151
|
Kumari M, Swarupa P, Kesari KK, Kumar A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010012. [PMID: 36675961 PMCID: PMC9860928 DOI: 10.3390/life13010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Modern agriculture systems are copiously dependent on agrochemicals such as chemical fertilizers and pesticides intended to increase crop production and yield. The indiscriminate use of these chemicals not only affects the growth of plants due to the accumulation of toxic compounds, but also degrades the quality and life-supporting properties of soil. There is a dire need to develop some green approach that can resolve these issues and restore soil fertility and sustainability. The use of plant biostimulants has emerged as an environmentally friendly and acceptable method to increase crop productivity. Biostimulants contain biological substances which may be capable of increasing or stimulating plant growth in an eco-friendly manner. They are mostly biofertilizers that provide nutrients and protect plants from environmental stresses such as drought and salinity. In contrast to the protection of crop products, biostimulants not only act on the plant's vigor but also do not respond to direct actions against pests or diseases. Plant biostimulants improve nutrient mobilization and uptake, tolerance to stress, and thus crop quality when applied to plants directly or in the rhizospheric region. They foster plant growth and development by positively affecting the crop life-cycle starting from seed germination to plant maturity. Legalized application of biostimulants causes no hazardous effects on the environment and primarily provides nutrition to plants. It nurtures the growth of soil microorganisms, which leads to enhanced soil fertility and also improves plant metabolism. Additionally, it may positively influence the exogenous microbes and alter the equilibrium of the microfloral composition of the soil milieu. This review frequently cites the characterization of microbial plant biostimulants that belong to either a high-risk group or are closely related to human pathogens such as Pueudomonas, Klebsiella, Enterobacter, Acinetobacter, etc. These related pathogens cause ailments including septicemia, gastroenteritis, wound infections, inflammation in the respiratory system, meningitis, etc., of varied severity under different conditions of health status such as immunocompromized and comorbidity. Thus it may attract the related concern to review the risk status of biostimulants for their legalized applications in agriculture. This study mainly emphasizes microbial plant biostimulants and their safe application concerns.
Collapse
Affiliation(s)
- Menka Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
| | - Preeti Swarupa
- Department of Microbiology, Patna Women’s College, Patna 800001, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (K.K.K.); (A.K.)
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
- Correspondence: or (K.K.K.); (A.K.)
| |
Collapse
|
152
|
Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microorganisms are essential parts of soil and play an important role in mediating many processes and influencing plant health. Arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB), the most common of such microorganisms, can benefit plants by enhancing the nutrient-absorbing ability of roots through bio-inoculation, also called biofertilization. Different methods have been tested and proven to be effective in the enhancement of soil nutrient availability. However, the effects of increased application of biological methods with minimal chemical fertilizers are still inconsistent. In this 2-year of fixed-point greenhouse test, we aimed to evaluate the impact of AMF (Rhizophagus irregularis) and/or NFB (Azotobacter) on growth, quality, and yield of eggplants under different N levels. Data showed that biofertilizer application with reduced chemical fertilizer had the highest impact on eggplant performance and yield. Indeed, low chemical fertilizers combined with adequate amounts of biofertilizers produced a higher plant height, length and width of leaves, dry matter, number of fruits per plant with better morphology, total yield per plant, and total soluble solids (TSS), suggesting that the use of Azotobacter and R. irregularis as biofertilizers could substantially reduce the use of chemical fertilizers without impairing the quality and yield of eggplant.
