151
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
152
|
Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS. Targeting Hypoxia-Inducible Factors for Antiangiogenic Cancer Therapy. Trends Cancer 2017; 3:529-541. [PMID: 28718406 DOI: 10.1016/j.trecan.2017.05.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
Hypoxia (low O2) is a pathobiological hallmark of solid cancers, resulting from the imbalance between cellular O2 consumption and availability. Hypoxic cancer cells (CCs) stimulate blood vessel sprouting (angiogenesis), aimed at restoring O2 delivery to the expanding tumor masses through the activation of a transcriptional program mediated by hypoxia-inducible factors (HIFs). Here, we review recent data suggesting that the efficacy of antiangiogenic (AA) therapies is limited in some circumstances by HIF-dependent compensatory responses to increased intratumoral hypoxia. In lieu of this evidence, we discuss the potential of targeting HIFs as a strategy to overcome these instances of AA therapy resistance.
Collapse
Affiliation(s)
- Sergio Rey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Luana Schito
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada; Radiation Oncology, University of Toronto, ON, Canada
| | | | - Robert S Kerbel
- Radiation Oncology, University of Toronto, ON, Canada; Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
153
|
Zhang F, Lu YX, Chen Q, Zou HM, Zhang JM, Hu YH, Li XM, Zhang WJ, Zhang W, Lin C, Li XN. Identification of NCK1 as a novel downstream effector of STAT3 in colorectal cancer metastasis and angiogenesis. Cell Signal 2017; 36:67-78. [PMID: 28455144 DOI: 10.1016/j.cellsig.2017.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qing Chen
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hui-Mei Zou
- School of Nursing, University of South China, Hengyang 421001, China.
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Min Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
154
|
Khan KA, Kerbel RS. A CD276 Antibody Guided Missile with One Warhead and Two Targets: The Tumor and Its Vasculature. Cancer Cell 2017; 31:469-471. [PMID: 28399405 DOI: 10.1016/j.ccell.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this issue of Cancer Cell, Seaman et al. demonstrate that antibody drug conjugates (ADCs) against CD276 expressed by tumor cells and tumor vasculature have promising anti-tumor activity while showing little toxicity. Importantly, these agents have the potential to target both angiogenic vessels and non-angiogenic vessels co-opted by tumor cells.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Robert S Kerbel
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
155
|
Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, Morris K, Szot C, Morris H, Swing DA, Tessarollo L, Smith SW, Degrado S, Borkin D, Jain N, Scheiermann J, Feng Y, Wang Y, Li J, Welsch D, DeCrescenzo G, Chaudhary A, Zudaire E, Klarmann KD, Keller JR, Dimitrov DS, St Croix B. Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature. Cancer Cell 2017; 31:501-515.e8. [PMID: 28399408 PMCID: PMC5458750 DOI: 10.1016/j.ccell.2017.03.005] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/28/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies.
Collapse
Affiliation(s)
- Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Saurabh Saha
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111, USA
| | | | - Mi Young Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Christopher Szot
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Holly Morris
- Transgenic Core Facility, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Deborah A Swing
- Transgenic Core Facility, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Neural Development Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Yanping Wang
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Jinyu Li
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Dean Welsch
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111, USA
| | | | - Amit Chaudhary
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Enrique Zudaire
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA; Hematopoiesis and Stem Cell Biology Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA; Hematopoiesis and Stem Cell Biology Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA.
| |
Collapse
|
156
|
The Pleiotropic Role of L1CAM in Tumor Vasculature. Int J Mol Sci 2017; 18:ijms18020254. [PMID: 28134764 PMCID: PMC5343790 DOI: 10.3390/ijms18020254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM), a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.
Collapse
|
157
|
Torok S, Rezeli M, Kelemen O, Vegvari A, Watanabe K, Sugihara Y, Tisza A, Marton T, Kovacs I, Tovari J, Laszlo V, Helbich TH, Hegedus B, Klikovits T, Hoda MA, Klepetko W, Paku S, Marko-Varga G, Dome B. Limited Tumor Tissue Drug Penetration Contributes to Primary Resistance against Angiogenesis Inhibitors. Am J Cancer Res 2017; 7:400-412. [PMID: 28042343 PMCID: PMC5197073 DOI: 10.7150/thno.16767] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/07/2016] [Indexed: 01/25/2023] Open
Abstract
Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies.
Collapse
|