151
|
Aoki M, Kato S, Nagai M, Itoyama Y. Development of a rat model of amyotrophic lateral sclerosis expressing a human SOD1 transgene. Neuropathology 2006; 25:365-70. [PMID: 16382787 DOI: 10.1111/j.1440-1789.2005.00611.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in copper-zinc superoxide dismutase gene (SOD1) have been linked to some familial cases of ALS. We report here that rats that express a human SOD1 transgene with two different ALS-associated mutations (G93A and H46R) develop striking motor neuron degeneration and paralysis. By comparing the two transgenic rats with different SOD1 mutations, we demonstrate that the time course in these rats was similar to human SOD1-mediated familial ALS. As in the human disease and transgenic ALS mice, pathological analysis shows selective loss of motor neurons in the spinal cords of these transgenic rats. In addition, typical neuronal Lewy body-like hyaline inclusions as well as astrocytic hyaline inclusions identical to those in human familial ALS are observed in the spinal cords. The larger size of this rat model as compared with the ALS mice will facilitate studies involving manipulations of spinal fluid (implantation of intrathecal catheters for chronic therapeutic studies; CSF sampling) and spinal cord (e.g., direct administration of viral- and cell-mediated therapies).
Collapse
Affiliation(s)
- Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
152
|
Jonsson PA, Graffmo KS, Andersen PM, Brännström T, Lindberg M, Oliveberg M, Marklund SL. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 2005; 129:451-64. [PMID: 16330499 DOI: 10.1093/brain/awh704] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease afflicting the voluntary motor system. More than 100 different mutations in the ubiquitously expressed enzyme superoxide dismutase-1 (SOD1) have been associated with the disease. To search for the nature of the cytotoxicity of mutant SOD1s, amounts, enzymic activities and structural properties of the protein as well as the CNS histopathology were examined in multiple transgenic murine models. In order to generate the ALS phenotype within the short lifespan of the mouse, more than 20-fold increased rates of synthesis of mutant SOD1s appear to be required. The organs of transgenic mice expressing human wild-type SOD1 or either of the G93A and D90A mutant proteins showed high steady-state protein levels. The major proportion of these SOD1s in the CNS were inactive due to insufficient Cu charging and all contained subfractions with a reduced C57-C146 intrasubunit disulphide bond. Both G85R and the truncated G127insTGGG mutant showed low steady-state protein levels, lacked enzyme activity and had no C57-C146 disulphide bond. These mutants were also enriched in the CNS relative to other organs, suggesting inefficient recognition and degradation of misfolded disulphide-reduced SOD1 in susceptible tissues. In end-stage disease, despite 35-fold differences in levels of mutant SOD1s, similar amounts of detergent-resistant aggregates accumulated in the spinal cord. Small granular as well as larger more diffuse human SOD1 (hSOD1)-inclusions developed in all strains, the latter more pronounced in those with high hSOD1 levels. Widespread vacuolizations were seen in the strains with high levels of hSOD1 but not those with low, suggesting these alterations to be artefacts related to high hSOD1 levels and not to the ALS-causing cytotoxicity. The findings suggest that the motoneuron degeneration could be due to long-term exposure to misfolded aggregation-prone disulphide-reduced SOD1, which constitutes minute subfractions of the stable mutants and larger proportions of the unstable mutants.
Collapse
|
153
|
Wang J, Xu G, Slunt HH, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, Borchelt DR. Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol Dis 2005; 20:943-52. [PMID: 16046140 DOI: 10.1016/j.nbd.2005.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022] Open
Abstract
Familial amyotrophic lateral sclerosis (FALS) has been modeled in transgenic mice by introducing mutated versions of human genomic DNA encompassing the entire gene for Cu,Zn superoxide dismutase (SOD1). In this setting, the transgene is expressed throughout the body and results in mice that faithfully recapitulate many pathological and behavioral aspects of FALS. By contrast, transgenic mice made by introducing recombinant vectors, encoding cDNA genes, that target mutant SOD1 expression to motor neurons, only, or astrocytes, only, do not develop disease. Here, we report that mice transgenic for human SOD1 cDNA with the G37R mutation, driven by the mouse prion promoter, develop motor neuron disease. In this model, expression of the transgene is highest in CNS (both neurons and astrocytes) and muscle. The gene was not expressed in cells of the macrophage lineage. Although the highest expressing hemizygous transgenic mice fail to develop disease by 20 months of age, mice homozygous for the transgene show typical ALS-like phenotypes as early as 7 months of age. Spinal cords and brain stems from homozygous animals with motor neuron disease were found to contain aggregated species of mutant SOD1. The establishment of this SOD1-G37R cDNA transgenic model indicates that expression of mutant SOD1 proteins in the neuromuscular unit is sufficient to cause motor neuron disease. The expression levels required to induce disease coincide with the levels required to induce the formation of SOD1 aggregates.
Collapse
Affiliation(s)
- Jiou Wang
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Room 558, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Koh SH, Roh H, Lee SM, Kim HJ, Kim M, Lee KW, Kim HT, Kim J, Kim SH. Phosphatidylinositol 3-kinase activator reduces motor neuronal cell death induced by G93A or A4V mutant SOD1 gene. Toxicology 2005; 213:45-55. [PMID: 15996807 DOI: 10.1016/j.tox.2005.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
The primary pathogenic mechanism of amyotrophic lateral sclerosis (ALS) remains largely unclear. We recently observed that motoneuron cell death mediated by G93A or A4V mutant SOD1, causing familial ALS, was related with decrease of survival signals, such as phosphatidylinositol 3-kinase (PI3-K) and Akt, which play a pivotal role in neuronal survival. Using a G93A or A4V mutant SOD1 transfected VSC4.1 motoneuron cells (G93A or A4V cells, respectively), we presently investigated whether PI3-K activator could reduce mutant SOD1-mediated motoneuron cell death. To investigate the effect of PI3-K activator on viability of G93A and A4V cells, these cells were treated with 10, 50 or 100ng/ml PI3-K activator for 24h and viability and intracellular signals, including Akt, glycogen synthase kinase-3 (GSK-3), heat shock transcription factor-1 (HSTF-1), cytosolic cytochrome c, caspase-3 and poly(ADP-ribose) polymerase (PARP), were compared with those without treatment (control). Compared with non-treated control G93A or A4V cells, the PI3-K activator treatment increased their viability by enhancing the survival signals, including pAkt, pGSK-3, and by inhibiting the death signals, including caspase-3 activation and PARP cleavage. These results suggest that PI3-K activator protects G93A or A4V cells from mutant SOD1-mediated motoneuron cell death by both activating survival signals and inactivating death signals.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, College of Medicine, Hanyang University, Seongdong-ku, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Puttaparthi K, Elliott JL. Non-neuronal induction of immunoproteasome subunits in an ALS model: possible mediation by cytokines. Exp Neurol 2005; 196:441-51. [PMID: 16242125 DOI: 10.1016/j.expneurol.2005.08.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/19/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
Protein aggregation is a pathologic hallmark of familial amyotrophic lateral sclerosis caused by mutations in the Cu, Zn superoxide dismutase gene. Although SOD1-positive aggregates can be cleared by proteasomes, aggregates have been hypothesized to interfere with proteasome activity, leading to a vicious cycle that further enhances aggregate accumulation. To address this issue, we measured proteasome activity in transgenic mice expressing a G93A SOD1 mutation. We find that proteasome activity is induced in the spinal cord of such mice compared to controls but is not altered in uninvolved organs such as liver or spleen. This induction within spinal cord is not related to an overall increase in the total number of proteasome subunits, as evidenced by the steady expression levels of constitutive alpha7 and beta5 subunits. In contrast, we found a marked increase of inducible beta proteasome subunits, LMP2, MECL-1 and LMP7. This induction of immunoproteasome subunits does not occur in all spinal cord cell types but appears limited to astrocytes and microglia. The induction of immunoproteasome subunits in G93A spinal cord organotypic slices treated with TNF-alpha and interferon-gamma suggest that certain cytokines may mediate such responses in vivo. Our results indicate that there is an overall increase in proteasome function in the spinal cords of G93A SOD1 mice that correlates with an induction of immunoproteasomes subunits and a shift toward immunoproteasome composition. These results suggest that increased, rather than decreased, proteasome function is a response of certain cell types to mutant SOD1-induced disease within spinal cord.
