151
|
Zhang X, Zhang Y, Zhang X, Li S, Huang Y. Nitrogen rich core-shell magnetic mesoporous silica as an effective adsorbent for removal of silver nanoparticles from water. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:1-9. [PMID: 28501638 DOI: 10.1016/j.jhazmat.2017.04.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/26/2023]
Abstract
The production and increasing use of silver nanoparticles (AgNPs) obviously results in their release into the environment, leading to a risk to the environment due to their toxic effects. Thus, the removal of AgNPs from water is highly needed. Here, we demonstrate that nitrogen rich (∼10% nitrogen content) core-shell magnetic mesoporous silica is a promising adsorbent for the removal of AgNPs. For this, the poly(ethylenimine) functionalized core-shell magnetic mesoporous silica composites (Fe3O4@SiO2-PEI) were prepared, and characterized by TEM, FT-IR, XRD, TG and N2 adsorption-desorption. The removal of AgNPs by Fe3O4@SiO2-PEI as a function of contact time, concentration of AgNPs, solution pH and ionic strength were studied. The adsorption kinetic data could be described by the pseudo-second-order rate model. Both Langmuir and Freundlich models fitted the adsorption data well. The adsorption capacity for AgNPs is 909.1mg/g, which is 5-181 times higher than that of the previously reported adsorbents for AgNPs. Interestingly, the silver adsorbed onto Fe3O4@SiO2-PEI exhibits highly catalytic activity for 4-nitropheol (4-NP) reduction with a rate constant of 0.072min-1, which is much higher than those by other AgNPs reported before. The silver-loaded Fe3O4@SiO2-PEI promises good recyclability for at least five cycles, showing great potential in practical applications.
Collapse
Affiliation(s)
- Xiaoye Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yao Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Siqi Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
152
|
Orbea A, González-Soto N, Lacave JM, Barrio I, Cajaraville MP. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:59-68. [PMID: 28274763 DOI: 10.1016/j.cbpc.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
Cellular and molecular mechanisms of toxicity of silver nanoparticles (NPs) and their toxicity to fish embryos after waterborne exposure have been widely investigated, but much less information is available regarding the effect of Ag NPs on physiological functions such as growth or reproduction. In this work, the effects of waterborne exposure of adult zebrafish (Danio rerio) to PVP/PEI coated Ag NPs (~5nm) on reproduction (fecundity) were investigated. Moreover, the development of the embryos after parental exposure was compared with the development of embryos after direct waterborne exposure to the NPs. For this, two experiments were run: 1) embryos from unexposed parents were treated for 5days with Ag NPs (10μgAgL-1-10mgAgL-1) and development was monitored, and 2) selected breeding zebrafish were exposed for 3weeks to 100ngAgL-1 (environmentally relevant concentration) or to 10μgAgL-1 of Ag NPs, fecundity was scored and development of resulting embryos was monitored up to 5days. Waterborne exposure of embryos to Ag NPs resulted in being highly toxic (LC50 at 120h=50μgAgL-1), causing 100% mortality during the first 24h of exposure at 0.1mgAgL-1. Exposure of adults, even at the environmentally relevant silver concentration, caused a significant reduction of fecundity by the second week of treatment and resulting embryos showed a higher prevalence of malformations than control embryos. Exposed adult females presented higher prevalence of vacuolization in the liver. These results show that Ag NPs at an environmentally relevant concentration are able to affect population level parameters in zebrafish.
Collapse
MESH Headings
- Animals
- Embryo, Nonmammalian/drug effects
- Embryonic Development/drug effects
- Female
- Infertility, Female/chemically induced
- Infertility, Female/pathology
- Infertility, Female/veterinary
- Liver/drug effects
- Liver/pathology
- Metal Nanoparticles/analysis
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/toxicity
- Metal Nanoparticles/ultrastructure
- Microscopy, Electron, Transmission
- Polyethyleneimine/analysis
- Polyethyleneimine/chemistry
- Polyethyleneimine/toxicity
- Povidone/analysis
- Povidone/chemistry
- Povidone/toxicity
- Random Allocation
- Silver/analysis
- Silver/chemistry
- Silver/toxicity
- Surface Properties
- Survival Analysis
- Teratogens/analysis
- Teratogens/chemistry
- Teratogens/toxicity
- Tissue Distribution
- Toxicity Tests, Acute
- Toxicokinetics
- Vacuoles/drug effects
- Vacuoles/pathology
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/chemistry
- Water Pollutants, Chemical/toxicity
- Zebrafish
Collapse
Affiliation(s)
- Amaia Orbea
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain.
| | - Nagore González-Soto
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - José María Lacave
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Irantzu Barrio
- Dept. of Applied Mathematics, Statistics and Operations Research, Science and Technology Faculty, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| |
Collapse
|
153
|
Kovalishyn V, Abramenko N, Kopernyk I, Charochkina L, Metelytsia L, Tetko IV, Peijnenburg W, Kustov L. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food Chem Toxicol 2017; 112:507-517. [PMID: 28802948 DOI: 10.1016/j.fct.2017.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/22/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Inorganic nanomaterials have become one of the new areas of modern knowledge and technology and have already found an increasing number of applications. However, some nanoparticles show toxicity to living organisms, and can potentially have a negative influence on environmental ecosystems. While toxicity can be determined experimentally, such studies are time consuming and costly. Computational toxicology can provide an alternative approach and there is a need to develop methods to reliably assess Quantitative Structure-Property Relationships for nanomaterials (nano-QSPRs). Importantly, development of such models requires careful collection and curation of data. This article overviews freely available nano-QSPR models, which were developed using the Online Chemical Modeling Environment (OCHEM). Multiple data on toxicity of nanoparticles to different living organisms were collected from the literature and uploaded in the OCHEM database. The main characteristics of nanoparticles such as chemical composition of nanoparticles, average particle size, shape, surface charge and information about the biological test species were used as descriptors for developing QSPR models. QSPR methodologies used Random Forests (WEKA-RF), k-Nearest Neighbors and Associative Neural Networks. The predictive ability of the models was tested through cross-validation, giving cross-validated coefficients q2 = 0.58-0.80 for regression models and balanced accuracies of 65-88% for classification models. These results matched the predictions for the test sets used to develop the models. The proposed nano-QSPR models and uploaded data are freely available online at http://ochem.eu/article/103451 and can be used for estimation of toxicity of new and emerging nanoparticles at the early stages of nanomaterial development.