Collapse
|
153
|
Jamal QMS, Ahmad V. Lysinibacilli: A Biological Factories Intended for Bio-Insecticidal, Bio-Control, and Bioremediation Activities. J Fungi (Basel) 2022; 8:jof8121288. [PMID: 36547621 PMCID: PMC9783698 DOI: 10.3390/jof8121288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Microbes are ubiquitous in the biosphere, and their therapeutic and ecological potential is not much more explored and still needs to be explored more. The bacilli are a heterogeneous group of Gram-negative and Gram-positive bacteria. Lysinibacillus are dominantly found as motile, spore-forming, Gram-positive bacilli belonging to phylum Firmicutes and the family Bacillaceae. Lysinibacillus species initially came into light due to their insecticidal and larvicidal properties. Bacillus thuringiensis, a well-known insecticidal Lysinibacillus, can control many insect vectors, including a malarial vector and another, a Plasmodium vector that transmits infectious microbes in humans. Now its potential in the environment as a piece of green machinery for remediation of heavy metal is used. Moreover, some species of Lysinibacillus have antimicrobial potential due to the bacteriocin, peptide antibiotics, and other therapeutic molecules. Thus, this review will explore the biological disease control abilities, food preservative, therapeutic, plant growth-promoting, bioremediation, and entomopathogenic potentials of the genus Lysinibacillus.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Correspondence:
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
154
|
Muñoz E, Carneiro J. Plant-microbe symbiosis widens the habitability range of the Daisyworld. J Theor Biol 2022; 554:111275. [PMID: 36099938 DOI: 10.1016/j.jtbi.2022.111275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023]
Abstract
Plant-microbe symbiosis is pervasive in the Earth's ecosystems and dates back to the early land colonisation by plants. Mutualistic partnership with rhizobia bacteria and mycorrhizal fungi promotes plant nutrition, growth and diversity, impacting important ecosystem functions. However, how the global behaviour and dynamical properties of an ecosystem are modified by plant-microbe symbiosis is still unclear. To tackle this theoretical question, we resorted to the Daisyworld as a toy model of the global ecosystem. We redesigned the original model to allow accounting for seed production, spreading, germination, and seedling development to mature seed-producing plants to describe how symbiotic and non-symbiotic daisy species differ in these key processes. Using the steady-state and bifurcation analysis of this model, we demonstrate that symbiosis with microbes broadens the habitability range of the Daisyworld by enhancing plant growth and/or facilitating plant access to otherwise uninhabitable nutrient-poor regions.
Collapse
Affiliation(s)
- Estefanía Muñoz
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Biology by Numbers Postdoctoral Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova, Oeiras, Portugal
| |
Collapse
|
155
|
Afridi MS, Ali S, Salam A, César Terra W, Hafeez A, Ali B, S AlTami M, Ameen F, Ercisli S, Marc RA, Medeiros FHV, Karunakaran R. Plant Microbiome Engineering: Hopes or Hypes. BIOLOGY 2022; 11:biology11121782. [PMID: 36552290 PMCID: PMC9774975 DOI: 10.3390/biology11121782] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant's second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. It also provides a safeguard from plant pathogens, and induces tolerance in the host against abiotic stressors. The revolution in omics, gene-editing and sequencing tools have somehow led to unravel the compositions and latent interactions between plants and microbes. Similarly, besides standard practices, many biotechnological, (bio)chemical and ecological methods have also been proposed. Such platforms have been solely dedicated to engineer the complex microbiome by untangling the potential barriers, and to achieve better agriculture output. Yet, several limitations, for example, the biological obstacles, abiotic constraints and molecular tools that capably impact plant microbiome engineering and functionality, remained unaddressed problems. In this review, we provide a holistic overview of plant microbiome composition, complexities, and major challenges in plant microbiome engineering. Then, we unearthed all inevitable abiotic factors that serve as bottlenecks by discouraging plant microbiome engineering and functionality. Lastly, by exploring the inherent role of micro/macrofauna, we propose economic and eco-friendly strategies that could be harnessed sustainably and biotechnologically for resilient plant microbiome engineering.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Willian César Terra
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănă ̧stur Street, 400372 Cluj-Napoca, Romania
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Rohini Karunakaran