Collapse
Affiliation(s)
- Krishna Puttaparthi
- Department of Neurology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | |
Collapse
|
156
|
Banci L, Bertini I, D'Amelio N, Gaggelli E, Libralesso E, Matecko I, Turano P, Valentine JS. Fully Metallated S134N Cu,Zn-Superoxide Dismutase Displays Abnormal Mobility and Intermolecular Contacts in Solution. J Biol Chem 2005; 280:35815-21. [PMID: 16105836 DOI: 10.1074/jbc.m506637200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S134N copper-zinc superoxide dismutase (SOD1) is one of the many mutant SOD1 proteins known to cause familial amyotrophic lateral sclerosis. Earlier studies demonstrated that partially metal-deficient S134N SOD1 crystallized in filament-like arrays with abnormal contacts between the individual protein molecules. Because protein aggregation is implicated in SOD1-linked familial amyotrophic lateral sclerosis, abnormal intermolecular interactions between mutant SOD1 proteins could be relevant to the mechanism of pathogenesis in the disease. We have therefore applied NMR methods to ascertain whether abnormal contacts also form between S134N SOD1 molecules in solution and whether Cys-6 or Cys-111 plays any role in the aggregation. Our studies demonstrate that the behavior of fully metallated S134N SOD1 is dramatically different from that of fully metallated wild type SOD1 with a region of subnanosecond mobility located close to the site of the mutation. Such a high degree of mobility is usually seen only in the apo form of wild type SOD1, because binding of zinc to the zinc site normally immobilizes that region. In addition, concentration-dependent chemical shift differences were observed for S134N SOD1 that were not observed for wild type SOD1, indicative of abnormal intermolecular contacts in solution. We have here also established that the two free cysteines (6 and 111) do not play a role in this behavior.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Copper-zinc superoxide dismutase (CuZnSOD, SOD1 protein) is an abundant copper- and zinc-containing protein that is present in the cytosol, nucleus, peroxisomes, and mitochondrial intermembrane space of human cells. Its primary function is to act as an antioxidant enzyme, lowering the steady-state concentration of superoxide, but when mutated, it can also cause disease. Over 100 different mutations have been identified in the sod1 genes of patients diagnosed with the familial form of amyotrophic lateral sclerosis (fALS). These mutations result in a highly diverse group of mutant proteins, some of them very similar to and others enormously different from wild-type SOD1. Despite their differences in properties, each member of this diverse set of mutant proteins causes the same clinical disease, presenting a challenge in formulating hypotheses as to what causes SOD1-associated fALS. In this review, we draw together and summarize information from many laboratories about the characteristics of the individual mutant SOD1 proteins in vivo and in vitro in the hope that it will aid investigators in their search for the cause(s) of SOD1-associated fALS.
Collapse
Affiliation(s)
- Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.
| | | | | |
Collapse
|
158
|
Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, Klein JB, Calabrese V, Butterfield DA. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005; 39:453-62. [PMID: 16043017 DOI: 10.1016/j.freeradbiomed.2005.03.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/22/2005] [Accepted: 03/28/2005] [Indexed: 12/01/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease characterized by the loss of neuronal function in the motor cortex, brain stem, and spinal cord. Familial ALS cases, accounting for 10-15% of all ALS disease, are caused by a gain-of-function mutation in Cu,Zn-superoxide dismutase (SOD1). Two hypotheses have been proposed to explain the toxic gain of function of mutant SOD (mSOD). One is that mSOD can directly promote reactive oxygen species and reactive nitrogen species generation, whereas the other hypothesis suggests that mSODs are prone to aggregation due to instability or association with other proteins. However, the hypotheses of oxidative stress and protein aggregation are not mutually exclusive. G93A-SOD1 transgenic mice show significantly increased protein carbonyl levels in their spinal cord from 2 to 4 months and eventually develop ALS-like motor neuron disease and die within 5-6 months. Here, we used a parallel proteomics approach to investigate the effect of the G93A-SOD1 mutation on protein oxidation in the spinal cord of G93A-SOD1 transgenic mice. Four proteins in the spinal cord of G93A-SOD1 transgenic mice have higher specific carbonyl levels compared to those of non-transgenic mice. These proteins are SOD1, translationally controlled tumor protein (TCTP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and, possibly, alphaB-crystallin. Because oxidative modification can lead to structural alteration and activity decline, our current study suggests that oxidative modification of UCH-L1, TCTP, SOD1, and possibly alphaB-crystallin may play an important role in the neurodegeneration of ALS.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Koh SH, Lee YB, Kim KS, Kim HJ, Kim M, Lee YJ, Kim J, Lee KW, Kim SH. Role of GSK-3β activity in motor neuronal cell death induced by G93A or A4V mutant hSOD1 gene. Eur J Neurosci 2005; 22:301-9. [PMID: 16045483 DOI: 10.1111/j.1460-9568.2005.04191.