151
|
Abstract
FKBP38 is involved in various cellular processes through association with Bcl-2 and Hsp90. Ca2+/S100 proteins directly bind to FKBP38 and inhibit the association of FKBP38 with Bcl-2 and Hsp90. Our findings demonstrate that S100 proteins are novel Ca2+-dependent regulators of FKBP38.
Collapse
|
152
|
Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA. Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 2014; 538:12-22. [PMID: 24440291 DOI: 10.1016/j.gene.2014.01.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/20/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
Abstract
Plant immunophilins are a broadly conserved family of proteins, which carry out a variety of cellular functions. In this study, we investigated three immunophilin genes involved in the Arabidopsis thaliana response to Pseudomonas syringae infection: a cytoplasmic localized AtCYP19, a cytoplasmic and nuclear localized AtCYP57, and one nucleus directed FKBP known as AtFKBP65. Arabidopsis knock-out mutations in these immunophilins result in an increased susceptibility to P. syringae, whereas overexpression of these genes alters the transcription profile of pathogen-related defense genes and led to enhanced resistance. Histochemical analysis revealed local gene expression of AtCYP19, AtCYP57, and AtFKBP65 in response to pathogen infection. AtCYP19 was shown to be involved in reactive oxygen species production, and both AtCYP57 and AtFKBP65 provided callose accumulation in plant cell wall. Identification of the involvement of these genes in biotic stress response brings a new set of data that will advance plant immune system research and can be widely used for further investigation in this area.
Collapse
Affiliation(s)
- Gennady V Pogorelko
- 219 Bessey Hall, Department of Plant Pathology and Microbiology, Iowa State University, Ames 50014, IA, USA; NI Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Maria Mokryakova
- NI Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Oksana V Fursova
- Geocryology Department, Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
| | - Inna Abdeeva
- NI Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Eleonora S Piruzian
- NI Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Sergey A Bruskin
- NI Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
153
|
Panigrahi R, Adina-Zada A, Whelan J, Vrielink A. Ligand recognition by the TPR domain of the import factor Toc64 from Arabidopsis thaliana. PLoS One 2013; 8:e83461. [PMID: 24391770 PMCID: PMC3877065 DOI: 10.1371/journal.pone.0083461] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/04/2013] [Indexed: 01/21/2023] Open
Abstract
The specific targeting of protein to organelles is achieved by targeting signals being recognised by their cognate receptors. Cytosolic chaperones, bound to precursor proteins, are recognized by specific receptors of the import machinery enabling transport into the specific organelle. The aim of this study was to gain greater insight into the mode of recognition of the C-termini of Hsp70 and Hsp90 chaperones by the Tetratricopeptide Repeat (TPR) domain of the chloroplast import receptor Toc64 from Arabidopsis thaliana (At). The monomeric TPR domain binds with 1∶1 stoichiometry in similar micromolar affinity to both Hsp70 and Hsp90 as determined by isothermal titration calorimetry (ITC). Mutations of the terminal EEVD motif caused a profound decrease in affinity. Additionally, this study considered the contributions of residues upstream as alanine scanning experiments of these residues showed reduced binding affinity. Molecular dynamics simulations of the TPR domain helices upon peptide binding predicted that two helices within the TPR domain move backwards, exposing the cradle surface for interaction with the peptide. Our findings from ITC and molecular dynamics studies suggest that AtToc64_TPR does not discriminate between C-termini peptides of Hsp70 and Hsp90.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Abdussalam Adina-Zada
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
- Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
154
|
Ferrández-Ayela A, Micol-Ponce R, Sánchez-García AB, Alonso-Peral MM, Micol JL, Ponce MR. Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects. PLoS One 2013; 8:e80697. [PMID: 24244708 PMCID: PMC3828409 DOI: 10.1371/journal.pone.0080697] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022] Open
Abstract
N-α-terminal acetylation is one of the most common, but least understood modifications of eukaryotic proteins. Although a high degree of conservation exists between the N-α-terminal acetylomes of plants and animals, very little information is available on this modification in plants. In yeast and humans, N-α-acetyltransferase complexes include a single catalytic subunit and one or two auxiliary subunits. Here, we report the positional cloning of TRANSCURVATA2 (TCU2), which encodes the auxiliary subunit of the NatB N-α-acetyltransferase complex in Arabidopsis. The phenotypes of loss-of-function tcu2 alleles indicate that NatB complex activity is required for flowering time regulation and for leaf, inflorescence, flower, fruit and embryonic development. In double mutants, tcu2 alleles synergistically interact with alleles of ARGONAUTE10, which encodes a component of the microRNA machinery. In summary, NatB-mediated N-α-terminal acetylation of proteins is pleiotropically required for Arabidopsis development and seems to be functionally related to the microRNA pathway.
