral blood samples in 14 treatment-seeking patients with UHR who never received psychiatric medication and 18 demographically matched typically developing controls. Gene Ontology (GO) analysis and canonical correlation analysis were then applied to reveal functions and correlation between lncRNAs and mRNAs. Results: The lncRNAs were organized into co-expressed modules by WGCNA, two modules of which were strongly associated with UHR. The mRNA networks were constructed and two disease-associated mRNA modules were identified. A functional enrichment analysis showed that mRNAs were highly enriched for immune regulation and inflammation. Moreover, a significant correlation between lncRNAs and mRNAs were verified by a canonical correlation analysis. Conclusion: We identified novel lncRNA modules related to UHR. These results contribute to our understanding of the molecular basis of UHR from the perspective of systems biology and provide a theoretical basis for early intervention in the assumed development of schizophrenia.
Collapse
Affiliation(s)
- Yan Ren
- Department of Psychiatry, Shanxi Bethune Hospital, Taiyuan, China.,Shanxi Academy of Medical Science, Taiyuan, China
| | - Wei Li
- Department of Psychiatry, Shanxi Bethune Hospital, Taiyuan, China.,Shanxi Academy of Medical Science, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Zhi Li
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaying Wang
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Yang
- Department of Psychiatry, Shanxi Bethune Hospital, Taiyuan, China.,Shanxi Academy of Medical Science, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
188
|
|
189
|
Niu D, Wang L, Cui J, Zhou B, Yao L. Inhibition of long noncoding RNA BLACAT1 protects anesthesia-induced neural cytotoxicity in human induced pluripotent stem cells derived neurons. Eur J Pharmacol 2019; 865:172737. [DOI: 10.1016/j.ejphar.2019.172737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
|
190
|
Silencing of long noncoding RNA HOXA11-AS inhibits the Wnt signaling pathway via the upregulation of HOXA11 and thereby inhibits the proliferation, invasion, and self-renewal of hepatocellular carcinoma stem cells. Exp Mol Med 2019; 51:1-20. [PMID: 31757938 PMCID: PMC6874533 DOI: 10.1038/s12276-019-0328-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter. A long RNA molecule promotes the growth of liver cancer cells through its inhibitory effects on gene regulation. The HOXA11 gene controls cell proliferation and tissue development, and several studies have suggested that HOXA11-AS, an RNA that regulates this gene, may play a role in certain cancers. Researchers led by Min Guo at Hainan General Hospital in Haikou, China, have now obtained evidence linking HOXA11-AS to the growth of hepatocellular carcinoma cells. After determining that this RNA is consistently highly expressed in such cells, the authors demonstrated that it can stimulate cellular proliferation and invasive behavior through its suppressive effects on HOXA11 and other genes. This inhibition results from HOXA11-AS-induced chemical modification of these DNA sequences. The authors hypothesize that this same mechanism could also contribute to growth of other tumor subtypes.
Collapse
|
191
|
Zhang SF, Gao J, Liu CM. The Role of Non-Coding RNAs in Neurodevelopmental Disorders. Front Genet 2019; 10:1033. [PMID: 31824553 PMCID: PMC6882276 DOI: 10.3389/fgene.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs, a group of ribonucleic acids that are ubiquitous in the body and do not encode proteins, emerge as important regulatory factors in almost all biological processes in the brain. Extensive studies have suggested the involvement of non-coding RNAs in brain development and neurodevelopmental disorders, and dysregulation of non-coding RNAs is associated with abnormal brain development and the etiology of neurodevelopmental disorders. Here we provide an overview of the roles and working mechanisms of non-coding RNAs, and discuss potential clinical applications of non-coding RNAs as diagnostic and prognostic markers and as therapeutic targets in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shuang-Feng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
192
|
Are Long Noncoding RNAs New Potential Biomarkers in Gastrointestinal Stromal Tumors (GISTs)? The Role of H19 and MALAT1. JOURNAL OF ONCOLOGY 2019; 2019:5458717. [PMID: 31827510 PMCID: PMC6885275 DOI: 10.1155/2019/5458717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/17/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as key regulators of genetic and epigenetic networks, and their deregulation may underlie complex diseases, such as carcinogenesis. Several studies described lncRNA alterations in patients with solid tumors. In particular, HOTAIR upregulation has been associated with tumor aggressiveness, metastasis, and poor survival in gastrointestinal stromal tumor (GIST) patients. We analyzed expression levels of other lncRNAs, H19 and MALAT1, in FFPE tissue specimens from 40 surgically resected and metastatic GIST patients, using real-time PCR analysis. H19 and MALAT1 were both upregulated in 50% of GIST patients. MALAT1 lncRNA expression levels seem to be correlated with c-KIT mutation status. The percentage of both H19 and MALAT1 upregulation was significantly higher in patients with time to progression (TTP) < 6 months as compared to patients with TTP > 6 months. The median TTP was significantly lower in patients with both H19 and MALAT1 lncRNA upregulation as compared to those with lncRNA downregulation. These data suggest a potential role for both H19 and MALAT1 lncRNAs as prognostic biomarker for the clinical selection of the best candidate to first-line treatment with imatinib.