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Point mutations such as G93A and A4V in the human Cu/Zn-superoxide dismutase gene (hSOD1) cause familial amyotrophic lateral sclerosis (fALS). In spite of several theories to explain the pathogenic mechanisms, the mechanism remains largely unclear. Increased activity of glycogen synthase kinase-3 (GSK-3) has recently been emphasized as an important pathogenic mechanism of neurodegenerative diseases, including Alzheimer's disease and ALS. To investigate the effects of G93A or A4V mutations on the phosphatidylinositol-3-kinase (PI3-K)/Akt and GSK-3 pathway as well as the caspase-3 pathway, VSC4.1 motoneuron cells were transfected with G93A- or A4V-mutant types of hSOD1 (G93A and A4V cells, respectively) and, 24 h after neuronal differentiation, their viability and intracellular signals, including PI3-K/Akt, GSK-3, heat shock transcription factor-1 (HSTF-1), cytochrome c, caspase-3 and poly(ADP-ribose) polymerase (PARP), were compared with those of wild type (wild cells). Furthermore, to elucidate the role of the GSK-3beta-mediated cell death mechanism, alterations of viability and intracellular signals in those mutant motoneurons were investigated after treating the cells with GSK-3beta inhibitor. Compared with wild cells, viability was greatly reduced in the G93A and A4V cells. However, the treatment of G93A and A4V cells with GSK-3beta inhibitor increased their viability by activating HSTF-1 and by reducing cytochrome c release, caspase-3 activation and PARP cleavage. However, the treatment did not affect the expression of PI3-K/Akt and GSK-3beta. These results suggest that the G93A or A4V mutations inhibit PI3-K/Akt and activate GSK-3beta and caspase-3, thus becoming vulnerable to oxidative stress, and that the GSK-3beta-mediated cell death mechanism is important in G93A and A4V cell death.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Institute of Biomedical Science, College of Medicine, Hanyang University, #17 Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Wang J, Xu G, Li H, Gonzales V, Fromholt D, Karch C, Copeland NG, Jenkins NA, Borchelt DR. Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: alphaB-crystallin modulates aggregation. Hum Mol Genet 2005; 14:2335-47. [PMID: 16000321 DOI: 10.1093/hmg/ddi236] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mice expressing variants of superoxide dismutase-1 (SOD1) encoding C-terminal truncation mutations linked to familial amyotrophic lateral sclerosis (FALS) have begun to define the role of misfolding and aggregation in the pathogenesis of disease. Here, we examine transgenic mice expressing SOD1-L126Z (Z = stop-truncation of last 28 amino acids), finding that detergent-insoluble mutant protein specifically accumulates in somatodendritic compartments. Soluble forms of the SOD1-L126Z were virtually undetectable in spinal cord at any age and the levels of accumulated protein directly correlated with disease symptoms. Neither soluble nor insoluble forms of SOD1-L126Z were transported to distal axons. In vitro, small heat shock protein (Hsp) alphaB-crystallin suppressed the in vitro aggregation of SOD1-L126Z. In vivo, alphaB-crystallin immunoreactivity was most abundant in oligodendrocytes and up-regulated in astrocytes of symptomatic mice; neither of these cell-types accumulated mutant SOD1 immunoreactivity. These results suggest that damage to motor neuron cell bodies and dendrites within the spinal cord can be sufficient to induce motor neuron disease and that the activities of chaperones may modulate the cellular specificity of mutant SOD1 accumulation.
Collapse
Affiliation(s)
- Jiou Wang
- Departement of Pathology, The John's Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Liu J, Shinobu LA, Ward CM, Young D, Cleveland DW. Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. J Neurochem 2005; 93:875-82. [PMID: 15857390 DOI: 10.1111/j.1471-4159.2005.03054.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in copper/zinc superoxide dismutase (SOD1) account for 10-20% of a familial form of amyotrophic lateral sclerosis (ALS). A common feature of SOD1 mutants is abnormal aggregation of the aberrant SOD1 in neurons and glia. We now report that in ALS transgenic mouse models the constitutively expressed heat shock protein 70 (Hsp70) is mislocalized into aggregates together with mutant SOD1 and ubiquitin. Forcing increased synthesis of Hsp70 ameliorates both aggregate formation and toxicity in primary motor neurons in culture. However, chronic increase in an inducible form of Hsp70 to about 10-fold its normal level is shown here not to affect disease course or pathology developed in mice from accumulation of any of three familial ALS causing SOD1 mutants with different underlying biochemical characteristics. Therefore, increasing Hsp70 to a level that is protective in mouse models of acute ischemic insult and selected neurodegenerative disorders is not sufficient to ameliorate mutant SOD1-mediated toxicity.
Collapse
Affiliation(s)
- Jian Liu
- Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | | | |
Collapse
|
162
|
Affiliation(s)
- Z Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St-817 LRB, Worcester, MA 01655, USA.
| | | |
Collapse
|
163
|
Xu Z, Jung C, Higgins C, Levine J, Kong J. Mitochondrial degeneration in amyotrophic lateral sclerosis. J Bioenerg Biomembr 2005; 36:395-9. [PMID: 15377878 DOI: 10.1023/b:jobb.0000041774.12654.e1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that causes motor neuron degeneration, progressive skeletal muscle atrophy, paralysis, and death. To understand the mechanism of motor neuron degeneration, we have analyzed the clinical disease progression and the pathological changes in a transgenic mouse model for ALS. We found massive mitochondrial vacuolation at the onset of disease. By detailed morphological observations, we have determined that this mitochondrial vacuolation is developed from expansion of mitochondrial intermembrane space and extension of the outer membrane and involves peroxisomes. Lysosomes do not actively participate at all stages of this vacuolation. We conclude that this mitochondrial vacuolation is neither classical mitochondrial permeability transition nor autophagic vacuolation. Thus, this appears to be a new form of mitochondrial vacuolation and we term this as mitochondrial vacuolation by intermembrane space expansion or MVISE.