Collapse
Affiliation(s)
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| |
Collapse
|
155
|
Urosev D, Ferrer-Navarro M, Pastorello I, Cartocci E, Costenaro L, Zhulenkovs D, Maréchal JD, Leonchiks A, Reverter D, Serino L, Soriani M, Daura X. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold. BMC STRUCTURAL BIOLOGY 2013; 13:19. [PMID: 24099525 PMCID: PMC3851747 DOI: 10.1186/1472-6807-13-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/03/2013] [Indexed: 01/06/2023]
Abstract
Background Increasing rates of antimicrobial resistance among uropathogens led, among other efforts, to the application of subtractive reverse vaccinology for the identification of antigens present in extraintestinal pathogenic E. coli (ExPEC) strains but absent or variable in non-pathogenic strains, in a quest for a broadly protective Escherichia coli vaccine. The protein coded by locus c5321 from CFT073 E. coli was identified as one of nine potential vaccine candidates against ExPEC and was able to confer protection with an efficacy of 33% in a mouse model of sepsis. c5321 (known also as EsiB) lacks functional annotation and structurally belongs to the Sel1-like repeat (SLR) family. Herein, as part of the general characterization of this potential antigen, we have focused on its structural properties. Results We report the 1.74 Å-resolution crystal structure of c5321 from CFT073 E. coli determined by Se-Met SAD phasing. The structure is composed of 11 SLR units in a topological organisation that highly resembles that found in HcpC from Helicobacter pylori, with the main difference residing in how the super-helical fold is stabilised. The stabilising effect of disulfide bridges in HcpC is replaced in c5321 by a strengthening of the inter-repeat hydrophobic core. A metal-ion binding site, uncharacteristic of SLR proteins, is detected between SLR units 3 and 4 in the region of the inter-repeat hydrophobic core. Crystal contacts are observed between the C-terminal tail of one molecule and the C-terminal amphipathic groove of a neighbouring one, resembling interactions between ligand and proteins containing tetratricopeptide-like repeats. Conclusions The structure of antigen c5321 presents a mode of stabilization of the SLR fold different from that observed in close homologs of known structure. The location of the metal-ion binding site and the observed crystal contacts suggest a potential role in regulation of conformational flexibility and interaction with yet unidentified target proteins, respectively. These findings open new perspectives in both antigen design and for the identification of a functional role for this protective antigen.
Collapse
Affiliation(s)
- Dunja Urosev
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Yamaguchi F, Yamamura S, Shimamoto S, Tokumitsu H, Tokuda M, Kobayashi R. Suramin is a novel activator of PP5 and biphasically modulates S100-activated PP5 activity. Appl Biochem Biotechnol 2013; 172:237-47. [PMID: 24068474 DOI: 10.1007/s12010-013-0522-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/15/2013] [Indexed: 11/24/2022]
Abstract
Suramin is an activator of ryanodine receptors and competitively binds to the calmodulin-binding site. In addition, S100A1 and calmodulin compete for the same binding site on ryanodine receptors. We therefore studied the effects of suramin on protein phosphatase 5 (PP5) and S100-activated PP5. In the absence of S100 proteins, suramin bound to the tetratricopeptide repeat (TPR) domain of PP5 and activated the enzyme in a dose-dependent manner. In the presence of S100A2/Ca(2+), lower concentrations of suramin dose-dependently inhibited PP5 activity as an S100 antagonist, whereas higher concentrations of suramin reactivated PP5. Although the C-terminal fragment of heat shock protein 90 (HspC90) also weakly activated PP5, the binding site of suramin and HspC90 may be different, and addition of suramin showed no clear effect on the phosphatase activity of PP5. Similar biphasic effects of suramin were observed with S100A1-, S100B- or S100P-activated PP5. However, the inhibitory effects of lower concentrations of suramin on S100A6-activated PP5 are weak and high concentrations of suramin further activated PP5. SPR and the cross-linking study showed inhibition of the interaction between S100 protein and PP5 by suramin. Our results revealed that suramin is a novel PP5 activator and modulates S100-activated PP5 activity by competitively binding to the TPR domain.
Collapse
Affiliation(s)
- Fuminori Yamaguchi
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
157
|
Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:E3612-21. [PMID: 24003122 DOI: 10.1073/pnas.1312012110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gram-negative bacteria are equipped with quality-control systems for the outer membrane (OM) that sense and cope with defective biogenesis of its components. Accumulation of misfolded outer membrane proteins (OMPs) in Escherichia coli leads to activation of σ(E), an essential alternative σ factor that up-regulates transcription of multiple genes required to preserve OM structure and function. Disruption of bepA (formerly yfgC), a σ(E)-regulated gene encoding a putative periplasmic metalloprotease, sensitizes cells to multiple drugs, suggesting that it may be involved in maintaining OM integrity. However, the specific function of BepA remains unclear. Here, we show that BepA enhances biogenesis of LptD, an essential OMP involved in OM transport and assembly of lipopolysaccharide, by promoting rearrangement of intramolecular disulfide bonds of LptD. In addition, BepA possesses protease activity and is responsible for the degradation of incorrectly folded LptD. In the absence of periplasmic chaperone SurA, BepA also promotes degradation of BamA, the central OMP subunit of the β-barrel assembly machinery (BAM) complex. Interestingly, defective oxidative folding of LptD caused by bepA disruption was partially suppressed by expression of protease-active site mutants of BepA, suggesting that BepA functions independently of its protease activity. We also show that BepA has genetic and physical interaction with components of the BAM complex. These findings raised the possibility that BepA maintains the integrity of OM both by promoting assembly of OMPs and by proteolytically eliminating OMPs when their correct assembly was compromised.
