151
|
Giros A, Grzybowski M, Sohn VR, Pons E, Fernandez-Morales J, Xicola RM, Sethi P, Grzybowski J, Goel A, Boland CR, Gassull MA, Llor X. Regulation of colorectal cancer cell apoptosis by the n-3 polyunsaturated fatty acids Docosahexaenoic and Eicosapentaenoic. Cancer Prev Res (Phila) 2009; 2:732-42. [PMID: 19638488 DOI: 10.1158/1940-6207.capr-08-0197] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have suggested that the n-3 fatty acids Docosahexaenoic (DHA) and Eicosapentaenoic (EPA) have an important protective effect on colorectal cancer, and this could be at least partly due to their proapoptotic activity. It is unclear, however, how this phenomenon is triggered and what mechanisms are implicated. Here, we show that both DHA and EPA have an important proapoptotic effect on colorectal cancer cells with different molecular phenotypes but not in noncancerous cells. Apoptosis is caspase dependent, and both intrinsic and extrinsic pathways are implicated. The dimerization of Bax and Bak, the depolarization of the mitochondrial membrane, and the subsequent release of cytochrome c and Smac/Diablo to the cytosol evidence the activation of the intrinsic pathway. The implication of the extrinsic pathway is shown by the activation of caspase-8, along with the down-regulation of FLIP. The timing of caspase-8 activation, and the oligomerization of Bid with Bax, suggest a cross-talk with the intrinsic pathway. None of the death receptors that commonly initiate the extrinsic pathway: FAS, TNF-R1, and TRAIL-R2 are found to be responsible for triggering the apoptosis cascade induced by DHA and EPA. Neither PPARgamma nor cyclooxygenase-2, two likely candidates to regulate this process, play a significant role. Our findings suggest that the down-regulation of two key regulatory elements of the extrinsic and intrinsic pathways, FLIP and XIAP, respectively, is determinant in the induction of apoptosis by DHA and EPA. These fatty acids could potentially be useful adjuvant anticancer agents in combination with other chemotherapeutic elements.
Collapse
Affiliation(s)
- Anna Giros
- Department of Medicine, University of Illinois at Chicago, 840 South Wood Street (M/C 716), Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Zhou Y, Goodenbour JM, Godley LA, Wickrema A, Pan T. High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem Biophys Res Commun 2009; 385:160-4. [PMID: 19450555 PMCID: PMC2774282 DOI: 10.1016/j.bbrc.2009.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 11/18/2022]
Abstract
In multiple myeloma (MM), malignant plasma cells produce large amounts of antibodies and have highly active protein translational machinery. It is not known whether regulation of the abundance and aminoacylation (charging) of transfer RNA (tRNA) takes place in myeloma cells to accommodate for the increased amount of protein translation. Using tRNA-specific microarrays, we demonstrate that tRNA levels are significantly elevated in MM cell lines compared to normal bone marrow cells. We furthermore show that the addition of the proteasome inhibitor, bortezomib (Velcade, PS-341) results in decreased charging levels of tRNAs, in particular those coding for hydrophobic amino acids. These results suggest that tRNA properties are altered in MM to accommodate for its increased need for protein translation, and that proteasome inhibition directly impacts protein synthesis in MM through effects on tRNA charging.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lucy A. Godley
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Amittha Wickrema
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
153
|
Fernández Freire P, Peropadre A, Pérez Martín JM, Herrero O, Hazen MJ. An integrated cellular model to evaluate cytotoxic effects in mammalian cell lines. Toxicol In Vitro 2009; 23:1553-8. [PMID: 19540333 DOI: 10.1016/j.tiv.2009.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 05/07/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
Abstract
The ever growing anthropogenic pressure to the environment has lead in 2007 to the revision of the existing legislation and the approval of the new European law regarding the production and importation of chemicals, known as REACH. This new legal framework supports the development of alternative methods to animal experimentation encouraging the improvement and/or design of new methodological strategies for the toxicological evaluation of chemical compounds. Even though cytotoxicity studies are a reductionist approach to acute toxicity in vivo, they offer the best agreement between obtaining relevant information about the mechanism of toxic action and the use of alternative methods. Following this trend, this work presents an integrated cellular strategy in order to know the toxicity and mechanism of action of chemical compounds, using simple and reproducible in vitro systems. The experimental procedures are performed in two steps. The first one involves the systematic analysis of the main cellular targets using proliferation, viability and morphological probes. The second step relies upon the results obtained in the first step, including specific assays that focus on the mechanism of toxic action and the cellular response. The benefits of this strategy are exemplified with two real cases: pentachlorophenol and rotenone.
