151
|
Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 2011; 77:5697-706. [PMID: 21705522 DOI: 10.1128/aem.00579-11] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water.
Collapse
|
152
|
Jones MD, Crandell DW, Singleton DR, Aitken MD. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 2011; 13:2623-32. [PMID: 21564459 DOI: 10.1111/j.1462-2920.2011.02501.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacteria responsible for the degradation of naphthalene, phenanthrene, pyrene, fluoranthene or benz[a]anthracene in a polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated by DNA-based stable-isotope probing (SIP). Clone libraries of 16S rRNA genes were generated from the (13) C-enriched ('heavy') DNA recovered from each SIP experiment, and quantitative PCR primers targeting the 16S rRNA gene were developed to measure the abundances of many of the SIP-identified sequences. Clone libraries from the SIP experiments with naphthalene, phenanthrene and fluoranthene primarily contained sequences related to bacteria previously associated with the degradation of those compounds. However, Pigmentiphaga-related sequences were newly associated with naphthalene and phenanthrene degradation, and sequences from a group of uncultivated γ-Proteobacteria known as Pyrene Group 2 were newly associated with fluoranthene and benz[a]anthracene degradation. Pyrene Group 2-related sequences were the only sequences recovered from the clone library generated from SIP with pyrene, and they were 82% of the sequences recovered from the clone library generated from SIP with benz[a]anthracene. In time-course experiments with each substrate in unlabelled form, the abundance of each of the measured groups increased in response to the corresponding substrate. These results provide a comprehensive description of the microbial ecology of a PAH-contaminated soil as it relates to the biodegradation of PAHs from two to four rings, and they underscore that bacteria in Pyrene Group 2 are well-suited for the degradation of four-ring PAHs.
Collapse
Affiliation(s)
- Maiysha D Jones
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431 Chapel Hill, NC 27599-7431, USA.
| | | | | | | |
Collapse
|
153
|
Selvakumaran S, Kapley A, Kashyap SM, Daginawala HF, Kalia VC, Purohit HJ. Diversity of aromatic ring-hydroxylating dioxygenase gene in Citrobacter. BIORESOURCE TECHNOLOGY 2011; 102:4600-4609. [PMID: 21295975 DOI: 10.1016/j.biortech.2011.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Genetic and functional diversity of Citrobacter spp. for their abilities to degrade aromatic compounds was evaluated to develop mixed cultures or a consortium for bioremediation technology. Thirty Citrobacter strains isolated from various effluent treatment plants were found to degrade a range of aromatic compounds: phenol, benzoate, hydroxy benzoic acid and biotransform mono-chlorophenols and di-chlorophenol within 24 to 48 h of incubation at 30 °C. Sequence similarity and phylogeny of the ARHD gene transcripts (730 nucleotides) depicted their diversity within 9 Citrobacter strains: HPC255, HPC369, HPC560, HPC570, HPC784, HPC1196, HPC1216, HPC1276 and HPC1299. Here, the degree of associations varied up to 84% with (i) ARHD α-sub unit (SU), (ii) LSU of Phenylpropionate dioxygenase (PDO), (iii) Phenol hydroxylase α-SU, (iv) Benzoate 1,2-dioxygenase, α-SU, (v) Naphthalene dioxygenase LSU, etc. This study has provided basic information, which can be used to develop a consortium of bacteria with mutually beneficial characteristics.
Collapse
Affiliation(s)
- S Selvakumaran
- Environmental Genomics Division, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur 440 020, MH, India
| | | | | | | | | | | |
Collapse
|
154
|
Notomista E, Pennacchio F, Cafaro V, Smaldone G, Izzo V, Troncone L, Varcamonti M, Di Donato A. The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. MICROBIAL ECOLOGY 2011; 61:582-594. [PMID: 21258788 DOI: 10.1007/s00248-010-9786-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/02/2010] [Indexed: 05/30/2023]
Abstract
Novosphingobium sp. PP1Y, isolated from a surface seawater sample collected from a closed bay in the harbour of Pozzuoli (Naples, Italy), uses fuels as its sole carbon and energy source. Like some other Sphingomonads, this strain can grow as either planktonic free cells or sessile-aggregated flocks. In addition, this strain was found to grow as biofilm on several types of solid and liquid hydrophobic surfaces including polystyrene, polypropylene and diesel oil. Strain PP1Y is not able to grow on pure alkanes or alkane mixtures but is able to grow on a surprisingly wide range of aromatic compounds including mono, bi, tri and tetracyclic aromatic hydrocarbons and heterocyclic compounds. During growth on diesel oil, the organic layer is emulsified resulting in the formation of small biofilm-coated drops, whereas during growth on aromatic hydrocarbons dissolved in paraffin the oil layer is emulsified but the drops are coated only if the mixtures contain selected aromatic compounds, like pyrene, propylbenzene, tetrahydronaphthalene and heterocyclic compounds. These peculiar characteristics suggest strain PP1Y has adapted to efficiently grow at the water/fuel interface using the aromatic fraction of fuels as the sole carbon and energy source.