Collapse
Affiliation(s)
- Vasyl Kovalishyn
- Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine
| | - Natalia Abramenko
- Moscow State University, Chemistry Department, 1 Leninskie Gory, bldg. 3, 119991, Moscow, Russia
| | - Iryna Kopernyk
- Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine
| | - Larysa Charochkina
- Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine
| | - Larysa Metelytsia
- Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine
| | - Igor V Tetko
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Structural Biology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; BIGCHEM, GmbH, Ingolstädter Landstraße 1, b. 60w, D-85764, Neuherberg, Germany
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300, RA Leiden, The Netherlands; National Institute of Public Health and the Environment, Center for Safety of Substances and Products, PO Box 1, 3720, BA Bilthoven, The Netherlands.
| | - Leonid Kustov
- Moscow State University, Chemistry Department, 1 Leninskie Gory, bldg. 3, 119991, Moscow, Russia; N.D. Zelinsky Institute of Organic Chemistry, RAS, 47 Leninsky Prospect, 119991, Moscow, Russia
| |
Collapse
|
154
|
Sangabathuni S, Murthy RV, Chaudhary PM, Subramani B, Toraskar S, Kikkeri R. Mapping the Glyco-Gold Nanoparticles of Different Shapes Toxicity, Biodistribution and Sequestration in Adult Zebrafish. Sci Rep 2017; 7:4239. [PMID: 28652584 PMCID: PMC5484690 DOI: 10.1038/s41598-017-03350-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/27/2017] [Indexed: 11/09/2022] Open
Abstract
Glyconanotechnology offers a broad range of applications across basic and translation research. Despite the tremendous progress in glyco-nanomaterials, there is still a huge gap between the basic research and therapeutic applications of these molecules. It has been reported that complexity and the synthetic challenges in glycans synthesis, the cost of the high order in vivo models and large amount of sample consumptions limited the effort to translate the glyco-nanomaterials into clinical applications. In this regards, several promising simple animal models for preliminary, quick analysis of the nanomaterials activities has been proposed. Herein, we have studied a systematic evaluation of the toxicity, biodistribution of fluorescently tagged PEG and mannose-capped gold nanoparticles (AuNPs) of three different shapes (sphere, rod, and star) in the adult zebrafish model, which could accelerate and provide preliminary results for further experiments in the higher order animal system. ICP-MS analysis and confocal images of various zebrafish organs revealed that rod-AuNPs exhibited the fast uptake. While, star-AuNPs displayed prolong sequestration, demonstrating its potential therapeutic efficacy in drug delivery.
Collapse
Affiliation(s)
- Sivakoti Sangabathuni
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | | | | | - Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suraj Toraskar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
155
|
Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep 2017; 7:3303. [PMID: 28607366 PMCID: PMC5468332 DOI: 10.1038/s41598-017-03015-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles (NPs) size, surface functionalization, and concentration were claimed to contribute to distribution and toxicity outcomes of NPs in vivo. However, intrinsic chemical compositions of NPs caused inconsistent biodistribution and toxic profiles which attracted little attention. In this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were used to determine the biodistribution, toxickinetic, and genotoxicity variances in murine animals. The results demonstrated AgNPs and AuNPs were primarily deposited in the mononuclear phagocyte system (MPS) such as the liver and spleen. In particular, AuNPs seemed to be prominently stored in the liver, whereas AgNPs preferentially accumulated in more organs such as the heart, lung, kidney, etc. Also, the circulation in the blood and fecal excretions showed higher AgNPs contents in comparison with the AuNPs. Measurements of the mouse body and organ mass, hematology and biochemistry evaluation, and histopathological examinations indicated slight toxic difference between the AgNPs and AuNPs over a period of two months. RT-qPCR data revealed that AgNPs induced greater changes in gene expression with relevance to oxidative stress, apoptosis, and ion transport. Our observations proved that the NPs chemical composition played a critical role in their in vivo biodistribution and toxicity.
Collapse
|
156
|
Sufian MM, Khattak JZK, Yousaf S, Rana MS. Safety issues associated with the use of nanoparticles in human body. Photodiagnosis Photodyn Ther 2017; 19:67-72. [PMID: 28552731 DOI: 10.1016/j.pdpdt.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Nanotechnology has transformed the world by the introduction of a distinctive class of materials and products in a wide array of fields. It has contributed to the production of innovative materials and devices. Having unique advantages and domestic along with industrial applications, however, has raised the issue of safety for consumers, producers and environment. Having a comparative smaller dimension and other exclusive properties, nanoparticles have the ability to harm human body by interacting through various mechanisms. Here, we endeavoured to review and discuss the characteristics of nanoparticles relevant to their toxicity, conceivable exposure routes of nanoparticles to human body like skin contact, inhalation, and ingestion, and the basic approaches which can aid to control human exposures to toxic nanoparticles have been discussed.
Collapse
Affiliation(s)
- Mian Muhammad Sufian
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; Department of Virology, National Institute of Health, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Jabar Zaman Khan Khattak
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Shahzad Yousaf
- Department of Bio-Sciences COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad Suleman Rana
- Department of Virology, National Institute of Health, Park Road, Chak Shahzad, Islamabad, Pakistan.
| |
Collapse
|
157
|
Gao J, Lin L, Wei A, Sepúlveda MS. Protein Corona Analysis of Silver Nanoparticles Exposed to Fish Plasma. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:174-179. [PMID: 31531386 PMCID: PMC6748332 DOI: 10.1021/acs.estlett.7b00074] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoparticles (NPs) in contact with biological fluids experience changes in surface chemistry that can impact their biodistribution and downstream physiological impact. One such change involves the formation of a protein corona (PC) on the surface of NPs. Here we present a foundational study on PC formation following the incubation of polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs, 50 nm) in the plasma of smallmouth bass (Micropterus dolomieu). PC formation increases with exposure time and is also affected by gender, with AgNPs incubated in male plasma having slightly thinner PCs and less negative zeta potentials than those incubated in female plasma. Proteomic analysis also revealed gender-specific differences in PC composition: in particular, egg-specific proteins (vitellogenin (VTG) and zona pellucida (ZP) were identified only in PCs derived from female plasma, raising the possibility of their roles in AgNP-related reproductive toxicity by promoting their accumulation in developing oocytes.