Collapse
Affiliation(s)
- Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, Massachusetts 01605, USA.
| | | | | | | | | |
Collapse
|
164
|
Kim YJ, Nakatomi R, Akagi T, Hashikawa T, Takahashi R. Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants. J Biol Chem 2005; 280:21515-21. [PMID: 15799963 DOI: 10.1074/jbc.m502230200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of misfolded protein aggregates is a remarkable hallmark of various neurodegenerative diseases including Alzheimer disease, Parkinson disease, Huntington disease, prion encephalopathies, and amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) immunoreactive inclusions have been found in the spinal cord of ALS animal models and patients, implicating the close involvement of SOD1 aggregates in ALS pathogenesis. Here we examined the molecular mechanism of aggregate formation of ALS-related SOD1 mutants in vitro. We found that long-chain unsaturated fatty acids (FAs) promoted aggregate formation of SOD1 mutants in both dose- and time-dependent manners. Metal-deficient SOD1s, wild-type, and mutants were highly oligomerized compared with holo-SOD1s by incubation in the presence of unsaturated FAs. Oligomerization of SOD1 is closely associated with its structural instability. Heat-treated holo-SOD1 mutants were readily oligomerized by the addition of unsaturated FAs, whereas wild-type SOD1 was not. The monounsaturated FA, oleic acid, directly bound to SOD1 and was characterized by a solid-phase FA binding assay using oleate-Sepharose. The FA binding characteristics were closely correlated with the oligomerization propensity of SOD1 proteins, which indicates that FA binding may change SOD1 conformation in a way that favors the formation of aggregates. High molecular mass aggregates of SOD1 induced by FAs have a granular morphology and show significant cytotoxicity. These findings suggest that SOD1 mutants gain FA binding abilities based on their structural instability and form cytotoxic granular aggregates.
Collapse
Affiliation(s)
- Yeon-Jeong Kim
- Laboratory for Motor System Neurodegeneration, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
165
|
Kunst CB. Complex genetics of amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75:933-47. [PMID: 15478096 PMCID: PMC1182156 DOI: 10.1086/426001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/08/2004] [Indexed: 01/18/2023] Open
Affiliation(s)
- Catherine B Kunst
- Eleanor Roosevelt Institute, University of Denver, Denver, CO 80206, USA.
| |
Collapse
|
166
|
Doucette PA, Whitson LJ, Cao X, Schirf V, Demeler B, Valentine JS, Hansen JC, Hart PJ. Dissociation of Human Copper-Zinc Superoxide Dismutase Dimers Using Chaotrope and Reductant. J Biol Chem 2004; 279:54558-66. [PMID: 15485869 DOI: 10.1074/jbc.m409744200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dissociation of apo- and metal-bound human copper-zinc superoxide dismutase (SOD1) dimers induced by the chaotrope guanidine hydrochloride (GdnHCl) or the reductant Tris(2-carboxyethyl)phosphine (TCEP) has been analyzed using analytical ultracentrifugation. Global fitting of sedimentation equilibrium data under native solution conditions (without GdnHCl or TCEP) demonstrate that both the apo- and metal-bound forms of SOD1 are stable dimers. Sedimentation velocity experiments show that apo-SOD1 dimers dissociate cooperatively over the range 0.5-1.0 M GdnHCl. In contrast, metal-bound SOD1 dimers possess a more compact shape and dissociate at significantly higher GdnHCl concentrations (2.0-3.0 M). Reduction of the intrasubunit disulfide bond within each SOD1 subunit by 5-10 mM TCEP promotes dissociation of apo-SOD1 dimers, whereas the metal-bound enzyme remains a stable dimer under these conditions. The Cys-57 --> Ser mutant of SOD1, a protein incapable of forming the intrasubunit disulfide bond, sediments as a monomer in the absence of metal ions and as a dimer when metals are bound. Taken together, these data indicate that the stability imparted to the human SOD1 dimer by metal binding and the formation of the intrasubunit disulfide bond are mediated by independent molecular mechanisms. By combining the sedimentation data with previous crystallographic results, a molecular explanation is provided for the existence of different SOD1 macromolecular shapes and multiple SOD1 dimeric species with different stabilities.
Collapse
Affiliation(s)
- Peter A Doucette
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Turner BJ, Li QX, Laughton KM, Masters CL, Lopes EC, Atkin JD, Cheema SS. Brain ?-Amyloid Accumulation in Transgenic Mice Expressing Mutant Superoxide Dismutase 1. Neurochem Res 2004; 29:2281-6. [PMID: 15672551 DOI: 10.1007/s11064-004-7037-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oxidative stress is implicated in both the deposition and pathogenesis of beta-amyloid (Abeta) protein in Alzheimer's disease (AD). Accordingly, overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) in neuronal cells and transgenic AD mice reduces Abeta toxicity and accumulation. In contrast, mutations in SOD1 associated with amyotrophic lateral sclerosis (ALS) confer enhanced pro-oxidative enzyme activities. We therefore examined whether ALS-linked mutant SOD1 overexpression in motor neuronal cells or transgenic ALS mice modulates Abeta toxicity or its accumulation in the brain. Aggregated, but not freshly solubilised, substrate-bound Abeta peptides induced degenerative morphology and cytotoxicity in motor neuron-like NSC-34 cells. Transfection of NSC-34 cells with human wild-type SOD1 attenuated Abeta-induced toxicity, however this neuroprotective effect was also observed for ALS-linked mutant SOD1. Analysis of the cerebral cortex, brainstem, cerebellum and olfactory bulb from transgenic SOD1G93A mice using enzyme-linked immunosorbent assay of acid-guanidine extracts revealed age-dependent elevations in Abeta levels, although not significantly different from wild-type mouse brain. In addition, brain amyloid protein precursor (APP) levels remained unaltered as a consequence of mutant SOD1 expression. We therefore conclude that mutant SOD1 overexpression promotes neither Abeta toxicity nor brain accumulation in these ALS models.
Collapse
Affiliation(s)
- Bradley J Turner
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Although Charcot described amyotrophic lateral sclerosis (ALS) more than 130 years ago, the mechanism underlying the characteristic selective degeneration and death of motor neurons in this common adult motor neuron disease has remained a mystery. There is no effective remedy for this progressive, fatal disorder. Modern genetics has now identified mutations in one gene [Cu/Zn superoxide dismutase (SOD1)] as a primary cause and implicated others [encoding neurofilaments, cytoplasmic dynein and its processivity factor dynactin, and vascular endothelial growth factor (VEGF)] as contributors to, or causes of, motor neuron diseases. These insights have enabled development of model systems to test hypotheses of disease mechanism and potential therapies. Along with errors in the handling of synaptic glutamate and the potential excitotoxic response this provokes, these model systems highlight the involvement of nonneuronal cells in disease progression and provide new therapeutic strategies.