Collapse
Affiliation(s)
- Eugenio Notomista
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Singleton DR, Richardson SD, Aitken MD. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 2011; 22:1061-73. [PMID: 21369833 DOI: 10.1007/s10532-011-9463-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.
Collapse
Affiliation(s)
- David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | |
Collapse
|
156
|
Wang J, Liu G, Lu H, Jin R, Lei T, Zhang W, Yang H. Biodegradation of bromoamine acid using combined airlift loop reactor and biological activated carbon. BIORESOURCE TECHNOLOGY 2011; 102:4366-4369. [PMID: 21247761 DOI: 10.1016/j.biortech.2010.12.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
The biodegradation of bromoamine acid (BAA) in a combined airlift loop reactor (ALR) and biological activated carbon (BAC) system was investigated. The results showed that the ALR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as carrier, could run steadily for over 3 months at less than 950 mg L(-1) BAA. And the efficiencies of BAA decolorization and COD removal in ALR reached about 90% and 50% within 12h, respectively. When it was further aerated for another 12h, the ALR effluent gradually became yellow due to the auto-oxidation of BAA decolorization products which were identified by HPLC-MS. Further biotreatment of the ALR effluent using BAC showed that the efficiency of TOC removal could reach 90%. Moreover, the release efficiencies of Br(-) and SO(4)(2-) were 73.5% and 67.4%, respectively. It indicated that BAC system was effective in the biodegradation of the auto-oxidative BAA decolorization products.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
157
|
Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine. J Ind Microbiol Biotechnol 2010; 38:1379-90. [PMID: 21161323 DOI: 10.1007/s10295-010-0921-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.
Collapse
|
158
|
Molecular assessment of microbiota structure and dynamics along mixed olive oil and winery wastewaters biotreatment. Biodegradation 2010; 22:773-95. [DOI: 10.1007/s10532-010-9434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
159
|
Culturable bacterial diversity associated with cysts of Eurhizococcus brasiliensis (Hempel) (Hemiptera: Margarodidae). World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0518-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
160
|
Xie S, Sun W, Luo C, Cupples AM. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 2010; 22:71-81. [PMID: 20549308 DOI: 10.1007/s10532-010-9377-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/28/2010] [Indexed: 11/26/2022]
Abstract
The remediation of benzene contaminated groundwater often involves biodegradation and although the mechanisms of aerobic benzene biodegradation in laboratory cultures have been well studied, less is known about the microorganisms responsible for benzene degradation in mixed culture samples or at contaminated sites. To address this knowledge gap, DNA based stable isotope probing (SIP) was utilized to identify active benzene degraders in microcosms constructed with soil from three sources (a contaminated site and two agricultural sites). For this, replicate microcosms were amended with either labeled (¹³C) or unlabeled benzene and the extracted DNA samples were ultracentrifuged, fractioned and subject to terminal restriction fragment length polymorphism (TRFLP). The dominant benzene degraders (responsible for ¹³C uptake) were determined by comparing relative abundance of TRFLP phylotypes in heavy fractions of labeled benzene (¹³C) amended samples to the controls (from unlabeled benzene amended samples). Two phylotypes (a Polaromonas sp. and an Acidobacterium) were the major benzene degraders in the microcosms constructed from the contaminated site soil, whereas one phylotype incorporated the majority of the benzene-derived ¹³C in each of the agricultural soils ("candidate" phylum TM7 and an unclassified Sphingomonadaceae).