Collapse
Affiliation(s)
- Jiejun Gao
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West
Lafayette, Indiana, USA
| | - Lu Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Corresponding authors: Maria S. Sepúlveda (),
Alexander Wei ()
| | - Maria S. Sepúlveda
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West
Lafayette, Indiana, USA
- Corresponding authors: Maria S. Sepúlveda (),
Alexander Wei ()
| |
Collapse
|
158
|
Colombo A, Saibene M, Moschini E, Bonfanti P, Collini M, Kasemets K, Mantecca P. Teratogenic hazard of BPEI-coated silver nanoparticles to Xenopus laevis. Nanotoxicology 2017; 11:405-418. [DOI: 10.1080/17435390.2017.1309703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anita Colombo
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milan, Italy
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milan, Italy
| | - Elisa Moschini
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milan, Italy
- Environmental Research and Innovation (ERIN) Department, Luxembourg, Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Patrizia Bonfanti
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milan, Italy
| | | | - Kaja Kasemets
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milan, Italy
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
159
|
Khan MS, Qureshi NA, Jabeen F, Asghar MS, Shakeel M, Fakhar-E-Alam M. Eco-Friendly Synthesis of Silver Nanoparticles Through Economical Methods and Assessment of Toxicity Through Oxidative Stress Analysis in the Labeo Rohita. Biol Trace Elem Res 2017; 176:416-428. [PMID: 27587025 DOI: 10.1007/s12011-016-0838-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
The physicochemical and biological properties of metals change as the particles are reduced to nanoscale. This ability increases the application of nanoparticles in commercial and medical industry. Keeping in view this importance, Silver nanoparticles (Ag-NPs) were synthesized by reduction methods using formaldehyde as reducing agent in the chemical route and lemon extracts in the biological route. The scanning electron microscope (SEM) images of nanoparticles suggested that the particles were either agglomerated or spherical in shape with mean diameter of 16.59 nm in the chemical route and 42.93 nm in the biological route. The particles were between 5 and 80 nm with maximum frequency between 5 and 20 nm in the chemical route and between 5 and 100 nm with maximum frequency between 15 and 50 nm in the biological method. In the second phase of the study, the effect of Ag-NPs on the oxidative stress was studied. For this purpose, Labeo rohita (20 ± 2.5 g in weight and 12 ± 1.4 cm in length) were involved. Six treatments were applied in three replicates having five fishes in each replicate. The first treatment was used as control group, and the other five treatments were exposed to either 10 or 20 or 30 or 45 or 55 mg L-1 of Ag-NPs for 28 days. The treatment of Ag-NPs caused oxidative stress in the liver and gill tissues, which induced alterations in the activities of antioxidant enzymes. The level of catalase (CAT) was decreased in response to Ag-NPs concentration in dose-dependent manner. Ag-NPs treatment stimulated the liver and gill tissues to significantly increase the level of superoxide dismutase (SOD), which might be due to synthesis of SOD and addition in the pre-existing SOD level. The level decreases again due to depletion of SOD level. There was a sharp decline in the activities of glutathione S-transferase (GST) in both gills and liver tissues even at lower concentration, and this decrease in the GST activity was significantly different at each treatment after 28 days of treatment except 20 mg L-1. The malondialdehyde (MDA) levels of gills and liver tissues were increased with the increase in the concentration. The elevated levels of glutathione (GSH) showed that the liver started defensive mechanism against the oxyradicals. This study finds out the cheap eco-friendly and economical method of Ag-NP synthesis. It is further revealed that Ag-NPs caused oxidative stress in the aquatic animals if exposure occurs at high concentrations.
Collapse
Affiliation(s)
| | | | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, Pakistan.
| | | | - Muhammad Shakeel
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
160
|
|
161
|
LeFauve MK, Connaughton VP. Developmental exposure to heavy metals alters visually-guided behaviors in zebrafish. Curr Zool 2017; 63:221-227. [PMID: 29491980 PMCID: PMC5804167 DOI: 10.1093/cz/zox017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 11/14/2022] Open
Abstract
This laboratory-based study determined the consequences of heavy metal exposure using zebrafish Danio rerio. Embryos were transiently exposed to environmentally-relevant concentrations of cadmium or nickel until 72 h postfertilization (hpf), then they were returned to system water and allowed to grow until 7, 9, and 11 days postfertilization (dpf), when they were examined morphologically and behaviorally. Morphological measures of notochord length, eye diameter, and inter-eye distance were not different across treatments; however, significant differences in optomotor responses were observed in treated larvae at all ages tested. These results suggest that initial developmental exposure to cadmium and nickel significantly impacts visually-guided larval behavior. The absence of significant differences in gross morphology suggests that the effects of these metals are subtle and may occur at the cellular level. By using this ecologically relevant model and pollutant type, this study has broad application and implications with regard to safe levels of contaminant in drinking water and freshwater ecosystems.
Collapse
|
162
|
Valerio-García RC, Carbajal-Hernández AL, Martínez-Ruíz EB, Jarquín-Díaz VH, Haro-Pérez C, Martínez-Jerónimo F. Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:308-318. [PMID: 28117161 DOI: 10.1016/j.scitotenv.2017.01.070] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (AgNPs) are the most commercialized nanomaterial worldwide, mainly due to their microbicidal activity. Although, AgNPs have been shown to be toxic to aquatic species, their effect on endemic fish, like Goodeidae, has not been demonstrated. Endemic species are under strong pressures by anthropogenic contamination and destruction of their habitat; therefore, we studied adult Chapalichthys pardalis, an endemic fish of Mexico. We evaluated the toxic effect of AgNPs through oxidative stress, macromolecular and metabolic biomarkers. We determined the LC50 (96h) and performed subchronic tests (21days) using sublethal AgNPs concentrations (equivalent to CL1 and CL10). At the end of the bioassay, we quantified 10 stress biomarkers in the liver, gills, and muscle, including the antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], and glutathione [GPx]), thiobarbituric acid reactive species (TBARS), protein oxidation (CO), macromolecules (proteins, lipids, and carbohydrates), and metabolites (glucose and lactate). In addition, we determined the integrated biomarkers response (IBR). LC50 was of 10.32mgL-1. Results of subchronic exposure (21days) revealed that AgNPs produce oxidative stress in C. pardalis adults, as evidenced by a diminution in antioxidant enzymes activity and an increase in TBARS and oxidized proteins. AgNPs also diminished levels of macromolecules and generated a high-energy consumption, reflected in the reduction of glucose levels, although lactate levels were not altered. The IBR analysis evidenced that the largest effect was produced in organisms exposed to LC10, being the liver and gills the organs with the greatest damage. Results demonstrated that exposure to AgNPs induces acute and chronic toxic effects on C. pardalis and forewarns about the impact that these nanomaterials can exert on these ecologically relevant aquatic organisms.