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engineering, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering (SSE), SIMATS, Thandalam, Chennai 602105, Tamil Nadu, India
- Centre of Excellence for Biomaterials Science, AIMST University, Semeling, Bedong 08100, Malaysia
| |
Collapse
|
156
|
Zhu B, Jia X, Hai X, Zhang Y, Li Q, Ye J, Zhang Q, Li Q. Screening and Identification of p-Hydroxybenzoic Acid-Degrading Strain ZL22 from Wuyi Tea Continuous Cropping Soil. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
157
|
Wekesa C, Asudi GO, Okoth P, Reichelt M, Muoma JO, Furch ACU, Oelmüller R. Rhizobia Contribute to Salinity Tolerance in Common Beans ( Phaseolus vulgaris L.). Cells 2022; 11:cells11223628. [PMID: 36429056 PMCID: PMC9688157 DOI: 10.3390/cells11223628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - George O. Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega 50100, Kenya
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega 50100, Kenya
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
158
|
NG CWW, YAN WH, TSIM KWK, SO PS, XIA YT, TO CT. Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon 2022; 8:e11674. [PMID: 36439778 PMCID: PMC9691937 DOI: 10.1016/j.heliyon.2022.e11674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The application of soil beneficial bacteria (SBB) in agriculture is steadily increasing as it provides a promising way to replace chemical fertilisers and other supplements. Although the role of SBB as a biofertiliser is well understood, little is known about the response of soil physiochemical properties via the change in soil enzymatic activities with SBB growth. In this study, sterilised bulk soil was inoculated with Bacillus subtilis (BS) and Pseudomonas fluorescens (PF), which exhibit excellent characteristics in vitro for potentially improving soil quality. It is found that the contents of bioavailable nitrogen and ammonium in soil inoculated with SBB increased significantly, up to 34% and 57% relative to a control. This resulted from the enhancement of soil urease activity with BS and PF treatments by approximately 90% and 70%, respectively. The increased soil urease activity can be explained by the increased microorganism activity evident from the larger population size of BS (0.78–0.97 CFU mL−1/CFU mL−1) than PF (0.55–0.79 CFU mL−1/CFU mL−1) (p < 0.05). Results of principal component analysis also reinforce the interaction apparent in the significant relationship between soil urease activity and microbial biomass carbon (p < 0.05). Therefore, it can be concluded that the enhancement of soil enzymatic activities induced bulk soil fertility upregulation because of bacterial growth. These results demonstrate the application of SBB to be a promising strategy for bulk soil amendment, particularly nutrient restoration.
Collapse
Affiliation(s)
- Charles Wang Wai NG
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wen Hui YAN
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Corresponding author.
| | - Karl Wah Keung TSIM
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Pui San SO
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yi Teng XIA
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Chun Ting TO
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
159
|
Pandey N, Xalxo R, Chandra J, Keshavkant S. Bacterial consortia mediated induction of systemic tolerance to arsenic toxicity via expression of stress responsive antioxidant genes in Oryza sativa L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|
161
|
Yang Y, Zhang R, Zhang X, Chen Z, Wang H, Li PCH. Effects of Graphene Oxide on Plant Growth: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:2826. [PMID: 36365279 PMCID: PMC9656202 DOI: 10.3390/plants11212826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Several reports of graphene oxide (GO) promoting plant growth have sparked interest in its potential applications in agroforestry. However, there are still some toxicity studies that have raised concerns about the biosafety of GO. These reports show conflicting results from different perspectives, such as plant physiology, biochemistry, cytology, and molecular biology, regarding the beneficial and detrimental effects of GO on plant growth. Seemingly inconsistent studies make it difficult to effectively apply GO in agroforestry. Therefore, it is crucial to review and analyze the current literature on the impacts of GO on plant growth and its physiological parameters. Here, the biological effects of GO on plant growth are summarized. It is proposed that an appropriate concentration of GO may be conducive to its positive effects, and the particle size of GO should be considered when GO is applied in agricultural applications. This review provides a comprehensive understanding of the effects of GO on plant growth to facilitate its safe and effective use.