Collapse
|
158
|
Smith MC, Scaglione KM, Assimon VA, Patury S, Thompson AD, Dickey CA, Southworth DR, Paulson HL, Gestwicki JE, Zuiderweg ERP. The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 2013; 52:5354-64. [PMID: 23865999 DOI: 10.1021/bi4009209] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The E3 ubiquitin ligase CHIP (C-terminus of Hsc70 Interacting Protein, a 70 kDa homodimer) binds to the molecular chaperone Hsc70 (a 70 kDa monomer), and this complex is important in both the ubiquitination of Hsc70 and the turnover of Hsc70-bound clients. Here we used NMR spectroscopy, biolayer interferometry, and fluorescence polarization to characterize the Hsc70-CHIP interaction. We found that CHIP binds tightly to two molecules of Hsc70 forming a 210 kDa complex, with a Kd of approximately 60 nM, and that the IEEVD motif at the C-terminus of Hsc70 (residues 642-646) is both necessary and sufficient for binding. Moreover, the same motif is required for CHIP-mediated ubiquitination of Hsc70 in vitro, highlighting its functional importance. Relaxation-based NMR experiments on the Hsc70-CHIP complex determined that the two partners move independently in solution, similar to "beads on a string". These results suggest that a dynamic C-terminal region of Hsc70 provides for flexibility between CHIP and the chaperone, allowing the ligase to "search" a large space and engage in productive interactions with a wide range of clients. In support of this suggestion, we find that deleting residues 623-641 of the C-terminal region, while retaining the IEEVD motif, caused a significant decrease in the efficiency of Hsc70 ubiquitination by CHIP.
Collapse
Affiliation(s)
- Matthew C Smith
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Tani J, Shimamoto S, Mori K, Kato N, Moriishi K, Matsuura Y, Tokumitsu H, Tsuchiya M, Fujimoto T, Kato K, Miyoshi H, Masaki T, Kobayashi R. Ca(2+) /S100 proteins regulate HCV virus NS5A-FKBP8/FKBP38 interaction and HCV virus RNA replication. Liver Int 2013; 33:1008-18. [PMID: 23522085 DOI: 10.1111/liv.12151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIM FKBP8/FKBP38 is a unique FK506-binding protein with a C-terminal membrane anchor and localizes at the outer membranes of mitochondria and the endoplasmic reticulum. Similar to some immunophilins, such as FKBP51, FKBP52 and Cyclophilin 40, FKBP8/FKBP38 contain a putative Calmodulin-binding domain and a tetratricopeptide-repeat (TPR) domain for the binding of Hsp90. Both Hsp90 and the non-structural protein 5A (NS5A) of the hepatitis C virus (HCV) interact specifically with FKBP8/FKBP38 through its TPR domain, and the ternary complex formation plays a critical role in HCV RNA replication. The goal of this study is to evaluate that the host factor inhibits the ternary complex formation and the replication of HCV in vitro and in vivo. METHODS S100 proteins, FKBP38, FKBP8, HCV NS5A, Hsp90, and calmodulin were expressed in E.coli and purified. In vitro binding studies were performed by GST pull-down, S-tag pull-down and surface plasmon resonance analyses. The effect of S100 proteins on HCV replication was analysed by Western blotting using an HCV NS3 antibody following transfection of S100 proteins into the HCV replicon harbouring cell line (sO cells). RESULTS In vitro binding studies showed that S100A1, S100A2, S100A6, S100B and S100P directly interacted with FKBP8/FKBP38 in a Ca(2+) -dependent manner and inhibited the FKBP8/FKBP38-Hsp90 and FKBP8/FKBP38-NS5A interactions. Furthermore, overexpression of S100A1, S100A2 and S100A6 in sO cells resulted in the efficient inhibition of HCV replication. CONCLUSION The association of the S100 proteins with FKBP8/FKBP38 provides a novel Ca(2+) -dependent regulatory role in HCV replication through the NS5A-host protein interaction.
Collapse
Affiliation(s)
- Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
161
|
Di Silvio E, Di Matteo A, Malatesta F, Travaglini-Allocatelli C. Recognition and binding of apocytochrome c to P. aeruginosa CcmI, a component of cytochrome c maturation machinery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1554-61. [PMID: 23648553 DOI: 10.1016/j.bbapap.2013.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/13/2023]
Abstract
The biogenesis of c-type cytochromes (Cytc) is a process that in Gram-negative bacteria demands the coordinated action of different periplasmic proteins (CcmA-I), whose specific roles are still being investigated. Activities of Ccm proteins span from the chaperoning of heme b in the periplasm to the specific reduction of oxidized apocytochrome (apoCyt) cysteine residues and to chaperoning and recognition of the unfolded apoCyt before covalent attachment of the heme to the cysteine thiols can occur. We present here the functional characterization of the periplasmic domain of CcmI from the pathogen Pseudomonas aeruginosa (Pa-CcmI*). Pa-CcmI* is composed of a TPR domain and a peculiar C-terminal domain. Pa-CcmI* fulfills both the ability to recognize and bind to P. aeruginosa apo-cytochrome c551 (Pa-apoCyt) and a chaperoning activity towards unfolded proteins, as it prevents citrate synthase aggregation in a concentration-dependent manner. Equilibrium and kinetic experiments with Pa-CcmI*, or its isolated domains, with peptides mimicking portions of Pa-apoCyt sequence allow us to quantify the molecular details of the interaction between Pa-apoCyt and Pa-CcmI*. Binding experiments show that the interaction occurs at the level of the TPR domain and that the recognition is mediated mainly by the C-terminal sequence of Pa-apoCyt. The affinity of Pa-CcmI* to full-length Pa-apoCyt or to its C-terminal sequence is in the range expected for a component of a multi-protein complex, whose task is to receive the apoCyt and to deliver it to other components of the apoCyt:heme b ligation protein machinery.