Collapse
Affiliation(s)
- Roberto Carlos Valerio-García
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Ana Laura Carbajal-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Erika Berenice Martínez-Ruíz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Víctor Hugo Jarquín-Díaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico
| | - Catalina Haro-Pérez
- Universidad Autónoma Metropolitana, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Azcapotzalco, Mexico City C.P. 02200, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Col. Santo Tomas, Mexico City C.P. 11340, Mexico.
| |
Collapse
|
163
|
Ramachandran R, Krishnaraj C, Sivakumar AS, Prasannakumar P, Abhay Kumar V, Shim KS, Song CG, Yun SI. Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:674-683. [DOI: 10.1016/j.msec.2016.12.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/22/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
|
164
|
Xu L, Xu QH, Zhou XY, Yin LY, Guan PP, Zhang T, Liu JX. Mechanisms of silver_nanoparticles induced hypopigmentation in embryonic zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:49-60. [PMID: 28104549 DOI: 10.1016/j.aquatox.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Silver_nanoparticles (AgNPs) have been reported to inhibit specification of erythroid cells and to induce spinal cord deformities and cardiac arrhythmia in vertebrates, but have not been implicated in development of neural crest (NC) and pigment cells in an in vivo model yet. In current study, down-regulated expressions of NC genes pax7 and foxd3, melanophore genes mitfa and dct, and xanthophore gene gch2 in AgNPs-exposed embryos were revealed by microarray, qRT-PCR and whole-mount in situ hybridization (WISH). Then, the down-regulated expressions of melanophore genes mitfa and dct but not xanthophore gene gch2 in AgNPs-exposed embryos were found to be recovered by melanogenesis agonists palmitic acid and dibutyryl cyclic AMP (dbcAMP). Finally, Ag+ chelating and AgNPs coating compound l-cysteine was found to neutralize AgNPs-induced hypopigmentation in AgNPs-exposed embryos, and to recover the down-regulated expressions of both dct and gch2 to nearly normal level in embryos, suggesting that AgNPs-releasing Ag+ might mediate their biological effects on zebrafish pigmentation mostly. This study was firstly to unveil that AgNPs might specifically act up-stream of mitfa and pax7 genes to suppress specification and differentiation of melanophore and xanthophore lineages respectively by their releasing Ag+ during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Lian Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xin-Ying Zhou
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li-Yan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China.
| | - Peng-Peng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
165
|
Feas DA, Igartúa DE, Calienni MN, Martinez CS, Pifano M, Chiaramoni NS, del Valle Alonso S, Prieto MJ. Nutraceutical emulsion containing valproic acid (NE-VPA): a drug delivery system for reversion of seizures in zebrafish larvae epilepsy model. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0316-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
166
|
Hu LX, Ying GG, Chen XW, Huang GY, Liu YS, Jiang YX, Pan CG, Tian F, Martin FL. Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:346-353. [PMID: 27328901 DOI: 10.1002/etc.3534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 06/17/2016] [Indexed: 05/28/2023]
Abstract
Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC.
Collapse
Affiliation(s)
- Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Wen Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Chang-Gui Pan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Fei Tian
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
167
|
Jimeno-Romero A, Bilbao E, Izagirre U, Cajaraville MP, Marigómez I, Soto M. Digestive cell lysosomes as main targets for Ag accumulation and toxicity in marine mussels, Mytilus galloprovincialis, exposed to maltose-stabilised Ag nanoparticles of different sizes. Nanotoxicology 2017; 11:168-183. [DOI: 10.1080/17435390.2017.1279358] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- A. Jimeno-Romero
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - E. Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - U. Izagirre
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - M. P. Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - I. Marigómez
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - M. Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| |
Collapse
|
168
|
Cordeiro M, Carvalho L, Silva J, Saúde L, Fernandes AR, Baptista PV. Gold Nanobeacons for Tracking Gene Silencing in Zebrafish. NANOMATERIALS 2017; 7:nano7010010. [PMID: 28336844 PMCID: PMC5295200 DOI: 10.3390/nano7010010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
Abstract
The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.
Collapse
Affiliation(s)
- Milton Cordeiro
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Lara Carvalho
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Pedro V Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
169
|
Yang L, Yan W, Wang H, Zhuang H, Zhang J. Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core–shell nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra00485k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Au@Ag NPs exhibit synergistically enhanced antibacterial activity and kill bacteria by affecting the cell membrane integrity or causing cell membrane disruption.
Collapse
Affiliation(s)
- Longping Yang
- National Center of Meat Quality & Safety Control
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Hongxia Wang
- National Center of Meat Quality & Safety Control
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit
- Agricultural Research Service
- USDA
- Athens
- USA
| | - Jianhao Zhang
- National Center of Meat Quality & Safety Control
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| |
Collapse
|
170
|
Kleandrova VV, Luan F, Speck-Planche A, Cordeiro MNDS. QSAR-Based Studies of Nanomaterials in the Environment. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology is a newly emerging field, posing substantial impacts on society, economy, and the environment. In recent years, the development of nanotechnology has led to the design and large-scale production of many new materials and devices with a vast range of applications. However, along with the benefits, the use of nanomaterials raises many questions and generates concerns due to the possible health-risks and environmental impacts. This chapter provides an overview of the Quantitative Structure-Activity Relationships (QSAR) studies performed so far towards predicting nanoparticles' environmental toxicity. Recent progresses on the application of these modeling studies are additionally pointed out. Special emphasis is given to the setup of a QSAR perturbation-based model for the assessment of ecotoxic effects of nanoparticles in diverse conditions. Finally, ongoing challenges that may lead to new and exciting directions for QSAR modeling are discussed.