Collapse
|
169
|
Khare SD, Caplow M, Dokholyan NV. The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2004; 101:15094-9. [PMID: 15475574 PMCID: PMC524068 DOI: 10.1073/pnas.0406650101] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation-induced aggregation of the dimeric enzyme Cu, Zn superoxide dismutase 1 (SOD1) has been implicated in the familial form of the disease amyotrophic lateral sclerosis, but the mechanism of aggregation is not known. Here, we show that in vitro SOD1 aggregation is a multistep reaction that minimally consists of dimer dissociation, metal loss from the monomers, and oligomerization of the apo-monomers: [reaction: see text], where D(holo), M(holo), M(apo), and A are the holo-dimer, holo-monomer, apo-monomer, and aggregate, respectively. Under aggregation-promoting conditions (pH 3.5), the rate and equilibrium constants corresponding to each step are: (i) dimer dissociation, Kd approximately 1 microM; k(off) approximately 1 x 10(-3) s(-1), k(on) approximately 1 x 10(3) M(-1).s(-1); (ii) metal loss, Km approximately 0.1 microM, km- approximately 1 x 10(-3)s(-1), km+ approximately 1 x 10(4) M(-1).s(-1); and (iii) assembly (rate-limiting step), k(agg) approximately 1 x 10(3) M(-1).s(-1). In contrast, under near-physiological conditions (pH 7.8), where aggregation is drastically reduced, dimer dissociation is less thermodynamically favorable: Kd approximately 0.1 nM, and extremely slow: k(off) approximately 3 x 10(-5) s(-1), k(on) approximately 3 x 10(5) M(-1).s(-1). Our results suggest that familial amyotrophic lateral sclerosis-linked SOD1 aggregation occurs by a mutation-induced increase in dimer dissociation and/or increase in apomonomer formation.
Collapse
Affiliation(s)
- Sagar D Khare
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
170
|
Lin H, Zhai J, Cañete-Soler R, Schlaepfer WW. 3' untranslated region in a light neurofilament (NF-L) mRNA triggers aggregation of NF-L and mutant superoxide dismutase 1 proteins in neuronal cells. J Neurosci 2004; 24:2716-26. [PMID: 15028764 PMCID: PMC6729506 DOI: 10.1523/jneurosci.5689-03.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases is believed to involve abnormal aggregation of proteins, but the mechanisms initiating protein aggregation are unclear. Here we report a novel phenomenon that could be instrumental in triggering protein aggregation in neurodegenerative diseases. We show that the 3' untranslated region (3'UTR) of a light neurofilament (NF-L) transcript enhances the reactivity of its own translated product and leads to loss of solubility and aggregation of NF-L protein and to coaggregation of mutant superoxide dismutase 1 (SOD1) protein. Full-length mouse NF-L cDNAs, with and without NF-L 3'UTR, were fused to the C terminus of a green fluorescent protein (GFP) reporter gene, and the GFP-tagged NF-L proteins were examined in transfected Neuro2a cells. The GFP-tagged NF-L protein expressed from the transgene containing NF-L 3'UTR, but not from the transgene lacking NF-L 3'UTR, colocalizes with endogenous heavy neurofilament protein and, at high-level expression, leads to loss of solubility and aggregation of GFP-tagged NF-L protein. Aggregation of GFP-tagged NF-L protein triggers coaggregation and loss of solubility of coexpressed DsRed-tagged mutant (G93A) SOD1 protein but not wild-type SOD1 protein. Deletional mutagenesis maps the RNA sequence causing aggregation of GFP-tagged NF-L protein to the proximal 45 nucleotides of NF-L 3'UTR. This is the site of a major destabilizing element in NF-L RNA and binding site for RNA-binding proteins. Our findings support a working model whereby NF-L RNA, or cognate RNA-binding factors, enhances the reactivity of NF-L protein and provides a triggering mechanism leading to aggregation of NF-L and other proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hong Lin
- Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
171
|
Schilling G, Savonenko AV, Coonfield ML, Morton JL, Vorovich E, Gale A, Neslon C, Chan N, Eaton M, Fromholt D, Ross CA, Borchelt DR. Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp Neurol 2004; 187:137-49. [PMID: 15081595 DOI: 10.1016/j.expneurol.2004.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 12/09/2003] [Accepted: 01/05/2004] [Indexed: 01/21/2023]
Abstract
The HD-N171-82Q (line 81) mouse model of Huntington's disease (HD), expresses an N-terminal fragment of mutant huntingtin (htt), loses motor function, displays HD-related pathological features, and dies prematurely. In the present study, we compare the efficacy with which environmental, pharmacological, and genetic interventions ameliorate these abnormalities. As previously reported for the R6/2 mouse model of HD, housing mice in enriched environments improved the motor skills of N171-82Q mice. However, life expectancy was not prolonged. Significant improvements in motor function, without prolonging survival, were also observed in N171-82Q mice treated with Coenzyme Q10 (CoQ10, an energy metabolism enhancer). Several compounds were not effective in either improving motor skills or prolonging life, including Remacemide (a glutamate antagonist), Celecoxib (a COX-2 inhibitor), and Chlorpromazine (a prion inhibitor); Celecoxib dramatically shortened life expectancy. We also tested whether raising cellular antioxidant capacity by co-expressing high levels of wild-type human Cu/Zn superoxide dismutase 1 (SOD1) was beneficial. However, no improvement in motor performance or life expectancy was observed. Although we would argue that positive outcomes in mice carry far greater weight than negative outcomes, we suggest that caution may be warranted in testing Celecoxib in HD patients. The positive outcomes achieved by CoQ10 therapy and environmental stimuli point toward two potentially therapeutic approaches that should be readily accessible to HD patients and at-risk family members.
Collapse
Affiliation(s)
- Gabriele Schilling
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Shrivastava HY, Sreeram KJ, Nair BU. Aggregation of Mucin by Chromium(III) Complexes as Revealed by Electrokinetic and Rheological Studies: Influence on the Tryptic and O-glycanase Digestion of Mucin. J Biomol Struct Dyn 2004; 21:671-80. [PMID: 14769060 DOI: 10.1080/07391102.2004.10506958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the present study, the impact of chromium(III) complexes ([Cr(salen)(H2O)2](+) (1), [Cr(en)3]3+ (2) and [Cr(EDTA)(H2O)]- (3)) on the biophysical properties of mucin like specific viscosity, zeta potential and particle size has been investigated. It is evident from the present investigation that the nature of the coordinated ligand has a major role to play in bringing about the changes in the physical characteristics of the glycoprotein. It was observed that (1) and (3) because of their coordinate mode of binding lead to decrease in the specific viscosity of mucin, whereas (2) on the other hand was found to bring about drastic increase in the mucin viscosity due to sol-gel transition in the mucin conformation. Complex (2) was found to gradually lower the zeta potential value of mucin (particle size=51.5 nm) from -24.8 +/- 1.31 mV to -0.58 +/- 0.30 mV, which reveals aggregation (particle size=216 nm) and subsequent sedimentation of mucin with an increase in the average diameter of mucin particles. The binding of (2) to mucin was found to impart resistance to mucin against both tryptic and O-glycanase digestion, suggesting that, the aggregation of mucin causes conformational as well as configurational changes in the glycoprotein; thus perturbing the location of carbohydrate domains.