Collapse
Affiliation(s)
- P Fernández Freire
- Cellular Toxicology Group, Department of Biology, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
154
|
A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis 2009; 14:182-90. [PMID: 19152031 DOI: 10.1007/s10495-008-0310-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
QM31 represents a new class of cytoprotective agents that inhibit the formation of the apoptosome, the caspase activation complex composed by Apaf-1, cytochrome c, dATP and caspase-9. Here, we analyzed the cellular effects of QM31, as compared to the prototypic caspase inhibitor Z-VAD-fmk. QM31 was as efficient as Z-VAD-fmk in suppressing caspase-3 activation, and conferred a similar cytoprotective effect. In contrast to Z-VAD-fmk, QM31 inhibited the release of cytochrome c from mitochondria, an unforeseen property that may contribute to its pronounced cytoprotective activity. Moreover, QM31 suppressed the Apaf-1-dependent intra-S-phase DNA damage checkpoint. These results suggest that QM31 can interfere with the two known functions of Apaf-1, namely apoptosome assembly/activation and intra-S-phase cell cycle arrest. Moreover, QM31 can inhibit mitochondrial outer membrane permeabilization, an effect that is independent from its action on Apaf-1.
Collapse
|
155
|
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16:3-11. [PMID: 18846107 PMCID: PMC2744427 DOI: 10.1038/cdd.2008.150] [Citation(s) in RCA: 2072] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.
Collapse
Affiliation(s)
- G Kroemer
- INSERM, U848, Villejuif F-94805, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Erlotinib and gefitinib for the treatment of myelodysplastic syndrome and acute myeloid leukemia: A preclinical comparison. Biochem Pharmacol 2008; 76:1417-25. [DOI: 10.1016/j.bcp.2008.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/07/2008] [Accepted: 05/16/2008] [Indexed: 11/19/2022]
|
157
|
Roy SS, Hajnóczky G. Calcium, mitochondria and apoptosis studied by fluorescence measurements. Methods 2008; 46:213-23. [PMID: 18948203 DOI: 10.1016/j.ymeth.2008.09.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/12/2008] [Indexed: 11/28/2022] Open
Abstract
Among the many unsolved problems of calcium signalling, the role of calcium elevations in apoptotic and necrotic cell death has been a focus of research in recent years. Evidence has been presented that calcium oscillations can effectively trigger apoptosis under certain conditions and that dysregulation of calcium signalling is a common cause of cell death. These effects are regularly mediated through calcium signal propagation to the mitochondria and the ensuing mitochondrial membrane permeabilization and release of pro-apoptotic factors from mitochondria to the cytoplasm. The progress in this area depended on the development of (1) fluorescent/luminescent probes, including fluorescent proteins that can be genetically targeted to different intracellular locations and (2) the digital imaging technology, fluorescence-activated cell sorting and fluorescent high throughput approaches, which allowed dynamic measurements of both [Ca2+] in the intracellular compartments of interest and the downstream processes. Fluorescence single cell imaging has been the only possible approach to resolve the cell-to-cell heterogeneity and the complex subcellular spatiotemporal organization of the cytoplasmic and mitochondrial calcium signals and downstream events. We outline here fluorometric and fluorescence imaging protocols that we set up for the study of calcium in the context of apoptosis.