Collapse
|
161
|
Isaza PA, Daugulis AJ. Enhanced degradation of phenanthrene in a solid-liquid two-phase partitioning bioreactor via sonication. Biotechnol Bioeng 2010; 105:997-1001. [PMID: 19998286 DOI: 10.1002/bit.22618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The current article examined the feasibility of inducing improved delivery and degradation of phenanthrene in a solid-liquid partitioning bioreactor system at bench scale by means of ultrasonic energy input. Initial degradation rates of phenanthrene by a microbial consortium, delivered from Desmopan, were improved 2.7-fold in the presence of sonication relative to unsonicated controls. Results demonstrated that an operating window involving on/off sonication cycling improved substrate delivery and rational selection of ultrasound cycling profiles could lead to even further enhancements. Additionally, all results were obtained in a conventional bioreactor with commercial ultrasonic equipment and a commercially available polymer. Subsequent DGGE analysis demonstrated that the sonication cycles selected maintained consortium compositions, relative to control cases, and suggest that exposure would not reduce degradative capabilities under the periods of irradiation examined. Finally, consortium members were identified as belonging to the Pandoraea, Sphingobium, and Pseudoxanthomonas genera. Comparison of genetic sequences in the Ribosomal Database Project revealed that some of the bacterial members, identified at the strain level, had been previously observed in PAH degradations, while others have been reported only in the degradation of other aromatics, such as pesticides.
Collapse
Affiliation(s)
- Pedro A Isaza
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
162
|
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3:136-64. [PMID: 21255317 PMCID: PMC3836582 DOI: 10.1111/j.1751-7915.2009.00130.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022] Open
Abstract
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Kanagawa-ken, Yokohama 236-0027, Japan.
| | | |
Collapse
|
163
|
Sipilä TP, Väisänen P, Paulin L, Yrjälä K. Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho- and meta-pathways with differential expression shown by RT-PCR. Biodegradation 2010; 21:771-84. [DOI: 10.1007/s10532-010-9342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/09/2010] [Indexed: 11/29/2022]
|
164
|
Hashimoto W, Kawai S, Murata K. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications. Bioeng Bugs 2009; 1:97-109. [PMID: 21326935 DOI: 10.4161/bbug.1.2.10322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022] Open
Abstract
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology,; Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
165
|
Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation. Appl Environ Microbiol 2009; 75:3987-97. [PMID: 19376917 DOI: 10.1128/aem.02843-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coaggregation is hypothesized to enhance freshwater biofilm development. To investigate this hypothesis, the ability of the coaggregating bacterium Sphingomonas natatoria to form single- and dual-species biofilms was studied and compared to that of a naturally occurring spontaneous coaggregation-deficient variant. Attachment assays using metabolically inactive cells were performed using epifluorescence and confocal laser scanning microscopy. Under static and flowing conditions, coaggregating S. natatoria 2.1gfp cells adhered to glass surfaces to form diaphanous single-species biofilms. When glass surfaces were precoated with coaggregation partner Micrococcus luteus 2.13 cells, S. natatoria 2.1gfp cells formed densely packed dual-species biofilms. The addition of 80 mM galactosamine, which reverses coaggregation, mildly reduced adhesion to glass but inhibited the interaction and attachment to glass-surface-attached M. luteus 2.13 cells. As opposed to wild-type coaggregating cells, coaggregation-deficient S. natatoria 2.1COGgfp variant cells were retarded in colonizing glass and did not interact with glass-surface-attached M. luteus 2.13 cells. To determine if coaggregation enhances biofilm growth and expansion, viable coaggregating S. natatoria 2.1gfp cells or the coaggregation-deficient variant S. natatoria 2.1COGgfp cells were coinoculated in flow cells with viable M. luteus 2.13 cells and allowed to grow together for 96 h. Coaggregating S. natatoria 2.1gfp cells outcompeted M. luteus 2.13 cells, and 96-h biofilms were composed predominantly of S. natatoria 2.1gfp cells. Conversely, when coaggregation-deficient S. natatoria 2.1COGgfp cells were coinoculated with M. luteus 2.13 cells, the 96-h biofilm contained few coaggregation-deficient S. natatoria 2.1 cells. Thus, coaggregation promotes biofilm integration by facilitating attachment to partner species and likely contributes to the expansion of coaggregating S. natatoria 2.1 populations in dual-species biofilms through competitive interactions.
Collapse
|