Collapse
Affiliation(s)
- H Yamini Shrivastava
- Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
173
|
Palomo T, Archer T, Beninger RJ, Kostrzewa RM. Gene-environment interplay in neurogenesis and neurodegeneration. Neurotox Res 2004; 6:415-34. [PMID: 15639777 DOI: 10.1007/bf03033279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Factors associated with predisposition and vulnerability to neurodegenerative disorders may be described usefully within the context of gene-environment interplay. There are many identified genetic determinants for so-called genetic disorders, and it is possible to duplicate many elements of recognized human neurodegenerative disorders in either knock-in or knock-out mice. However, there are similarly, many identifiable environmental influences on outcomes of the genetic defects; and the course of a progressive neurodegenerative disorder can be greatly modified by environmental elements. Constituent cellular defense mechanisms responsive to the challenge of increased reactive oxygen species represent only one crossroad whereby environment can influence genetic predisposition. In this paper we highlight some of the major neurodegenerative disorders and discuss possible links of gene-environment interplay. The process of adult neurogenesis in brain is also presented as an additional element that influences gene-environment interplay. And the so-called priming processes (i.e., production of receptor supersensitization by repeated drug dosing), is introduced as yet another process that influences how genes and environment ultimately and co-dependently govern behavioral ontogeny and outcome. In studies attributing the influence of genetic alteration on behavioral phenotypy, it is essential to carefully control environmental influences.
Collapse
Affiliation(s)
- Tomás Palomo
- Servicio Psiquiátrico, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
174
|
Turner BJ, Lopes EC, Cheema SS. Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts. J Cell Biochem 2004; 91:1074-84. [PMID: 15034941 DOI: 10.1002/jcb.10782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High molecular weight detergent-insoluble complexes of superoxide dismutase 1 (SOD1) enzyme are a biochemical abnormality associated with mutant SOD1-linked familial amyotrophic lateral sclerosis (FALS). In the present study, SOD1 protein from spinal cords of transgenic FALS mice was fractionated according to solubility in saline, zwitterionic, non-ionic or anionic detergents. Both endogenous mouse SOD1 and mutant human SOD1 were least soluble in SDS, followed by NP-40 and CHAPS, with an eight-fold greater detergent resistance of mutant protein overall. Importantly, high molecular weight mutant SOD1 complexes were isolated with SDS-extraction only. To reproduce SOD1 aggregate pathology in vitro, primary fibroblasts were isolated and cultured from neonatal transgenic FALS mice. Fibroblasts expressed abundant mutant SOD1 without spontaneous aggregation over time with passage. Proteasomal inhibition of cultures using lactacystin induced dose-dependent aggregation and increased the SDS-insoluble fraction of mutant SOD1, but not endogenous SOD1. In contrast, paraquat-mediated superoxide stress in fibroblasts promoted aggregation of endogenous SOD1, but not mutant SOD1. Treatment of cultures with peroxynitrite or the copper chelator diethyldithiocarbamate (DDC) alone did not modulate aggregation. However, DDC inhibited lactacystin-induced mutant SOD1 aggregation in transgenic fibroblasts, while exogenous copper slightly augmented aggregation. These data suggest that SOD1 aggregates may derive from proteasomal or oxidation-mediated oligomerisation pathways from mutant and endogenous subunits respectively. Furthermore, these pathways may be affected by copper availability. We propose that non-neural cultures such as these transgenic fibroblasts with inducible SOD1 aggregation may be useful for rapid screening of compounds with anti-aggregation potential in FALS.
Collapse
Affiliation(s)
- Bradley J Turner
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
175
|
Dupuis L, Muller A, Meininger V, Loeffler JP. Mécanismes moléculaires de la sclérose latérale amyotrophique : apports récents de l’analyse de modèles animaux. Rev Neurol (Paris) 2004; 160:35-43. [PMID: 14978392 DOI: 10.1016/s0035-3787(04)70845-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis is a neurodegenerative condition defined by loss of both upper and lower motor neurons. The molecular mechanisms underlying this pathology are currently elucidated using transgenic mice lines expressing mutated alleles of the copper-zinc superoxide dismutase, an enzyme mutated in about 2 p. cent of ALS cases. These transgenic mice also provide a valuable animal model to set up new therapeutic tools.
Collapse
Affiliation(s)
- L Dupuis
- Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA3433, Faculté de Medecine, Strasbourg
| | | | | | | |
Collapse
|
176
|
Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003; 26:267-98. [PMID: 12704221 DOI: 10.1146/annurev.neuro.26.010302.081142] [Citation(s) in RCA: 1279] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many neurodegenerative diseases, including Alzheimer's and Parkinson's and the transmissible spongiform encephalopathies (prion diseases), are characterized at autopsy by neuronal loss and protein aggregates that are typically fibrillar. A convergence of evidence strongly suggests that protein aggregation is neurotoxic and not a product of cell death. However, the identity of the neurotoxic aggregate and the mechanism by which it disables and eventually kills a neuron are unknown. Both biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibrillar form that is typically observed at autopsy may actually be neuroprotective. A subpopulation of protofibrils may function as pathogenic amyloid pores. An analogous mechanism may explain the neurotoxicity of the prion protein; recent data demonstrates that the disease-associated, infectious form of the prion protein differs from the neurotoxic species. This review focuses on recent experimental studies aimed at identification and characterization of the neurotoxic protein aggregates.
Collapse
Affiliation(s)
- Byron Caughey
- NIAID, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA.