Collapse
|
193
|
Downregulation of LncRNA GAS5 promotes liver cancer proliferation and drug resistance by decreasing PTEN expression. Mol Genet Genomics 2019; 295:251-260. [PMID: 31705194 DOI: 10.1007/s00438-019-01620-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has shown that the long noncoding RNAs (lncRNAs) play a crucial role in the regulation of hepatocellular carcinoma (HCC) progression and drug resistance. In this study, we aimed to investigate the biological function roles of lncRNAs growth arrest-specific 5 (GAS5) and its underlying molecular mechanism in the development of HCC. qRT-PCR was used to detect GAS5, miR-21, and PTEN levels. MTT, cell counting assays, and xenograft mouse model were applied to measure cell proliferation rate in vitro and in vivo. The luciferase reporter assay and RNA immune-precipitation assay were introduced to evaluate the relationship between GAS5 and miR-21. We found that GAS5 was downregulated in HCC cell lines and tumor tissues. Knockdown of GAS5 enhanced HCC cell proliferation in vitro and in vivo and increased HCC cell resistance to doxorubicin. GAS5 acted as a sponge for miR-21 silencing and consequently led to the elevation of PTEN expression. Our data demonstrated that GAS5 functioned as a tumor suppressor role in HCC through regulation of miR-21-PTEN singling pathways, suggesting a potential application of GAS5 in HCC therapy.
Collapse
|
194
|
Li Y, Yan G, Zhang J, Chen W, Ding T, Yin Y, Li M, Zhu Y, Sun S, Yuan JH, Guo Z. LncRNA HOXA11-AS regulates calcium oxalate crystal-induced renal inflammation via miR-124-3p/MCP-1. J Cell Mol Med 2019; 24:238-249. [PMID: 31680444 PMCID: PMC6933336 DOI: 10.1111/jcmm.14706] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNA (lncRNA) has been suggested to play an important role in a variety of diseases over the past decade. In a previous study, we identified a novel lncRNA, termed HOXA11‐AS, which was significantly up‐regulated in calcium oxalate (CaOx) nephrolithiasis. However, the biological function of HOXA11‐AS in CaOx nephrolithiasis remains poorly defined. Here, we demonstrated that HOXA11‐AS was significantly up‐regulated in CaOx nephrolithiasis both in vivo and in vitro. Gain‐/loss‐of‐function studies revealed that HOXA11‐AS inhibited proliferation, promoted apoptosis and aggravated cellular damage in HK‐2 cells exposed to calcium oxalate monohydrate (COM). Further investigations showed that HOXA11‐AS regulated monocyte chemotactic protein 1 (MCP‐1) expression in HK‐2 cell model of CaOx nephrolithiasis. In addition, online bioinformatics analysis and dual‐luciferase reporter assay results showed that miR‐124‐3p directly bound to HOXA11‐AS and the 3'UTR of MCP‐1. Furthermore, rescue experiment results revealed that HOXA11‐AS functioned as a competing endogenous RNA to regulate MCP‐1 expression through sponging miR‐124‐3p and that overexpression of miR‐124‐3p restored the inhibitory effect of proliferation, promotion effects of apoptosis and cell damage induced by HOXA11‐AS overexpression. Taken together, HOXA11‐AS mediated CaOx crystal–induced renal inflammation via the miR‐124‐3p/MCP‐1 axis, and this outcome may provide a good potential therapeutic target for nephrolithiasis.