Collapse
Affiliation(s)
| | - Feng Luan
- Yantai University, China & University of Porto, Portugal
| | | | | |
Collapse
|
171
|
Probed adhesion force of living lung cells with a tip-modified atomic force microscope. Biointerphases 2016; 11:04B311. [PMID: 27998155 DOI: 10.1116/1.4972242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanical properties of the extracellular matrix play an important role in bio-microenvironment activities. Herein, atomic force microscope (AFM) was used to measure the interaction between Au and Ag nanoparticle (NP) clusters on the surface of human fetal lung cells. Using (3-mercapto-propyl) triethoxysilane (MPTMS), NP clusters were grafted onto the apex of AFM tip, and then, the adhesion force between the tip and the cell was analyzed. The measured adhesion force increased from 92 pN for AFM tip to 332 pN for that modified with MPTMS. The increase is most probably contributed by the nonspecific interactions between the apex of the modified AFM tip and the surface of the cells. The adhesion forces between the surface of NPs clusters grafted AFM tip and that of lung cells were dramatically reduced as NPs clusters were replaced by MPTMS. For the former, as the Au NPs cluster was applied, the adhesion force reached to 122 pN, whereas it significantly augmented with the addition of the cluster's size and dimension on the AFM tip. For the case of Ag cluster grafted on AFM tip, its adhesion force with the surface of the cells significantly lowered and reduced to 56 pN. Presumably, the electrostatic or van der Waals force between the two surfaces results in the variation of measurements. It is also very likely that the cell-surface interactions are probably varied by the nature of the contact surfaces, like the force-distance of attraction. The result is significant for understanding the the nature of the interactions between the surface of NPs and the membrane of lung cells.
Collapse
|
172
|
Kummara S, Patil MB, Uriah T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles – A comparative study. Biomed Pharmacother 2016; 84:10-21. [DOI: 10.1016/j.biopha.2016.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022] Open
|
173
|
Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles. Sci Rep 2016; 6:37145. [PMID: 27872490 PMCID: PMC5131651 DOI: 10.1038/srep37145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.
Collapse
|
174
|
Choi MH, Shim HE, Yun SJ, Park SH, Choi DS, Jang BS, Choi YJ, Jeon J. Gold-Nanoparticle-Immobilized Desalting Columns for Highly Efficient and Specific Removal of Radioactive Iodine in Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29227-29231. [PMID: 27758102 DOI: 10.1021/acsami.6b11136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There has been worldwide attention on the efficient removal of radioactive iodine, because it is commonly released in nuclear plant accidents. Increasing concerns on environmental problems due to the radioactive iodine are leading us to develop stable and sustainable technology for remediation of radioelement contaminants. In this work, we report a highly efficient chromatographic method for specific and rapid capture of radioactive iodine. The gold nanoparticles immobilized dextran gel columns showed excellent removal capabilities of radioactive iodine in various conditions. These results suggested that our platform technology can be a promising method for the desalination of radioactive iodines in water.
Collapse
Affiliation(s)
- Mi Hee Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| | - Ha-Eun Shim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
- Department of Chemistry, Kyungpook National University , Daegu, Republic of Korea
| | - Seong-Jae Yun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| | - Sang-Hyun Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Dae Seong Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| | - Beom-Su Jang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, The University of Seoul , Seoul, Republic of Korea
| | - Jongho Jeon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| |
Collapse
|
175
|
Ansari MH, Hassan S, Qurashi A, Khanday FA. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron 2016; 85:247-260. [DOI: 10.1016/j.bios.2016.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
176
|
Khorshidi Z, Sarvi Moghanlou K, Imani A, Behrouzi S. The Interactive Effect of Dietary Curcumin and Silver Nanoparticles on Gut Microbiota of Common Carp (Cyprinus carpio). IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2016. [DOI: 10.1007/s40995-016-0130-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
177
|
Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8097-8129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/28/2016] [Indexed: 05/08/2023]
Abstract
The fast development of photoactivation for cancer treatment provides an efficient photo-therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non-invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue-penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state-of-art of the representative achievements on micro/nanoparticle-enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition-SDT performance of micro/nanoparticle-based sonosensitizers. Three types of micro/nanoparticle-augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle-based but sonosensitizer-free strategies to enhance the SDT outcome. SDT-based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle-augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle-augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, P. R. China
| | - Yuanyi Zheng
- Sixth Affiliated Hospital of Shanghai Jiaotong University & Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, P. R. China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
178
|
Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016; 108:13-34. [PMID: 27614818 DOI: 10.1016/j.biomaterials.2016.08.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 01/21/2023]
Abstract
Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
179
|
In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials 2016; 102:58-71. [DOI: 10.1016/j.biomaterials.2016.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
|
180
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 2016; 14:65. [PMID: 27544212 PMCID: PMC4992559 DOI: 10.1186/s12951-016-0217-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world’s total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Ashish Ranjan Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Garima Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
181
|
Lacave JM, Retuerto A, Vicario-Parés U, Gilliland D, Oron M, Cajaraville MP, Orbea A. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. NANOTECHNOLOGY 2016; 27:325102. [PMID: 27363512 DOI: 10.1088/0957-4484/27/32/325102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l(-1) for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l(-1) of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.
Collapse
Affiliation(s)
- José María Lacave
- CBET Research group, Dept of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940, Leioa, Basque Country, Spain
| | | | | | | | | | | | | |
Collapse
|
182
|
Chaffin E, O'Connor RT, Barr J, Huang X, Wang Y. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles. J Chem Phys 2016; 145:054706. [PMID: 27497571 PMCID: PMC4975750 DOI: 10.1063/1.4960052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023] Open
Abstract
Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.
Collapse
Affiliation(s)
- Elise Chaffin
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Ryan T O'Connor
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - James Barr
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
183
|
Teles M, Fierro-Castro C, Na-Phatthalung P, Tvarijonaviciute A, Trindade T, Soares AMVM, Tort L, Oliveira M. Assessment of gold nanoparticle effects in a marine teleost (Sparus aurata) using molecular and biochemical biomarkers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:125-135. [PMID: 27267391 DOI: 10.1016/j.aquatox.2016.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/13/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Gold nanoparticles (AuNP) are increasingly employed in a variety of applications and are likely to be increasing in the environment, posing a potential emerging environmental threat. Information on possible hazardous effects of engineered nanoparticles is urgently required to ensure human and environmental safety and promote the safe use of novel nanotechnologies. Nevertheless, there is a lack of comprehensive knowledge on AuNP effects in marine species. The present study aimed to assess AuNP effects in a marine teleost, Sparus aurata, by combining endpoints at different biological levels (molecular and biochemical). For that purpose, fish were exposed via water for 96h to 4, 80 and 1600μgL(-1) of AuNP (∼40nm) coated with citrate or polyvinylpyrrolidone (PVP). Results revealed a significant impact of AuNP-PVP in the hepatic expression of antioxidant, immune and apoptosis related genes. Total oxidative status was increased in plasma after exposure to the lowest concentration of AuNP-PVP, although without altering the total antioxidant capacity. Furthermore, AuNP did not induce significant damage in the liver since the activity of neither hepatic indicator (aspartate aminotransferase and alkaline phosphatase) increased. Overall, the present study demonstrated that AuNP, even with a biocompatible coating is able to alter oxidative status and expression of relevant target genes in marine fish. Another important finding is that effects are mainly induced by the lowest and intermediate concentrations of the PVP coated AuNP revealing the importance of different coatings.