| | | |
Collapse
|
177
|
Abstract
Toxicity associated with abnormal protein folding and protein aggregation are major hypotheses for neurodegeneration. This article comparatively reviews the experimental and human tissue-based evidence for the involvement of such mechanisms in neuronal death associated with the motor system disorders of X-linked spinobulbar muscular atrophy (SBMA; Kennedy's disease) and amyotrophic lateral sclerosis (ALS), especially disease related to mutations in the superoxide dismutase (SOD1) gene. Evidence from transgenic mouse, Drosophila and cell culture models of SBMA, in common with other trinucleotide repeat expansion disorders, show protein aggregation of the mutated androgen receptor, and intraneuronal accumulation of aggregated protein, to be obligate mechanisms. Strong experimental data link these phenomena with downstream biochemical events involving gene transcription pathways (CREB-binding protein) and interactions with protein chaperone systems. Manipulations of these pathways are already established in experimental systems of trinucleotide repeat disorders as potential beneficial targets for therapeutic activity. In contrast, the evidence for the role of protein aggregation in models of SOD1-linked familial ALS is less clear-cut. Several classes of intraneuronal inclusion body have been described, some of which are invariably present. However, the lack of understanding of the biochemical basis of the most frequent inclusion in sporadic ALS, the ubiquitinated inclusion, has hampered research. The toxicity associated with expression of mutant SOD1 has been intensively studied however. Abnormal protein aggregation and folding is the only one of the four major hypotheses for the mechanism of neuronal degeneration in this disorder currently under investigation (the others comprise oxidative stress, axonal transport and cytoskeletal dysfunctions, and glutamatergic excitotoxicity). Whilst hyaline inclusions, which are strongly immunoreactive to SOD1, are linked to degeneration in SOD1 mutant mouse models, the evidence from human tissue is less consistent and convincing. A role for mutant SOD1 aggregation in the mitochondrial dysfunction associated with ALS, and in potentially toxic interactions with heat shock proteins, both leading to apoptosis, are supported by some experimental data. Direct in vitro data on mutant SOD1 show evidence for spontaneous oligomerization, but the role of such oligomers remains to be elucidated, and therapeutic strategies are less well developed for this familial variant of ALS.
Collapse
Affiliation(s)
- J D Wood
- Academic Neurology Unit, Division of Genomic Medicine, University of Sheffield Medical School, Sheffield, UK.
| | | | | |
Collapse
|
178
|
Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, Jenkins NA, Borchelt DR. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 2003; 12:2753-64. [PMID: 12966034 DOI: 10.1093/hmg/ddg312] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cu/Zn superoxide dismutase (SOD1), a crucial cellular antioxidant, can in certain settings mediate toxic chemistry through its Cu cofactor. Whether this latter property explains why mutations in SOD1 cause FALS has been debated. Here, we demonstrate motor neuron disease in transgenic mice expressing a SOD1 variant that mutates the four histidine residues that coordinately bind Cu. In-depth analyses of this new mouse model, previously characterized models and FALS human tissues revealed that the accumulation of detergent-insoluble forms of SOD1 is a common feature of the disease. These insoluble species include full-length SOD1 proteins, peptide fragments, stable oligomers and ubiquitinated entities. Moreover, chaperones Hsp25 and alphaB-crystallin specifically co-fractionated with insoluble SOD1. In cultured cells, all 11 of the FALS variants tested produced insoluble forms of mutant SOD1. Importantly, expression of recombinant peptide fragments of wild-type SOD1 in cultured cells also produced insoluble species, suggesting that SOD1 possesses elements with an intrinsic propensity to aggregate. Thus, modifications to the protein, such as FALS mutations, fragmentation and possibly covalent modification, may simply act to augment a natural, but potentially toxic, propensity to aggregate.
Collapse
Affiliation(s)
- Jiou Wang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brännström T, Gredal O, Nilsson P, Marklund SL. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2003; 127:73-88. [PMID: 14534160 DOI: 10.1093/brain/awh005] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mutant forms of superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS) by an unknown noxious mechanism. Using an antibody against a novel epitope in the G127insTGGG mutation, mutant SOD1 was studied for the first time in spinal cord and brain of an ALS patient. The level was below 0.5% of the SOD1 level in controls. In corresponding transgenic mice the content of mutant SOD1 was also low, although it was enriched in spinal cord and brain compared with other tissues. In the mice the misfolded mutant SOD1 aggregated rapidly and 20% occurred in steady state as detergent-soluble protoaggregates. The misfolded SOD1 and the protoaggregates form, from birth until death, a potentially noxious burden that may induce the motor neuron injury. Detergent-resistant aggregates, as well as inclusions of mutant SOD1 in motor neurons and astrocytes, accumulated in spinal cord ventral horns of the patient and mice with terminal disease. The inclusions and aggregates may serve as terminal markers of long-term assault by misfolded SOD1 and protoaggregates.
Collapse
Affiliation(s)
- P Andreas Jonsson
- Clinical Chemistry, Department of Medical Biosciences, Umeå University Hospital, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
180
|
DiDonato M, Craig L, Huff ME, Thayer MM, Cardoso RMF, Kassmann CJ, Lo TP, Bruns CK, Powers ET, Kelly JW, Getzoff ED, Tainer JA. ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 2003; 332:601-15. [PMID: 12963370 DOI: 10.1016/s0022-2836(03)00889-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.
Collapse
Affiliation(s)
- Michael DiDonato
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Maildrop MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Higgins CMJ, Jung C, Xu Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci 2003; 4:16. [PMID: 12864925 PMCID: PMC169170 DOI: 10.1186/1471-2202-4-16] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Accepted: 07/15/2003] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease that causes motor neuron degeneration, paralysis and death. Mutations in Cu, Zn superoxide dismutase (SOD1) are one cause for the familial form of this disease. Transgenic mice expressing mutant SOD1 develop age-dependent motor neuron degeneration, skeletal muscle weakness, paralysis and death similar to humans. The mechanism whereby mutant SOD1 induces motor neuron degeneration is not understood but widespread mitochondrial vacuolation has been observed during early phases of motor neuron degeneration. How this vacuolation develops is not clear, but could involve autophagic vacuolation, mitochondrial permeability transition (MPT) or uncharacterized mechanisms. To determine which of these possibilities are true, we examined the vacuolar patterns in detail in transgenic mice expressing mutant SOD1G93A. RESULTS Vacuolar patterns revealed by electron microscopy (EM) suggest that vacuoles originate from the expansion of the mitochondrial intermembrane space and extension of the outer mitochondrial membrane. Immunofluorescence microscopy and immuno-gold electron microscopy reveal that vacuoles are bounded by SOD1 and mitochondrial outer membrane markers, but the inner mitochondrial membrane marker is located in focal areas inside the vacuoles. Small vacuoles contain cytochrome c while large vacuoles are porous and lack cytochrome c. Vacuoles lack lysosomal signal but contain abundant peroxisomes and SOD1 aggregates. CONCLUSION These findings demonstrate that mutant SOD1, possibly by toxicity associated with its aggregation, causes mitochondrial degeneration by inducing extension and leakage of the outer mitochondrial membrane, and expansion of the intermembrane space. This could release the pro-cell death molecules normally residing in the intermembrane space and initiate motor neuron degeneration. This Mitochondrial Vacuolation by Intermembrane Space Expansion (MVISE) fits neither MPT nor autophagic vacuolation mechanisms, and thus, is a previously uncharacterized mechanism of mitochondrial degeneration in mammalian CNS.