Collapse
Affiliation(s)
- Eva Di Silvio
- Department of Biochemical Sciences, Università di Roma La Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
162
|
Koo J, Tang T, Harvey H, Tammam S, Sampaleanu L, Burrows LL, Howell PL. Functional Mapping of PilF and PilQ in the Pseudomonas aeruginosa Type IV Pilus System. Biochemistry 2013; 52:2914-23. [DOI: 10.1021/bi3015345] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jason Koo
- Program in Molecular Structure and
Function, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tim Tang
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hanjeong Harvey
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Stephanie Tammam
- Program in Molecular Structure and
Function, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Liliana Sampaleanu
- Program in Molecular Structure and
Function, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Lori L. Burrows
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and
Function, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
163
|
Ngwa CJ, Scheuermayer M, Mair GR, Kern S, Brügl T, Wirth CC, Aminake MN, Wiesner J, Fischer R, Vilcinskas A, Pradel G. Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito. BMC Genomics 2013; 14:256. [PMID: 23586929 PMCID: PMC3640944 DOI: 10.1186/1471-2164-14-256] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/01/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. RESULTS To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence.For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. CONCLUSIONS The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector.
Collapse
Affiliation(s)
- Che Julius Ngwa
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Lynch JT, Somerville TDD, Spencer GJ, Huang X, Somervaille TCP. TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells. Cell Death Dis 2013; 4:e573. [PMID: 23559008 PMCID: PMC3641330 DOI: 10.1038/cddis.2013.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis.
Collapse
Affiliation(s)
- J T Lynch
- Cancer Research UK Leukaemia Biology Laboratory, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
165
|
Abstract
The HSP70 family of heat shock proteins consists of molecular chaperones of approximately 70kDa in size that serve critical roles in protein homeostasis. These adenosine triphosphatases unfold misfolded or denatured proteins and can keep these proteins in an unfolded, folding-competent state. They also protect nascently translating proteins, promote the cellular or organellar transport of proteins, reduce proteotoxic protein aggregates and serve general housekeeping roles in maintaining protein homeostasis. The HSP70 family is the most conserved in evolution, and all eukaryotes contain multiple members. Some members of this family serve specific organellar- or tissue-specific functions; however, in many cases, these members can function redundantly. Overall, the HSP70 family of proteins can be thought of as a potent buffering system for cellular stress, either from extrinsic (physiological, viral and environmental) or intrinsic (replicative or oncogenic) stimuli. As such, this family serves a critical survival function in the cell. Not surprisingly, cancer cells rely heavily on this buffering system for survival. The overwhelming majority of human tumors overexpress HSP70 family members, and expression of these proteins is typically a marker for poor prognosis. With the proof of principle that inhibitors of the HSP90 chaperone have emerged as important anticancer agents, intense focus has now been placed on the potential for HSP70 inhibitors to assume a role as a significant chemotherapeutic avenue. In this review, the history, regulation, mechanism of action and role in cancer of the HSP70 family are reviewed. Additionally, the promise of pharmacologically targeting this protein for cancer therapy is addressed.
Collapse
Affiliation(s)
- Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
166
|
Kingtong S, Kellner K, Bernay B, Goux D, Sourdaine P, Berthelin CH. Proteomic identification of protein associated to mature spermatozoa in the Pacific oyster Crassostrea gigas. J Proteomics 2013; 82:81-91. [DOI: 10.1016/j.jprot.2013.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/05/2013] [Accepted: 02/16/2013] [Indexed: 01/03/2023]
|
167
|
Leznicki P, Roebuck QP, Wunderley L, Clancy A, Krysztofinska EM, Isaacson RL, Warwicker J, Schwappach B, High S. The association of BAG6 with SGTA and tail-anchored proteins. PLoS One 2013; 8:e59590. [PMID: 23533635 PMCID: PMC3606182 DOI: 10.1371/journal.pone.0059590] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Background The BAG6 protein is a subunit of a heterotrimeric complex that binds a range of membrane and secretory protein precursors localized to the cytosol, enforcing quality control and influencing their subsequent fate. Methodology and Principal Findings BAG6 has an N-terminal ubiquitin-like domain, and a C-terminal Bcl-2-associated athanogene domain, separated by a large central proline-rich region. We have used in vitro binding approaches to identify regions of BAG6 important for its interactions with: i) the small-glutamine rich tetratricopeptide repeat-containing protein alpha (SGTA) and ii) two model tail-anchored membrane proteins as a paradigm for its hydrophobic substrates. We show that the BAG6-UBL is essential for binding to SGTA, and find that the UBL of a second subunit of the BAG6-complex, ubiquitin-like protein 4A (UBL4A), competes for SGTA binding. Our data show that this binding is selective, and suggest that SGTA can bind either BAG6, or UBL4A, but not both at the same time. We adapted our in vitro binding assay to study the association of BAG6 with an immobilized tail-anchored protein, Sec61β, and find both the UBL and BAG domains are dispensable for binding this substrate. This conclusion was further supported using a heterologous subcellular localization assay in yeast, where the BAG6-dependent nuclear relocalization of a second tail-anchored protein, GFP-Sed5, also required neither the UBL, nor the BAG domain of BAG6. Significance On the basis of these findings, we propose a working model where the large central region of the BAG6 protein provides a binding site for a diverse group of substrates, many of which expose a hydrophobic stretch of polypeptide. This arrangement would enable the BAG6 complex to bring together its substrates with potential effectors including those recruited via its N-terminal UBL. Such effectors may include SGTA, and the resulting assemblies influence the subsequent fate of the hydrophobic BAG6 substrates.