Collapse
Affiliation(s)
- M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - C Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - P Na-Phatthalung
- Department of Microbiology and Excellent Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - A Tvarijonaviciute
- Department of Medicine and Animal Surgery, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - T Trindade
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
184
|
Cui B, Ren L, Xu QH, Yin LY, Zhou XY, Liu JX. Silver_ nanoparticles inhibited erythrogenesis during zebrafish embryogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:295-305. [PMID: 27340786 DOI: 10.1016/j.aquatox.2016.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Silver_ nanoparticles (AgNPs), for their attractive antimicrobial properties, have become one of the most commercial nanomaterials used recently. AgNPs are reported to be toxic to blood cells of aquatic organisms and humans, however, few studies related to toxic effects of AgNPs in hematopoiesis using an in vivo model were available. Firstly, microarrays were applied to reveal transcriptional responses of zebrafish embryos to AgNPs at 24h post-fertilization (hpf)in this study, and hemoglobin genes were found to be down-regulated by AgNPs and to be enriched in the top 10 categories by Gene Ontology (GO) analysis. The reduced expressions of hemoglobin were further demonstrated by qRT-PCR detection, whole-mount in situ hybridization, and O-dianisidine staining at transcriptional and translational level. Next, the commitment of mesoderm, specification of hematopoietic progenitor cells and differentiation of erythroids were detected at different developmental stages in AgNPs-exposed embryos, and erythrogenesis were found to be inhibited by AgNPs in developmental-stage-specific and cell-specific manners. Finally, it was pointed out that AgNPs affected erythrogenesis mostly by their particles other than their releasing ions.
Collapse
Affiliation(s)
- Bei Cui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Long Ren
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li-Yan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China.
| | - Xin-Ying Zhou
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
185
|
Spence AR, Hopkins GR, Neuman-Lee LA, Smith GDS, Brodie ED, French SS. Detrimental Effects of Zinc Oxide Nanoparticles on Amphibian Life Stages. ACTA ACUST UNITED AC 2016; 325:415-24. [DOI: 10.1002/jez.2026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023]
Affiliation(s)
| | - Gareth Rowland Hopkins
- Department of Biology; Utah State University; Logan Utah
- The Ecology Center; Utah State University; Logan Utah
- School of Biosciences; University of Melbourne; Parkville VIC Australia
| | | | - Geoffrey David Stuart Smith
- Department of Biology; Utah State University; Logan Utah
- The Ecology Center; Utah State University; Logan Utah
| | - Edmund Darrell Brodie
- Department of Biology; Utah State University; Logan Utah
- The Ecology Center; Utah State University; Logan Utah
| | - Susannah Smith French
- Department of Biology; Utah State University; Logan Utah
- The Ecology Center; Utah State University; Logan Utah
| |
Collapse
|
186
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
187
|
S. C, C. C, T. M, G. S, N. R. Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos. Colloids Surf B Biointerfaces 2016; 143:472-480. [DOI: 10.1016/j.colsurfb.2016.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
|
188
|
Zou X, Li P, Huang Q, Zhang H. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:97-105. [PMID: 27130969 DOI: 10.1016/j.aquatox.2016.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 05/29/2023]
Abstract
Silver nanoparticles (AgNPs) have emerged as a promising bactericide. Plants are a major point of entry of contaminants into trophic chains. Here, the physiological responses of Wolffia globosa to AgNPs have been probed using different light schemes, and these data may reveal new insights into the toxic mechanism of AgNPs. W. globosa was grown in culture medium and treated with different concentrations of AgNPs for 24h under pre- and post-illuminated conditions. However, fluorescence quenching, the accumulation of sugar and the reduction of Hill reaction activity were found in response to the AgNP-stresses. In the pre-illuminated condition, oxidative damage was obvious, as indicated by the higher malondialdehyde (MDA) content and an up-regulation of superoxide dismutase (SOD) activity. The maximum increases of MDA content and SOD activity were 1.14 and 2.52 times the respective controls when exposed to 10mg/L AgNPs. In contrast, in the post-illuminated condition, the alterations in photosynthetic pigment and soluble proteins content were more significant than the alterations in oxidative stress. The contents of chlorophyll a, carotenoids and soluble protein decreased to 77.7%, 66.2% and 72.9% of the controls after treatment with the highest concentration of AgNPs (10mg/L). Based on the different physiological responses, we speculated that in the pre-illuminated condition, oxidative stress was responsible for the decline in the oxygen evolution rate, while in the post-illuminated condition, the decrease in the Hill reaction activity could be attributed to the blocking of electron transfer and an insufficient proton supply. Our findings demonstrate that environmental factors regulate the physiological responses of plants to AgNPs through distinct mechanisms.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Penghui Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qing Huang
- Key Laboratory of Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongwu Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
189
|
Girardi FA, Bruch GE, Peixoto CS, Dal Bosco L, Sahoo SK, Gonçalves COF, Santos AP, Furtado CA, Fantini C, Barros DM. Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos. J Appl Toxicol 2016; 37:214-221. [PMID: 27320845 DOI: 10.1002/jat.3346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Single-wall carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) are promising materials for biomedical applications such as diagnostic devices and controlled drug-release systems. However, several questions about their toxicological profile remain unanswered. Thus, the aim of this study was to investigate the action of SWCNT-PEG in Danio rerio zebrafish embryos at the molecular, physiological and morphological levels. The SWCNT used in this study were synthesized by the high-pressure carbon monoxide process, purified and then functionalized with distearoyl phosphatidylethanolamine block copolymer-PEG (molecular weight 2 kDa). The characterization process was carried out with low-resolution transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. Individual zebrafish embryos were exposed to the SWCNT-PEG. Toxic effects occurred only at the highest concentration tested (1 ppm) and included high mortality rates, delayed hatching and decreased total larval length. For all the concentrations tested, the alkaline comet assay revealed no genotoxicity, and Raman spectroscopy measurements on the histological slices revealed no intracellular nanotubes. The results shown here demonstrate that SWCNT-PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved. However, the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed, because the purification process was not able to remove all metal contamination, as demonstrated by the thermogravimetric analysis. More attention must be given to the toxicity of these nanomaterials before they are used in biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Felipe A Girardi
- Laboratório de Neurociências / Programa de Pós Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96210-900, Brazil
| | - Gisele E Bruch
- Laboratório de Neurociências / Programa de Pós Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96210-900, Brazil
| | - Carolina S Peixoto
- Laboratório de Neurociências / Programa de Pós Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96210-900, Brazil
| | - Lidiane Dal Bosco
- Laboratório de Neurociências / Programa de Pós Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96210-900, Brazil
| | - Sangram K Sahoo
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carla O F Gonçalves
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Belo Horizonte, MG, Brazil
| | - Adelina P Santos
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Belo Horizonte, MG, Brazil
| | - Clascídia A Furtado
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Belo Horizonte, MG, Brazil
| | - Cristiano Fantini
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniela M Barros
- Laboratório de Neurociências / Programa de Pós Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96210-900, Brazil
| |
Collapse
|
190
|
Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 2016; 91:509-519. [PMID: 27180073 DOI: 10.1007/s00204-016-1730-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/27/2016] [Indexed: 12/31/2022]
Abstract
In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag+) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag+ and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag+ chelator) to the treatments significantly decreased genotoxicity of Ag+, but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag+ released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag+ can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.