Collapse
Affiliation(s)
- Soumya Sinha Roy
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Suite 253 JAH, Philadelphia, PA 19107, USA
| | | |
Collapse
|
158
|
Perevoshchikova I, Zorov D, Antonenko Y. Peak intensity analysis as a method for estimation of fluorescent probe binding to artificial and natural nanoparticles: Tetramethylrhodamine uptake by isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2182-90. [DOI: 10.1016/j.bbamem.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
159
|
Hoffmann J, Vitale I, Buchmann B, Galluzzi L, Schwede W, Senovilla L, Skuballa W, Vivet S, Lichtner RB, Vicencio JM, Panaretakis T, Siemeister G, Lage H, Nanty L, Hammer S, Mittelstaedt K, Winsel S, Eschenbrenner J, Castedo M, Demarche C, Klar U, Kroemer G. Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res 2008; 68:5301-8. [PMID: 18593931 DOI: 10.1158/0008-5472.can-08-0237] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sagopilone (ZK-EPO) is the first fully synthetic epothilone undergoing clinical trials for the treatment of human tumors. Here, we investigate the cellular pathways by which sagopilone blocks tumor cell proliferation and compare the intracellular pharmacokinetics and the in vivo pharmacodynamics of sagopilone with other microtubule-stabilizing (or tubulin-polymerizing) agents. Cellular uptake and fractionation/localization studies revealed that sagopilone enters cells more efficiently, associates more tightly with the cytoskeleton, and polymerizes tubulin more potently than paclitaxel. Moreover, in contrast to paclitaxel and other epothilones [such as the natural product epothilone B (patupilone) or its partially synthetic analogue ixabepilone], sagopilone is not a substrate of the P-glycoprotein efflux pumps. Microtubule stabilization by sagopilone caused mitotic arrest, followed by transient multinucleation and activation of the mitochondrial apoptotic pathway. Profiling of the proapoptotic signal transduction pathway induced by sagopilone with a panel of small interfering RNAs revealed that sagopilone acts similarly to paclitaxel. In HCT 116 colon carcinoma cells, sagopilone-induced apoptosis was partly antagonized by the knockdown of proapoptotic members of the Bcl-2 family, including Bax, Bak, and Puma, whereas knockdown of Bcl-2, Bcl-X(L), or Chk1 sensitized cells to sagopilone-induced cell death. Related to its improved subcellular pharmacokinetics, however, sagopilone is more cytotoxic than other epothilones in a large panel of human cancer cell lines in vitro and in vivo. In particular, sagopilone is highly effective in reducing the growth of paclitaxel-resistant cancer cells. These results underline the processes behind the therapeutic efficacy of sagopilone, which is now evaluated in a broad phase II program.
Collapse
Affiliation(s)
- Jens Hoffmann
- Bayer Schering Pharma AG, TRG Oncology, Müllerstrasse 72-178, G-13342 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 2008; 445:29-76. [PMID: 18425442 DOI: 10.1007/978-1-59745-157-4_3] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.