Collapse
Affiliation(s)
- Pawel Leznicki
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Quentin P. Roebuck
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lydia Wunderley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Anne Clancy
- Department of Biochemistry I, University of Göttingen, Göttingen, Germany
| | | | - Rivka L. Isaacson
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Jim Warwicker
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Blanche Schwappach
- Department of Biochemistry I, University of Göttingen, Göttingen, Germany
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
168
|
Identification of protein complex associated with LYT1 of Trypanosoma cruzi. BIOMED RESEARCH INTERNATIONAL 2013; 2013:493525. [PMID: 23586042 PMCID: PMC3613072 DOI: 10.1155/2013/493525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 01/19/2023]
Abstract
To carry out the intracellular phase of its life cycle, Trypanosoma cruzi must infect a host cell. Although a few molecules have been reported to participate in this process, one known protein is LYT1, which promotes lysis under acidic conditions and is involved in parasite infection and development. Alternative transcripts from a single LYT1 gene generate two proteins with differential functions and compartmentalization. Single-gene products targeted to more than one location can interact with disparate proteins that might affect their function and targeting properties. The aim of this work was to study the LYT1 interaction map using coimmunoprecipitation assays with transgenic parasites expressing LYT1 products fused to GFP. We detected several proteins of sizes from 8 to 150 kDa that bind to LYT1 with different binding strengths. By MS-MS analysis, we identified proteins involved in parasite infectivity (trans-sialidase), development (kDSPs and histones H2A and H2B), and motility and protein traffic (dynein and α - and β -tubulin), as well as protein-protein interactions (TPR-protein and kDSPs) and several hypothetical proteins. Our approach led us to identify the LYT1 interaction profile, thereby providing insights into the molecular mechanisms that contribute to parasite stage development and pathogenesis of T. cruzi infection.
Collapse
|
169
|
Shimamoto S, Kubota Y, Yamaguchi F, Tokumitsu H, Kobayashi R. Ca2+/S100 proteins act as upstream regulators of the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein). J Biol Chem 2013; 288:7158-68. [PMID: 23344957 DOI: 10.1074/jbc.m112.436758] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U-box E3 ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein) binds Hsp90 and/or Hsp70 via its tetratricopeptide repeat (TPR), facilitating ubiquitination of the chaperone-bound client proteins. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. We previously reported that Ca(2+)/S100 proteins directly associate with the TPR proteins, such as Hsp70/Hsp90-organizing protein (Hop), kinesin light chain, Tom70, FKBP52, CyP40, and protein phosphatase 5 (PP5), leading to the dissociation of the interactions of the TPR proteins with their target proteins. Therefore, we have hypothesized that Ca(2+)/S100 proteins can interact with CHIP and regulate its function. GST pulldown assays indicated that Ca(2+)/S100A2 and S100P bind to the TPR domain and lead to interference with the interactions of CHIP with Hsp70, Hsp90, HSF1, and Smad1. In vitro ubiquitination assays indicated that Ca(2+)/S100A2 and S100P are efficient and specific inhibitors of CHIP-mediated ubiquitination of Hsp70, Hsp90, HSF1, and Smad1. Overexpression of S100A2 and S100P suppressed CHIP-chaperone complex-dependent mutant p53 ubiquitination and degradation in Hep3B cells. The association of the S100 proteins with CHIP provides a Ca(2+)-dependent regulatory mechanism for the ubiquitination and degradation of intracellular proteins by the CHIP-proteasome pathway.
Collapse
Affiliation(s)
- Seiko Shimamoto
- Department of Signal Transduction Sciences, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | | | | | | | | |
Collapse
|
170
|
Assimon VA, Gillies AT, Rauch JN, Gestwicki JE. Hsp70 protein complexes as drug targets. Curr Pharm Des 2013; 19:404-17. [PMID: 22920901 PMCID: PMC3593251 DOI: 10.2174/138161213804143699] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70's interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, including roles in pro-folding, pro-degradation and pro-trafficking pathways. Thus, a promising strategy may be to block protein- protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to these goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology.