Collapse
Affiliation(s)
- Yan Yang
- Department of Chemistry and Engineering, Shanxi Datong University, Datong 037009, China
| | - Runxuan Zhang
- Department of Chemistry and Engineering, Shanxi Datong University, Datong 037009, China
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
- Shanxi Provincial Key Laboratory of Chemistry Biosensing, Shanxi Datong University, Datong 037009, China
| | - Xiao Zhang
- Department of Chemistry and Engineering, Shanxi Datong University, Datong 037009, China
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
- Shanxi Provincial Key Laboratory of Chemistry Biosensing, Shanxi Datong University, Datong 037009, China
| | - Zezhong Chen
- Department of Chemistry and Engineering, Shanxi Datong University, Datong 037009, China
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
- Shanxi Provincial Key Laboratory of Chemistry Biosensing, Shanxi Datong University, Datong 037009, China
| | - Haiyan Wang
- Department of Chemistry and Engineering, Shanxi Datong University, Datong 037009, China
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
- Shanxi Provincial Key Laboratory of Chemistry Biosensing, Shanxi Datong University, Datong 037009, China
| | - Paul Chi Hang Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
162
|
Ayaz M, Ali Q, Jiang Q, Wang R, Wang Z, Mu G, Khan SA, Khan AR, Manghwar H, Wu H, Gao X, Gu Q. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202769. [PMID: 36297795 PMCID: PMC9608499 DOI: 10.3390/plants11202769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/30/2023]
Abstract
Soil salinity is a major constraint adversely affecting agricultural crops including wheat worldwide. The use of plant growth promoting rhizobacteria (PGPR) to alleviate salt stress in crops has attracted the focus of many researchers due to its safe and eco-friendly nature. The current study aimed to study the genetic potential of high halophilic Bacillus strains, isolated from the rhizosphere in the extreme environment of the Qinghai-Tibetan plateau region of China, to reduce salt stress in wheat plants. The genetic analysis of high halophilic strains, NMCN1, LLCG23, and moderate halophilic stain, FZB42, revealed their key genetic features that play an important role in salt stress, osmotic regulation, signal transduction and membrane transport. Consequently, the expression of predicted salt stress-related genes were upregulated in the halophilic strains upon NaCl treatments 10, 16 and 18%, as compared with control. The halophilic strains also induced a stress response in wheat plants through the regulation of lipid peroxidation, abscisic acid and proline in a very efficient manner. Furthermore, NMCN1 and LLCG23 significantly enhanced wheat growth parameters in terms of physiological traits, i.e., fresh weight 31.2% and 29.7%, dry weight 28.6% and 27.3%, shoot length 34.2% and 31.3% and root length 32.4% and 30.2%, respectively, as compared to control plants under high NaCl concentration (200 mmol). The Bacillus strains NMCN1 and LLCG23 efficiently modulated phytohormones, leading to the substantial enhancement of plant tolerance towards salt stress. Therefore, we concluded that NMCN1 and LLCG23 contain a plethora of genetic features enabling them to combat with salt stress, which could be widely used in different bio-formulations to obtain high crop production in saline conditions.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifan Jiang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Sabaz Ali Khan
- Biotechnology Department, College of Environmental Sciences, COMSATS, Abbottabad 22060, Pakistan
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
163
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
164
|
Li G, Li W, Zhang S, Lu W, Lu D. Optimized Fertilization Practices Improved Rhizosphere Soil Chemical and Bacterial Properties and Fresh Waxy Maize Yield. Metabolites 2022; 12:metabo12100935. [PMID: 36295837 PMCID: PMC9607960 DOI: 10.3390/metabo12100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The interactive mechanism of root and soil for achieving high and stable yield of maize is still unclear. Synchronizing soil nutrient supply with crop requirements by optimizing fertilization is effective cultivation measures to improve maize yield. In this study, field trials were conducted to investigate the dynamic changes of optimized fertilization on chemical and bacterial properties in rhizosphere soil, root physiological properties, and yield of fresh waxy maize. Optimized fertilization practices (one-time application of new compound fertilizer at sowing, three-, and six-leaf stages, denoted as F1, F2, and F3), local traditional fertilization (F4), and no fertilization (F0) were set up in 2-year field experiments at two sites. F3 increased the fresh ear (10.2%) and grain (9.4%) yields relative to F4. Optimized fertilization practices increased the abundance and diversity of rhizosphere soil bacterial communities at R3. The enzymatic activities of oxidoreductase, hydrolase, transferase, and lyase in rhizosphere soil under F3 were higher than those in other treatments at R1 and R3. F3 increased the contents of organic matter and total N in rhizosphere soil, as well as the root activities. These findings provide physiological information from underground on optimized fertilization types and stages in enhancing the yield of fresh waxy maize. One-time application of new compound fertilizer at six-leaf stage increased the abundance and diversity of bacterial, organic matter and total N content in rhizosphere soil, enhanced root activity at post-silking stage, and eventually improved yield of fresh waxy maize in southern China.