Collapse
Affiliation(s)
- Ezgi Tasdemir
- INSERM, Unit Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Maity P, Bindu S, Choubey V, Alam A, Mitra K, Goyal M, Dey S, Guha M, Pal C, Bandyopadhyay U. Lansoprazole protects and heals gastric mucosa from non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy by inhibiting mitochondrial as well as Fas-mediated death pathways with concurrent induction of mucosal cell renewal. J Biol Chem 2008; 283:14391-401. [PMID: 18375387 DOI: 10.1074/jbc.m800414200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the mechanism of antiapoptotic and cell renewal effects of lansoprazole, a proton pump inhibitor, to protect and heal gastric mucosal injury in vivo induced by indomethacin, a non-steroidal anti-inflammatory drug (NSAID). Lansoprazole prevents indomethacin-induced gastric damage by blocking activation of mitochondrial and Fas pathways of apoptosis. Lansoprazole prevents indomethacin-induced up-regulation of proapoptotic Bax and Bak and down-regulation of antiapoptotic Bcl-2 and Bcl(xL) to maintain the normal proapoptotic/antiapoptotic ratio and thereby arrests indomethacin-induced mitochondrial translocation of Bax and collapse of mitochondrial membrane potential followed by cytochrome c release and caspase-9 activation. Lansoprazole also inhibits indomethacin-induced Fas-mediated mucosal cell death by down-regulating Fas or FasL expression and inhibiting caspase-8 activation. Lansoprazole favors mucosal cell renewal simultaneously by stimulating gene expression of prosurvival proliferating cell nuclear antigen, survivin, epidermal growth factor, and basic fibroblast growth factor. The up-regulation of Flt-1 further indicates that lansoprazole activates vascular epidermal growth factor-mediated controlled angiogenesis to repair gastric mucosa. Lansoprazole also stimulates the healing of already formed ulcers induced by indomethacin. Time course study of healing indicates that it switches off the mitochondrial death pathway completely but not the Fas pathway. However, lansoprazole heals mucosal lesions almost completely after overcoming the persisting Fas pathway, probably by favoring the prosurvival genes expression. This study thus provides the detailed mechanism of antiapoptotic and prosurvival effects of lansoprazole for offering gastroprotection against indomethacin-induced gastropathy.
Collapse
Affiliation(s)
- Pallab Maity
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L, Araujo N, Pinna G, Larochette N, Zamzami N, Modjtahedi N, Harel-Bellan A, Kroemer G. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 2008; 27:4221-32. [DOI: 10.1038/onc.2008.63] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
163
|
Bouchier-Hayes L, Muñoz-Pinedo C, Connell S, Green DR. Measuring apoptosis at the single cell level. Methods 2008; 44:222-8. [PMID: 18314052 PMCID: PMC2423010 DOI: 10.1016/j.ymeth.2007.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 11/10/2007] [Indexed: 02/07/2023] Open
Abstract
The use of live cell microscopy has made a number of contributions to the study of apoptosis. Many of the tools and techniques are available that allow us to image the key events that occur during cell death including mitochondrial outer membrane permeabilization, mitochondrial transmembrane potential changes, translocation of Bcl-2 family members, caspase activation, phosphatidylserine flip and plasma membrane rupture. We discuss these techniques here and highlight the advantages and drawbacks of using such approaches to study apoptosis.
Collapse
Affiliation(s)
- Lisa Bouchier-Hayes
- St. Jude Children’s Research Hospital, Department of Immunology, 332 N. Lauderdale Street, Memphis, Tennessee, USA 38105
| | - Cristina Muñoz-Pinedo
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Gran Vía s/n km. 2,7, L’Hospitalet (Barcelona), 08907 Spain
| | - Samuel Connell
- St. Jude Children’s Research Hospital, Department of Immunology, 332 N. Lauderdale Street, Memphis, Tennessee, USA 38105
| | - Douglas R. Green
- St. Jude Children’s Research Hospital, Department of Immunology, 332 N. Lauderdale Street, Memphis, Tennessee, USA 38105
| |
Collapse
|
164
|
Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition. Apoptosis 2008; 13:588-99. [DOI: 10.1007/s10495-008-0182-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
165
|
Abstract
Erlotinib, an inhibitor of the epidermal growth factor receptor (EGFR), induces differentiation, cell-cycle arrest, and apoptosis of EGFR-negative myeloblasts of patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), as well as in EGFR-negative cell lines representing these diseases (P39, KG-1, and HL 60). This off-target effect can be explained by inhibitory effects on JAK2. Apoptosis induction coupled to mitochondrial membrane permeabilization occurred independently from phenotypic differentiation. In apoptosis-sensitive AML cells, erlotinib caused a rapid (within less than 1 hour) nucleocytoplasmic translocation of nucleophosmin-1 (NPM-1) and p14ARF. Apoptosis-insensitive myeloblasts failed to manifest this translocation yet became sensitive to apoptosis induction by erlotinib when NPM-1 was depleted by RNA interference. Moreover, erlotinib reduced the growth of xenografted human AML cells in vivo. Erlotinib also killed CD34+ bone marrow blasts from MDS and AML patients while sparing normal CD34+ progenitors. This ex vivo therapeutic effect was once more associated with the nucleocytoplasmic translocation of NPM-1 and p14ARF. One patient afflicted with both MDS and non–small cell lung cancer manifested hematologic improvement in response to erlotinib. In summary, we here provide novel evidence in vitro, ex vivo, and in vivo for the potential therapeutic efficacy of erlotinib in the treatment of high-risk MDS and AML.