Collapse
Affiliation(s)
- Victoria A Assimon
- Department of Pathology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109-2216, USA
| | | | | | | |
Collapse
|
171
|
Raudsepp T, McCue ME, Das PJ, Dobson L, Vishnoi M, Fritz KL, Schaefer R, Rendahl AK, Derr JN, Love CC, Varner DD, Chowdhary BP. Genome-wide association study implicates testis-sperm specific FKBP6 as a susceptibility locus for impaired acrosome reaction in stallions. PLoS Genet 2012; 8:e1003139. [PMID: 23284302 PMCID: PMC3527208 DOI: 10.1371/journal.pgen.1003139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/18/2012] [Indexed: 01/07/2023] Open
Abstract
Impaired acrosomal reaction (IAR) of sperm causes male subfertility in humans and animals. Despite compelling evidence about the genetic control over acrosome biogenesis and function, the genomics of IAR is as yet poorly understood, providing no molecular tools for diagnostics. Here we conducted Equine SNP50 Beadchip genotyping and GWAS using 7 IAR–affected and 37 control Thoroughbred stallions. A significant (P<6.75E-08) genotype–phenotype association was found in horse chromosome 13 in FK506 binding protein 6 (FKBP6). The gene belongs to the immunophilins FKBP family known to be involved in meiosis, calcium homeostasis, clathrin-coated vesicles, and membrane fusions. Direct sequencing of FKBP6 exons in cases and controls identified SNPs g.11040315G>A and g.11040379C>A (p.166H>N) in exon 4 that were significantly associated with the IAR phenotype both in the GWAS cohort (n = 44) and in a large multi-breed cohort of 265 horses. All IAR stallions were homozygous for the A-alleles, while this genotype was found only in 2% of controls. The equine FKBP6 was exclusively expressed in testis and sperm and had 5 different transcripts, of which 4 were novel. The expression of this gene in AC/AG heterozygous controls was monoallelic, and we observed a tendency for FKBP6 up-regulation in IAR stallions compared to controls. Because exon 4 SNPs had no effect on the protein structure, it is likely that FKBP6 relates to the IAR phenotype via regulatory or modifying functions. In conclusion, FKBP6 was considered a susceptibility gene of incomplete penetrance for IAR in stallions and a candidate gene for male subfertility in mammals. FKBP6 genotyping is recommended for the detection of IAR–susceptible individuals among potential breeding stallions. Successful use of sperm as a source of DNA and RNA propagates non-invasive sample procurement for fertility genomics in animals and humans. Impaired acrosomal reaction (IAR) of sperm causes male subfertility in humans and animals, and currently the molecular causes of the condition are not known. Here we report the mapping, identification, and functional analysis of a susceptibility locus for IAR in stallions. The candidate region was mapped to horse chromosome 13 by SNP genotyping and GWAS of 7 IAR affected and 44 control Thoroughbred stallions. Re-sequencing and case-control analysis of functionally relevant candidate genes in the region identified FKBP6 gene as a significantly associated locus. The association was confirmed by genotyping 265 male horses of multiple breeds. FKBP6 belongs to the immunophilins FKBP family known to be involved in meiosis, calcium homeostasis, clathrin-coated vesicles, and membrane fusions. We showed that the equine FKBP6 is exclusively and monoallelically expressed in testis and sperm and has 5 different transcripts, of which 4 were novel. Overall, FKBP6 was considered a susceptibility gene of incomplete penetrance for IAR in stallions and a candidate gene for male subfertility in other mammals. Successful use of sperm as a source of DNA and RNA propagates non-invasive sample procurement for fertility genomics in animals and humans.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa. BMC Microbiol 2012; 12:290. [PMID: 23234440 PMCID: PMC3557215 DOI: 10.1186/1471-2180-12-290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background Leptospires lack many of the homologs for oxidative defense present in other bacteria, but do encode homologs of the Bacteriodes aerotolerance (Bat) proteins, which have been proposed to fulfill this function. Bat homologs have been identified in all families of the phylum Spirochaetes, yet a specific function for these proteins has not been experimentally demonstrated. Results We investigated the contribution of the Bat proteins in the model organism Leptospira biflexa for their potential contributions to growth rate, morphology and protection against oxidative challenges. A genetically engineered mutant strain in which all bat ORFs were deleted did not exhibit altered growth rate or morphology, relative to the wild-type strain. Nor could we demonstrate a protective role for the Bat proteins in coping with various oxidative stresses. Further, pre-exposing L. biflexa to sublethal levels of reactive oxygen species did not appear to induce a general oxidative stress response, in contrast to what has been shown in other bacterial species. Differential proteomic analysis of the wild-type and mutant strains detected changes in the abundance of a single protein only – HtpG, which is encoded by the gene immediately downstream of the bat loci. Conclusion The data presented here do not support a protective role for the Leptospira Bat proteins in directly coping with oxidative stress as previously proposed. L. biflexa is relatively sensitive to reactive oxygen species such as superoxide and H2O2, suggesting that this spirochete lacks a strong, protective defense against oxidative damage despite being a strict aerobe.
Collapse
|
173
|
Glycan recognition by the Bacteroidetes Sus-like systems. Curr Opin Struct Biol 2012; 22:563-9. [DOI: 10.1016/j.sbi.2012.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/29/2012] [Accepted: 06/27/2012] [Indexed: 12/29/2022]
|
174
|
Muñoz-Martínez F, García-Fontana C, Rico-Jiménez M, Alfonso C, Krell T. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions. PLoS One 2012; 7:e45810. [PMID: 23029255 PMCID: PMC3447774 DOI: 10.1371/journal.pone.0045810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022] Open
Abstract
Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be monomeric, which rules out a role of the TPR domain in self-association.