Collapse
|
191
|
Harrison E, Coulter JA, Dixon D. Gold nanoparticle surface functionalization: mixed monolayer versus hetero bifunctional peg linker. Nanomedicine (Lond) 2016; 11:851-65. [DOI: 10.2217/nnm.16.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To create a clinically relevant gold nanoparticle (AuNP) treatment, the surface must be functionalized with multiple ligands such as drugs, antifouling agents and targeting moieties. However, attaching several ligands of differing chemistries and lengths, while ensuring they all retain their biological functionality remains a challenge. This review compares the two most widely employed methods of surface co-functionalization, namely mixed monolayers and hetero-bifunctional linkers. While there are numerous in vitro studies successfully utilizing both surface arrangements, there is little consensus regarding their relative merits. Animal and preclinical studies have demonstrated the effectiveness of mixed monolayer functionalization and while some promising in vitro results have been reported for PEG linker capped AuNPs, any potential benefits of the approach are not yet fully understood.
Collapse
Affiliation(s)
- Emma Harrison
- Nanotechnology & Integrated BioEngineering Centre, University of Ulster, Belfast, Northern Ireland
| | - Jonathan A Coulter
- School of Pharmacy, Queens University Belfast, Belfast, Northern Ireland
| | - Dorian Dixon
- Nanotechnology & Integrated BioEngineering Centre, University of Ulster, Belfast, Northern Ireland
| |
Collapse
|
192
|
Yoo MH, Rah YC, Choi J, Park S, Park HC, Oh KH, Lee SH, Kwon SY. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngol 2016; 83:168-74. [PMID: 26968072 DOI: 10.1016/j.ijporl.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The purpose of the present study was to evaluate silver nanoparticles (AgNP)-induced embryotoxicity and hair cell toxicity during zebrafish development. METHODS We exposed zebrafish embryos to various AgNP concentrations (30, 60, 120, and 240nM) and evaluated embryotoxicity at 72h and ototoxicity at 120h. Embryotoxicity parameters including abnormal morphology, mortality, hatching rate, and heart rate were investigated. Hair cells within four neuromasts were evaluated. In the present study, the average number of hair cells of zebrafish exposed to AgNP was compared with that of an unexposed control group. RESULTS The hatching rate was not significantly different between groups (control: 90%; AgNP 240nM: 89%). The control group showed 2% mortality and 0% teratogenicity, while the AgNP 240nM group showed increased mortality (11%) and teratogenicity (15%) at 72h (n=100). The heart rate of AgNP-exposed embryos tended to be lower than that of the control group (n=38). Furthermore, AgNP induced apoptotic hair cell damage in the neuromasts (control: 50.7±7.4 cells; 240nM AgNP: 41.1±6.3 cells, n=23). TUNEL positive cell counts increased significantly as AgNP concentration increases (p<0.001, n=20 in each group). CONCLUSIONS The results of this study indicate that AgNP exposure causes embryotoxicity and hair cell toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Myung Hoon Yoo
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea.
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soon-Young Kwon
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
193
|
Loo CY, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, Lee WH. Combination of Silver Nanoparticles and Curcumin Nanoparticles for Enhanced Anti-biofilm Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2513-22. [PMID: 26595817 DOI: 10.1021/acs.jafc.5b04559] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biofilm tolerance has become a serious clinical concern in the treatment of nosocomial pneumonia owing to the resistance to various antibiotics. There is an urgent need to develop alternative antimicrobial agents or combination drug therapies that are effective via different mechanisms. Silver nanoparticles (AgNPs) have been developed as an anti-biofilm agent for the treatment of infections associated with the use of mechanical ventilations, such as endotracheal intubation. Meanwhile curcumin, a phenolic plant extract, has displayed natural anti-biofilm properties through the inhibition of bacterial quorum sensing systems. The aim of this study was to investigate the possible synergistic/additive interactions of AgNPs and curcumin nanoparticles (Cur-NPs) against both Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganisms. The combination of AgNPs and Cur-NPs (termed Cur-SNPs) at 100 μg/mL disrupted 50% of established bacterial biofilms (formed on microtiter plates). However, further increase in the concentration of Cur-SNPs failed to effectively eliminate the biofilms. To achieve the same effect, at least 500 μg/mL Cur-NP alone was needed. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) revealed that combination therapy (Cur-SNPs) was the most potent to eradicate preformed biofilm compared to monodrug therapy. These agents are also nontoxic to healthy human bronchial epithelial cells (BEAS2B).