Collapse
Affiliation(s)
- Cynthia MJ Higgins
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01655, USA
| | - Cheolwha Jung
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01655, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01655, USA
- Department of Cell Biology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01655, USA
- Neuroscience Program, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01655, USA
| |
Collapse
|
182
|
Elam JS, Taylor AB, Strange R, Antonyuk S, Doucette PA, Rodriguez JA, Hasnain SS, Hayward LJ, Valentine JS, Yeates TO, Hart PJ. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Mol Biol 2003; 10:461-7. [PMID: 12754496 DOI: 10.1038/nsb935] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 04/22/2003] [Indexed: 11/09/2022]
Abstract
Mutations in the SOD1 gene cause the autosomal dominant, neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). In spinal cord neurons of human FALS patients and in transgenic mice expressing these mutant proteins, aggregates containing FALS SOD1 are observed. Accumulation of SOD1 aggregates is believed to interfere with axonal transport, protein degradation and anti-apoptotic functions of the neuronal cellular machinery. Here we show that metal-deficient, pathogenic SOD1 mutant proteins crystallize in three different crystal forms, all of which reveal higher-order assemblies of aligned beta-sheets. Amyloid-like filaments and water-filled nanotubes arise through extensive interactions between loop and beta-barrel elements of neighboring mutant SOD1 molecules. In all cases, non-native conformational changes permit a gain of interaction between dimers that leads to higher-order arrays. Normal beta-sheet-containing proteins avoid such self-association by preventing their edge strands from making intermolecular interactions. Loss of this protection through conformational rearrangement in the metal-deficient enzyme could be a toxic property common to mutants of SOD1 linked to FALS.
Collapse
Affiliation(s)
- Jennifer Stine Elam
- Department of Biochemistry and the Center for Biomolecular Structure Analysis, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Son M, Cloyd CD, Rothstein JD, Rajendran B, Elliott JL. Aggregate formation in Cu,Zn superoxide dismutase-related proteins. J Biol Chem 2003; 278:14331-6. [PMID: 12551935 DOI: 10.1074/jbc.m211698200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregation of Cu,Zn superoxide dismutase (SOD1) protein is a pathologic hallmark of familial amyotrophic lateral sclerosis linked to mutations in the SOD1 gene, although the structural motifs within mutant SOD1 that are responsible for its aggregation are unknown. Copper chaperone for SOD1 (CCS) and extracellular Cu,Zn superoxide dismutase (SOD3) have some sequence identity with SOD1, particularly in the regions of metal binding, but play no significant role in mutant SOD1-induced disease. We hypothesized that it would be possible to form CCS- or SOD3-positive aggregates by making these molecules resemble mutant SOD1 via the introduction of point mutations in codons homologous to a disease causing G85R SOD1 mutation. Using an in vitro assay system, we found that expression of wild type human CCS or a modified intracellular wild type SOD3 does not result in significant aggregate formation. In contrast, expression of G168R CCS or G146R SOD3 produced aggregates as evidenced by the presence of high molecular weight protein complexes on Western gels or inclusion bodies on immunofluorescence. CCS- and SOD3-positive inclusions appear to be ubiquitinated and localized to aggresomes. These results suggest that proteins sharing structural similarities to mutant SOD1 are also at risk for aggregate formation.
Collapse
Affiliation(s)
- Marjatta Son
- Department of Neurology, University of Texas, Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | |
Collapse
|
184
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease of motor neurons. The inherited form of the disease, familial ALS, represents 5-10% of the total cases, and the best documented of these are due to lesions in SOD1, the gene encoding copper-zinc superoxide dismutase (CuZnSOD). The mechanism by which mutations in SOD1 cause familial ALS is currently unknown. Two hypotheses have dominated recent discussion of the toxicity of ALS mutant CuZnSOD proteins: the oligomerization hypothesis and the oxidative damage hypothesis. The oligomerization hypothesis maintains that mutant CuZnSOD proteins are, or become, misfolded and consequently oligomerize into increasingly high-molecular-weight species that ultimately lead to the death of motor neurons. The oxidative damage hypothesis maintains that ALS mutant CuZnSOD proteins catalyze oxidative reactions that damage substrates critical for viability of the affected cells. This perspective reviews some of the properties of both wild-type and mutant CuZnSOD proteins, suggests how these properties may be relevant to these two hypotheses, and proposes that these two hypotheses are not necessarily mutually exclusive.
Collapse
|
185
|
Tiwari A, Hayward LJ. Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J Biol Chem 2003; 278:5984-92. [PMID: 12458194 DOI: 10.1074/jbc.m210419200] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We observed that 14 biologically metallated mutants of copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis all exhibited aberrantly accelerated mobility during partially denaturing PAGE and increased sensitivity to proteolytic digestion compared with wild type SOD1. Decreased metal binding site occupancy and exposure to the disulfide-reducing agents dithiothreitol, Tris(2-carboxyethyl)phosphine (TCEP), or reduced glutathione increased the fraction of anomalously migrating mutant SOD1 proteins. Furthermore, the incubation of mutant SOD1s with TCEP increased the accessibility to iodoacetamide of cysteine residues that normally participate in the formation of the intrasubunit disulfide bond (Cys-57 to Cys-146) or are buried within the core of the beta-barrel (Cys-6). SOD1 enzymes in spinal cord lysates from G85R and G93A mutant but not wild type SOD1 transgenic mice also exhibited abnormal vulnerability to TCEP, which exposed normally inaccessible cysteine residues to modification by maleimide conjugated to polyethylene glycol. These results implicate SOD1 destabilization under cellular disulfide-reducing conditions at physiological pH and temperature as a shared property that may be relevant to amyotrophic lateral sclerosis mutant neurotoxicity.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
186
|
Jankowsky JL, Savonenko A, Schilling G, Wang J, Xu G, Borchelt DR. Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. Curr Neurol Neurosci Rep 2002; 2:457-64. [PMID: 12169227 DOI: 10.1007/s11910-002-0073-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neurodegenerative diseases present an extraordinary challenge for medicine due to the grave nature of these illnesses, their prevalence, and their impact on individuals and caregivers. The most common of these age-associated chronic illnesses are Alzheimer's disease (AD) and Parkinson's disease (PD); other examples include the prion disorders, amyotrophic lateral sclerosis (ALS), and the trinucleotide (CAG) repeat diseases. All of these diseases are characterized by well-defined clinical syndromes with progressive courses that reflect the dysfunction and eventual loss of specific neuronal populations. Current therapies provide only symptomatic relief; none significantly alter the course of disease. We describe here how transgenic mice designed to model these diseases have substantially contributed to the identification and validation of many promising new therapies, and conversely how they have quickly and cost effectively eliminated several targets with unrealized expectations.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building Room 558, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|