Collapse
Affiliation(s)
- Francisco Muñoz-Martínez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Cristina García-Fontana
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- * E-mail:
| |
Collapse
|
175
|
Shrestha S, Cao S, Lin VCL. The local microenvironment instigates the regulation of mammary tetratricopeptide repeat domain 9A during lactation and involution through local regulation of the activity of estrogen receptor α. Biochem Biophys Res Commun 2012; 426:65-70. [PMID: 22917536 DOI: 10.1016/j.bbrc.2012.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023]
Abstract
Tetratricopeptide repeat domain 9A (TTC9A) belongs to a family of TTC9 proteins. Its induction by progesterone in breast cancer cells was associated with marked growth inhibition and induction of focal adhesion. TTC9A interacts specifically with actin-binding protein tropomyosin Tm5NM-1 which stabilizes actin filament and focal adhesion. However, the function of TTC9A is still obscure. This study exploited mice model to characterize the regulation of TTC9A gene expression during mammary development and explored possible mechanisms of TTC9A gene regulation. It was demonstrated that mammary TTC9A expression is distinctively down-regulated in gland undergoing functional differentiation (lactation) and up-regulated during involution. Furthermore, TTC9A expression during lactation and involution is regulated by the factors in the local microenvironment. This is illustrated with teat sealing model in which the teat sealed glands (undergoing involution) expressed significantly higher levels of TTC9A protein and mRNA than the contralateral non-sealed lactating glands. Importantly, this local induction of TTC9A expression upon involution coincided with the re-activation of estrogen receptor α (ERα). Together with the observation that TTC9A is a direct ERα target gene, we propose that the fall and rise of TTC9A levels during lactation and involution is caused by the changes of ERα activity that is in turn regulated by the factors in the microenvironment.
Collapse
Affiliation(s)
- Smeeta Shrestha
- School of Biological Sciences, Nanyang Technological University, Republic of Singapore
| | | | | |
Collapse
|
176
|
Regulation of rat tetratricopeptide repeat domain 29 gene expression by follicle-stimulating hormone. Biosci Biotechnol Biochem 2012; 76:1540-3. [PMID: 22878202 DOI: 10.1271/bbb.120293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We screened the gene that encodes tetratricopeptide repeat domain 29 (Ttc29) in the maturing rat testis. Gene expression was determined by Northern blotting of 7-week-old rat testes, and a strong signal was detected close to the 18S rRNA band in addition to two weak high-molecular-weight signals. In situ hybridization revealed that Ttc29 was expressed primarily in the spermatocytes. We evaluated the effect of gonadotropin on Ttc29 expression using hypophysectomized rats. The pituitary was removed from 3-week-old rats, gonadotropin was injected at 5 weeks, and Ttc29 expression was determined at 7 weeks. Although testicular development and hyperplasia of interstitial cells were observed following chorionic gonadotropin treatment after hypophysectomy, Ttc29 expression was upregulated by treatment with follicle-stimulating hormone. Ttc29 encodes axonemal dynein, a component of sperm flagella. Taken together, these data indicate that axonemal dynein expression starts in the spermatocytes and is regulated by follicle-stimulating hormone.
Collapse
|
177
|
Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA (NEW YORK, N.Y.) 2012; 18:1446-57. [PMID: 22753781 PMCID: PMC3404366 DOI: 10.1261/rna.034405.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 05/03/2023]
Abstract
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.
Collapse
Affiliation(s)
- Jonathan B. Preall
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Czech
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paloma M. Guzzardo
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
178
|
Lees JPB, Manlandro CM, Picton LK, Tan AZE, Casares S, Flanagan JM, Fleming KG, Hill RB. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission. J Mol Biol 2012; 423:143-58. [PMID: 22789569 DOI: 10.1016/j.jmb.2012.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/21/2012] [Accepted: 06/24/2012] [Indexed: 01/06/2023]
Abstract
Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide repeat (TPR)-like protein whose role in assembly of the fission machinery remains obscure. Two nonfunctional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild-type Fis1. A72P also disrupts dimerization of nonfunctional variants, indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is nonfunctional in fission, consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR-containing proteins may reversibly self-associate.
Collapse
Affiliation(s)
- Jonathan P B Lees
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Hu Q, Ding C, Tu J, Wang X, Han X, Duan Y, Yu S. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet Microbiol 2012; 157:428-38. [PMID: 22317978 DOI: 10.1016/j.vetmic.2012.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | | | | | | | | | | | | |
Collapse
|
180
|
Functional analysis of the single Est1/Ebs1 homologue in Kluyveromyces lactis reveals roles in both telomere maintenance and rapamycin resistance. EUKARYOTIC CELL 2012; 11:932-42. [PMID: 22544908 DOI: 10.1128/ec.05319-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Est1 and Ebs1 in Saccharomyces cerevisiae are paralogous proteins that arose through whole-genome duplication and that serve distinct functions in telomere maintenance and translational regulation. Here we present our functional analysis of the sole Est1/Ebs1 homologue in the related budding yeast Kluyveromyces lactis (named KlEst1). We show that similar to other Est1s, KlEst1 is required for normal telomere maintenance in vivo and full telomerase primer extension activity in vitro. KlEst1 also associates with telomerase RNA (Ter1) and an active telomerase complex in cell extracts. Both the telomere maintenance and the Ter1 association functions of KlEst1 require its N-terminal domain but not its C terminus. Analysis of clusters of point mutations revealed residues in both the N-terminal TPR subdomain and the downstream helical subdomain (DSH) that are important for telomere maintenance and Ter1 association. A UV cross-linking assay was used to establish a direct physical interaction between KlEst1 and a putative stem-loop in Ter1, which also requires both the TPR and DSH subdomains. Moreover, similar to S. cerevisiae Ebs1 (ScEbs1) (but not ScEst1), KlEst1 confers rapamycin sensitivity and may be involved in nonsense-mediated decay. Interestingly, unlike telomere regulation, this apparently separate function of KlEst1 requires its C-terminal domain. Our findings provide insights on the mechanisms and evolution of Est1/Ebs1 homologues in budding yeast and present an attractive model system for analyzing members of this multifunctional protein family.