Collapse
Affiliation(s)
- Ching-Yee Loo
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney , Sydney, NSW 2037, Australia
- Faculty of Pharmacy, University of Sydney , Sydney, NSW 2006, Australia
| | - Ramin Rohanizadeh
- Faculty of Pharmacy, University of Sydney , Sydney, NSW 2006, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney , Sydney, NSW 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney , Sydney, NSW 2037, Australia
| | - Rosalia Cavaliere
- The ithree institute, University of Technology Sydney , Ultimo, NSW 2007, Australia
| | - Cynthia B Whitchurch
- The ithree institute, University of Technology Sydney , Ultimo, NSW 2007, Australia
| | - Wing-Hin Lee
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney , Sydney, NSW 2037, Australia
- Faculty of Pharmacy, University of Sydney , Sydney, NSW 2006, Australia
| |
Collapse
|
194
|
Clark ES, Pompini M, Uppal A, Wedekind C. Genetic correlations and little genetic variance for reaction norms may limit potential for adaptation to pollution by ionic and nanoparticulate silver in a whitefish (Salmonidae). Ecol Evol 2016; 6:2751-62. [PMID: 27066251 PMCID: PMC4798832 DOI: 10.1002/ece3.2088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
For natural populations to adapt to anthropogenic threats, heritable variation must persist in tolerance traits. Silver nanoparticles, the most widely used engineered nanoparticles, are expected to increase in concentrations in freshwaters. Little is known about how these particles affect wild populations, and whether genetic variation persists in tolerance to permit rapid evolutionary responses. We sampled wild adult whitefish and crossed them in vitro full factorially. In total, 2896 singly raised embryos of 48 families were exposed to two concentrations (0.5 μg/L; 100 μg/L) of differently sized silver nanoparticles or ions (silver nitrate). These doses were not lethal; yet higher concentrations prompted embryos to hatch earlier and at a smaller size. The induced hatching did not vary with nanoparticle size and was stronger in the silver nitrate group. Additive genetic variation for hatching time was significant across all treatments, with no apparent environmental dependencies. No genetic variation was found for hatching plasticity. We found some treatment‐dependent heritable variation for larval length and yolk volume, and one instance of additive genetic variation for the reaction norm on length at hatching. Our assessment suggests that the effects of silver exposure on additive genetic variation vary according to trait and silver source. While the long‐term fitness consequences of low‐level silver exposure on whitefish embryos must be further investigated to determine whether it is, in fact, detrimental, our results suggest that the evolutionary potential for adaptation to these types of pollutants may be low.
Collapse
Affiliation(s)
- Emily S Clark
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| | - Manuel Pompini
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
195
|
Wu Q, Sun Y, Ma P, Zhang D, Li S, Wang X, Song D. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide. Anal Chim Acta 2016; 913:137-44. [DOI: 10.1016/j.aca.2016.01.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 01/30/2016] [Indexed: 12/29/2022]
|
196
|
Jo E, Seo GB, Kim H, Choi K, Kwon JT, Kim P, Eom I. Toxic Effects of Alumina Nanoparticles in Rat Cerebrums and Kidneys. ACTA ACUST UNITED AC 2016. [DOI: 10.5668/jehs.2016.42.1.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
|
198
|
Tan JWS, Ho CFY, Ng YK, Ong WY. Docosahexaenoic acid and L-Carnitine prevent ATP loss in SH-SY5Y neuroblastoma cells after exposure to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY 2016; 31:224-232. [PMID: 25146533 DOI: 10.1002/tox.22037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most commonly used nanomaterials, but thus far, little is known about ways to mitigate against potential toxic effects of exposure. In this study, we examined the potential effects of AgNPs on mitochondrial function and cellular ATP levels, and whether these could be prevented by treatment with docosahexaenoic acid (DHA) and L-carnitine (LC). Acute exposure of AgNPs for 1 h to SH-SY5Y cells resulted in decreased mitochondrial membrane potential, and decreased ATP and ADP levels, indicating mitochondrial damage and reduced production of ATP. Incubation of cells with DHA partially reduced, while treatment with LC and DHA completely abolished the AgNP induced decreases in ATP and ADP levels. This could be due to a LC-facilitated entry of DHA to mitochondria, for repair of damaged phospholipids. It is postulated that DHA and LC may be useful for treatment of accidental environmental exposure to AgNPs.
Collapse
Affiliation(s)
- Joey Wee-Shan Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | | | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
199
|
Krishnaraj C, Harper SL, Yun SI. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2016; 301:480-91. [PMID: 26414925 PMCID: PMC5755690 DOI: 10.1016/j.jhazmat.2015.09.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 05/12/2023]
Abstract
The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO3 with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC50 concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC50 concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Soon-Il Yun
- Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
200
|
Wang Y, Zhou J, Liu L, Huang C, Zhou D, Fu L. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio. Carbohydr Polym 2016; 141:204-10. [PMID: 26877014 DOI: 10.1016/j.carbpol.2016.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/20/2022]
Abstract
In the present study, chitosan nanoparticles were prepared, characterized and used to evaluate the embryonic toxicology on zebrafish (Danio rerio). The average particle size of chitosan nanoparticles was 84.86nm. The increased mortality and decreased hatching rate was found in the zebrafish embryo exposure to normal chitosan particles and chitosan nanoparticles with the increased addition concentration. At 120h post-fertilization (hpf), the rate of mortality were 25.0 and 44.4% in the groups treated with chitosan nanoparticles and normal chitosan particles at 250mg/L, respectively. At 72hpf, the hatching rate in the groups treated with normal chitosan particles were lower (P<0.01) at 300 and 400mg/L than those of the corresponding control groups, respectively. However, there were no significant differences between the groups treated with chitosan nanoparticles and the control groups across all the addition concentrations. More abundant typical malformation of embryos was observed in the groups treated with normal chitosan particles compared with those treated with chitosan nanoparticles. The LC50 (medium lethal concentration) of chitosan nanoparticles was 280mg/L at 96hpf and 270mg/L at 120hpf. As for normal chitosan particles, the LC50 was 257mg/L at both 96hpf and 120hpf. The TC50 (medium teratogenic concentration) of the zebrafish treated with chitosan nanoparticles and normal chitosan particles were 257mg/L and 137mg/L, respectively. It indicated that the chitosan nanoparticles were relatively more secure compared with normal chitosan particles.
Collapse
Affiliation(s)
- Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Jinru Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Lin Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Changjiang Huang
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical University, Wenzhou 325035, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035, China.
| |
Collapse
|