Collapse
|
166
|
Galluzzi L, Vitale I, Kepp O, Séror C, Hangen E, Perfettini JL, Modjtahedi N, Kroemer G. Methods to dissect mitochondrial membrane permeabilization in the course of apoptosis. Methods Enzymol 2008; 442:355-74. [PMID: 18662579 DOI: 10.1016/s0076-6879(08)01418-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In several paradigms of cell death, mitochondrial membrane permeabilization (MMP) delimits the frontier between life and death. Mitochondria control the intrinsic pathway of apoptosis and participate in the extrinsic pathway. Moreover, they have been implicated in nonapoptotic cell death modalities. Irrespective of its initiation at the inner or the outer mitochondrial membrane (IM and OM, respectively), MMP culminates in the functional (dissipation of the mitochondrial transmembrane potential, shutdown of ATP synthesis, redox imbalance) and structural (reorganization of cristae, release of toxic intermembrane space proteins into the cytosol) collapse of mitochondria. This has a profound impact on cellular metabolism, activates caspase-dependent and -independent executioner mechanisms, and finally results in the demise of the cell. However, the partial and/or temporary permeabilization of one or both mitochondrial membranes is not always a prelude to cell death. This chapter proposes a method and several guidelines to discriminate between IM and OM permeabilization and to identify MMP that does indeed precede cell death. This approach relies on the integration of currently available techniques and may be easily introduced in the laboratory routine for a more precise detection of cell death.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848, Institut Gustave Roussy, and Université Paris-Sud 11, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
167
|
The U95 protein of human herpesvirus 6B interacts with human GRIM-19: silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential. J Virol 2007; 82:1011-20. [PMID: 17928352 DOI: 10.1128/jvi.01156-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the pathogenesis of human herpesvirus 6 (HHV-6), it is important to elucidate the functional aspects of immediate-early (IE) genes at the initial phase of the infection. To study the functional role of the HHV-6B IE gene encoding U95, we generated a U95-Myc fusion protein and screened a pretransformed bone marrow cDNA library for U95-interacting proteins, using yeast-two hybrid analysis. The most frequently appearing U95-interacting protein identified was GRIM-19, which belongs to the family of genes associated with retinoid-interferon mortality and serves as an essential component of the oxidative phosphorylation system. This interaction was verified by both coimmunoprecipitation and confocal microscopic coimmunolocalization. Short-term HHV-6B infection of MT-4 T-lymphocytic cells induced syncytial formation, resulted in decreased mitochondrial membrane potential, and led to progressively pronounced ultrastructural changes, such as mitochondrial swelling, myelin-like figures, and a loss of cristae. Compared to controls, RNA interference against U95 effectively reduced the U95 mRNA copy number and abrogated the loss of mitochondrial membrane potential. Our results indicate that the high affinity between U95 early viral protein and GRIM-19 may be closely linked to the detrimental effect of HHV-6B infection on mitochondria. These findings may explain the alternative cell death mechanism of expiration, as opposed to apoptosis, observed in certain productively HHV-6B-infected cells. The interaction between U95 and GRIM-19 is thus functionally and metabolically significant in HHV-6B-infected cells and may be a means through which HHV-6B modulates cell death signals by interferon and retinoic acid.
Collapse
|
168
|
Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14:1237-43. [PMID: 17431418 DOI: 10.1038/sj.cdd.4402148] [Citation(s) in RCA: 573] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- L Galluzzi
- INSERM, Unit Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|