Collapse
Affiliation(s)
- Yinhui Li
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Guiling Yan
- Department of Breast and Thyroid Surgery, Changhai Hospital, The Naval Military Medical University, Shanghai, China.,Department of General Surgery, The Naval Hospital, Eastern Theater PLA, Zhoushan, Zhejiang, China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Tao Ding
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Yupeng Yin
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Minghan Li
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Yiqing Zhu
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Ji Hang Yuan
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| |
Collapse
|
195
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
196
|
Liu J, Yao Y, Hu Z, Zhou H, Zhong M. Transcriptional profiling of long-intergenic noncoding RNAs in lung squamous cell carcinoma and its value in diagnosis and prognosis. Mol Genet Genomic Med 2019; 7:e994. [PMID: 31617686 PMCID: PMC6900396 DOI: 10.1002/mgg3.994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Long intergenic noncoding RNAs (lincRNAs) are a series of novel transcribed regions expressed in cancers that may represent candidate biomarkers for lung squamous cell carcinoma (LSqCC) treatment. In this study, we evaluated the lincRNA profile in LSqCC patients and screened valuable lincRNAs for diagnosis and prognosis. Methods Transcriptome profiling of 549 samples derived from 501 LSqCC patients were identified in TCGA database. 48 patients had paired primary tumor (PT) and solid normal (SN) tissue samples, while 453 patients had only PT samples. 1,771 lincRNA candidates were evaluated. Paired test (Wilcoxon two‐sample paired signed rank tests) was performed in paired PT and SN samples. Logistic regression analysis were performed in independent 453 PT samples and 48 SN samples to screen the significant lincRNAs candidates for malignances. Independent 501 PT samples were further used to screen the significant lincRNAs candidates for prognosis. Results Among 1,771 lincRNAs, 10 lincRNAs were significant highly‐expressed risk candidates in PT samples, and 10 protective lincRNAs candidates were significant lowly‐expressed in PT samples. Among 10 highly‐expressed risk lincRNAs, a small panel of LINC00487, LINC01927, and C10orf143 (LINC00959) could effectively predict malignancies in paired samples (AUC = 0.7274, 95%CI = (0.6264, 0.8285)). When combined with protective lincRNA candidates LINC02315, LINC00491, and LINC01697, the predictive efficiency was greatly improved in both paired samples (AUC = 0.8030, 95%CI = (0.7250, 0.8810)) and independent samples (AUC = 0.7481, 95%CI= (0.6642, 0.8320)). Additionally, three highly‐expressed risk lincRNAs, LINC01031, LINC01088, and LINC01931, were significantly associated with poor prognosis in PT samples, suggesting potential targets for anti‐LSqCC treatment. Conclusion Therefore, lincRNAs could be promising biomarkers for predicting malignancies and potential anti‐LSqCC targets for drug development.
Collapse
Affiliation(s)
- Jieqiong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,The First Hospital of Changsha City, Changsha, China
| | - Yali Yao
- The First Hospital of Changsha City, Changsha, China
| | - Zheyu Hu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Zhou
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
197
|
Shi FT, Chen LD, Zhang LF. Long Noncoding RNA UCA1 Overexpression Is Associated with Poor Prognosis in Digestive System Malignancies: A Meta-analysis. Curr Med Sci 2019; 39:694-701. [PMID: 31612385 DOI: 10.1007/s11596-019-2094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/03/2019] [Indexed: 10/25/2022]
Abstract
Long noncoding RNA (lncRNA) urothelial carcinoma associated 1 (UCA1) has been reported to be highly expressed in many kinds of cancers. This meta-analysis summarized its potential prognostic value in digestive system malignancies. A meta-analysis was performed through a comprehensive search in PubMed, EMBASE, the Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for suitable articles on the prognostic impact of UCA1 in digestive system malignancies from inception to June 27, 2019. Pooled hazard ratios (HRs) with 95% confidence interval (95%CI) were calculated to summarize the effect. Sixteen studies were included in the study, with a total of 1504 patients. A significant association was observed between UCA1 abundance and poor overall survival (OS), and shorter disease-free survival (DFS) for patients with digestive system malignancies, with pooled HR of 2.07 (95%CI: 1.74-2.47), and of 2.50 (95%CI: 1.62-3.86). Subgroup analysis and sensitivity analysis suggested the reliability of our findings. It is suggested that UCA1 abundance may serve as a reliable predictive factor for poor prognosis in patients with digestive system malignancies.