Collapse
|
181
|
Lütticke C, Hauske P, Lewandrowski U, Sickmann A, Kaiser M, Ehrmann M. E. coli LoiP (YggG), a metalloprotease hydrolyzing Phe-Phe bonds. MOLECULAR BIOSYSTEMS 2012; 8:1775-82. [PMID: 22491786 DOI: 10.1039/c2mb05506f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
YggG is a conserved lipoprotein localized to the outer membrane of Gram negative bacteria. Even though the expressed open reading frame has been identified previously, the Escherichia coli protein remained uncharacterized. We report that YggG of E. coli is a metalloprotease that cleaves its targets preferentially between Phe-Phe residues. Since the yggG promoter is upregulated when bacteria are subjected to media of low osmolarity, YggG was named LoiP (low osmolarity induced protease). LoiP has an intramolecular disulfide (S-S) bond that is formed even in the absence of the periplasmic oxido-reductase DsbA and proper membrane localization of LoiP can depend on another putative metalloprotease, YfgC.
Collapse
Affiliation(s)
- Christiane Lütticke
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
182
|
Schönegge AM, Villa E, Förster F, Hegerl R, Peters J, Baumeister W, Rockel B. The structure of human tripeptidyl peptidase II as determined by a hybrid approach. Structure 2012; 20:593-603. [PMID: 22483107 DOI: 10.1016/j.str.2012.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
Abstract
Tripeptidyl-peptidase II (TPPII) is a high molecular mass (∼5 MDa) serine protease, which is thought to act downstream of the 26S proteasome, cleaving peptides released by the latter. Here, the structure of human TPPII (HsTPPII) has been determined to subnanometer resolution by cryoelectron microscopy and single-particle analysis. The complex is built from two strands forming a quasihelical structure harboring a complex system of inner cavities. HsTPPII particles exhibit some polymorphism resulting in complexes consisting of nine or of eight dimers per strand. To obtain deeper insights into the architecture and function of HsTPPII, we have created a pseudoatomic structure of the HsTPPII spindle using a comparative model of HsTPPII dimers and molecular dynamics flexible fitting. Analyses of the resulting hybrid structure of the HsTPPII holocomplex provide new insights into the mechanism of maturation and activation.
Collapse
Affiliation(s)
- Anne-Marie Schönegge
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
183
|
RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. Proc Natl Acad Sci U S A 2012; 109:5651-6. [PMID: 22451905 DOI: 10.1073/pnas.1200318109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The half-a-tetratricopeptide repeat (HAT) motif is a helical repeat motif found in proteins that influence various aspects of RNA metabolism, including rRNA biogenesis, RNA splicing, and polyadenylation. This functional association with RNA suggested that HAT repeat tracts might bind RNA. However, RNA binding activity has not been reported for any HAT repeat tract, and recent literature has emphasized a protein binding role. In this study, we show that a chloroplast-localized HAT protein, HCF107, is a sequence-specific RNA binding protein. HCF107 consists of 11 tandem HAT repeats and short flanking regions that are also predicted to form helical hairpins. The minimal HCF107 binding site spans ∼11 nt, consistent with the possibility that HAT repeats bind RNA through a modular one repeat-1 nt mechanism. Binding of HCF107 to its native RNA ligand in the psbH 5' UTR remodels local RNA structure and protects the adjacent RNA from exonucleases in vitro. These activities can account for the RNA stabilizing, RNA processing, and translational activation functions attributed to HCF107 based on genetic data. We suggest that analogous activities contribute to the functions of HAT domains found in ribonucleoprotein complexes in the nuclear-cytosolic compartment.
Collapse
|
184
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
185
|
Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of gram-negative bacteria. J Mol Biol 2011; 409:348-57. [PMID: 21463635 PMCID: PMC3098899 DOI: 10.1016/j.jmb.2011.03.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/28/2023]
Abstract
Folding and insertion of integral β-barrel proteins in the outer membrane (OM) is an essential process for Gram-negative bacteria that requires the β-barrel assembly machinery (BAM). Efficient OM protein (OMP) folding and insertion appears to require a consensus C-terminal signal in OMPs characterized by terminal F or W residues. The BAM complex is embedded in the OM and, in Escherichia coli, consists of the β-barrel BamA and four lipoproteins BamBCDE. BamA and BamD are broadly distributed across all species of Gram-negative bacteria, whereas the other components are present in only a subset of species. BamA and BamD are also essential for viability, suggesting that these two proteins constitute the functional core of the bacterial BAM complex. Here, we present the crystal structure of BamD from the thermophilic bacteria Rhodothermus marinus refined to 2.15 Å resolution. The protein contains five tetratricopeptide repeats (TPRs) organized into two offset tandems, each capped by a terminal helix. The N-terminal domain contains three TPRs and displays remarkable structural similarity with proteins that recognize targeting signals in extended conformations. The C-terminal domain harbors the remaining two TPRs and previously described mutations that impair binding to other BAM components map to this domain. Therefore, the structure suggests a model where the C-terminal domain provides a scaffold for interaction with BAM components, while the N-terminal domain participates in interaction with the substrates, either recognizing the C-terminal consensus sequence or binding unfolded OMP intermediates.
Collapse
Affiliation(s)
- Cristina M. Sandoval
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Susan L. Baker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Katarina Jansen
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Sandra I. Metzner
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Marcelo C. Sousa
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| |
Collapse
|