Collapse
Affiliation(s)
- Fei-Tao Shi
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li-Dong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lian-Feng Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
198
|
Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma. Clin Chim Acta 2019; 500:10-19. [PMID: 31604064 DOI: 10.1016/j.cca.2019.09.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Hence, there is a growing need to discover promising biomarkers for HCC diagnosis, and in this context, microRNAs (miRNAs) hold great promise. MiRNAs function as gene expression regulators by directly binding messenger RNAs (mRNAs) and subsequently causing suppression of mRNA translation or degradation of target mRNAs. Two major types of noncoding RNAs act as competing endogenous sponges: circular RNAs and long non-coding RNAs.They can competitively bind to miRNA through miRNA response elements (MREs), thereby reducing the number of miRNAs binding mRNAs and regulating the expression of downstream target genes of miRNAs at the posttranscriptional level. The relationship between single miRNA sponge and HCC has been explored. However, comprehensive reviews on the sponge's function in HCC are lacking. In this review, we describe the methods to find endogenous sponges and construct exogenous sponges, and briefly compare endogenous and exogenous sponges. We also summarize the current progress on the functional role of miRNA sponges in HCC pathogenesis and present their potential value as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of miRNA sponges in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
199
|
Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E, Avendaño-Félix M, Silva-Benítez E, López-Camarillo C, Ramos-Payán R. LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Front Oncol 2019; 9:1008. [PMID: 31632922 PMCID: PMC6783611 DOI: 10.3389/fonc.2019.01008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with 1. 8 million cases in 2018. Autophagy helps to maintain an adequate cancer microenvironment in order to provide nutritional supplement under adverse conditions such as starvation and hypoxia. Additionally, most of the cases of CRC are unresponsive to chemotherapy, representing a significant challenge for cancer therapy. Recently, autophagy induced by therapy has been shown as a unique mechanism of resistance to anticancer drugs. In this regard, long non-coding RNAs (lncRNAs) analysis are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. With increasing development of quantitative detection techniques, lncRNAs derived from patients' non-invasive samples (i.e., blood, stools, and urine) has become into a novel approach in precision oncology. Tumorspecific GAS5, HOTAIR, H19, and MALAT are novels CRC related lncRNAs detected in patients. Nonetheless, the effect and mechanism of lncRNAs in cancer autophagy and chemoresistance have not been extensively characterized. Chemoresistance and autophagy are relevant for cancer treatment and lncRNAs play a pivotal role in resistance acquisition for several drugs. LncRNAs such as HAGLROS, KCNQ1OT1, and H19 are examples of lncRNAs related to chemoresistance leaded by autophagy. Finally, clinical implications of lncRNAs in CRC are relevant, since they have been associated with tumor differentiation, tumor size, histological grade, histological types, Dukes staging, degree of differentiation, lymph node metastasis, distant metastasis, recurrent free survival, and overall survival (OS).
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
200
|
Yao X, Liu C, Liu C, Xi W, Sun S, Gao Z. lncRNA SNHG7 sponges miR-425 to promote proliferation, migration, and invasion of hepatic carcinoma cells via Wnt/β-catenin/EMT signalling pathway. Cell Biochem Funct 2019; 37:525-533. [PMID: 31478234 PMCID: PMC6851833 DOI: 10.1002/cbf.3429] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
Increasing evidence has indicated the important roles of long noncoding RNA small nucleolar RNA host gene 7 (SNHG7) in tumourigenesis as a potential oncogene. However, the function of SNHG7 in hepatic carcinoma remains unclear. In the present study, we found that SNHG7 expression was significantly upregulated in hepatic carcinoma tissues, especially in aggressive cases, and it was closely correlated with the poor prognosis. Furthermore, knockdown of SNHG7 inhibited the proliferation, migration, and invasion of hepatic carcinoma cell lines in vitro. Mechanistically, SNHG7 directly interacted with miR-425 as a ceRNA. Moreover, knockdown of SNHG7 significantly inhibited the tumorigenic Wnt/β-catenin/EMT pathway. SNHG7 regulated Wnt/β-catenin/EMT pathway through sponging miR-425 and played an oncogenic role in hepatic carcinoma progression. Together, our study elucidated the role of SNHG7 as a ceRNA in hepatic carcinoma, provided new potential diagnosis and therapeutic application in hepatic carcinoma progression. SIGNIFICANCE OF THE STUDY: SNHG7 could promote proliferation and metastasis of hepatic carcinoma cell in vitro and in vivo, suggesting that SNHG7 exerts tumorigenic role in hepatic carcinoma progression. Further mechanism research revealed that SNHG7 exhibited the tumorigenic role through Wnt/β-catenin/EMT pathway as a miR-425 sponge. These findings provided new cues to understand the molecular signalling network in carcinogenesis of hepatic carcinoma, and it may provide new evidence for therapeutic application in hepatic carcinoma.
Collapse
Affiliation(s)
- Xuebing Yao
- Department of Infectious DiseasesSecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Chi Liu
- Department of Medical and Life ScienceChengdu University of TCMChengduSichuanChina
| | - Cuiyun Liu
- Department of Infectious DiseasesSecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Wenna Xi
- Department of Infectious DiseasesSecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Shuilin Sun
- Department of Infectious DiseasesSecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Zhen Gao
- Department of Infectious DiseasesSecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|