Collapse
Affiliation(s)
| | | | | | | | - Dalei Lu
- Correspondence: ; Tel.: +86-514-8797-9377
| |
Collapse
|
165
|
Znój A, Gawor J, Gromadka R, Chwedorzewska KJ, Grzesiak J. Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis-a Comparison. MICROBIAL ECOLOGY 2022; 84:808-820. [PMID: 34661728 PMCID: PMC9622554 DOI: 10.1007/s00248-021-01891-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/30/2021] [Indexed: 05/11/2023]
Abstract
Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. are the only Magnoliophyta to naturally colonize the Antarctic region. The reason for their sole presence in Antarctica is still debated as there is no definitive consensus on how only two unrelated flowering plants managed to establish breeding populations in this part of the world. In this study, we have explored and compared the rhizosphere and root-endosphere dwelling microbial community of C. quitensis and D. antarctica specimens sampled in maritime Antarctica from sites displaying contrasting edaphic characteristics. Bacterial phylogenetic diversity (high-throughput 16S rRNA gene fragment targeted sequencing) and microbial metabolic activity (Biolog EcoPlates) with a geochemical soil background were assessed. Gathered data showed that the microbiome of C. quitensis root system was mostly site-dependent, displaying different characteristics in each of the examined locations. This plant tolerated an active bacterial community only in severe conditions (salt stress and nutrient deprivation), while in other more favorable circumstances, it restricted microbial activity, with a possibility of microbivory-based nutrient acquisition. The microbial communities of D. antarctica showed a high degree of similarity between samples within a particular rhizocompartment. The grass' endosphere was significantly enriched in plant beneficial taxa of the family Rhizobiaceae, which displayed obligatory endophyte characteristics, suggesting that at least part of this community is transmitted vertically. Ultimately, the ecological success of C. quitensis and D. antarctica in Antarctica might be largely attributed to their associations and management of root-associated microbiota.
Collapse
Affiliation(s)
- Anna Znój
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
- Botanical Garden-Center for Biological Diversity Conservation, Polish Academy of Sciences, Prawdziwka 2, 02-973, Warsaw, Poland
| | - Jan Gawor
- Environmental Laboratory of DNA Sequencing and Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Robert Gromadka
- Environmental Laboratory of DNA Sequencing and Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Katarzyna J Chwedorzewska
- Department of Botany, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
166
|
Yuan Z, Pang Z, Fallah N, Zhou Y, Dong F, Lin W, Hu C. Silicon fertilizer mediated structural variation and niche differentiation in the rhizosphere and endosphere bacterial microbiome and metabolites of sugarcane. Front Microbiol 2022; 13:1009505. [PMID: 36246262 PMCID: PMC9560586 DOI: 10.3389/fmicb.2022.1009505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
The microbiomes of plant are potential determinants of plant growth, productivity, and health. They provide plants with a plethora of functional capacities, namely, phytopathogens suppression, access to low-abundance nutrients, and resistance to environmental stressors. However, a comprehensive insight into the structural compositions of the bacterial abundance, diversity, richness, and function colonizing various microenvironments of plants, and specifically their association with bioactive compounds and soil edaphic factors under silicon (Si) amendment remains largely inconclusive. Here, high-throughput sequencing technology and nontargeted metabolite profiling method were adopted to test the hypotheses regarding microbiome niche abundance, diversity, richness, function, and their association with bioactive compounds and soil edaphic factors within different ecological niches (leaf, stem, root, rhizosphere, and bulk soils) under Si amendment during cane growth were we addressed. Our results demonstrated that Si correspondingly increased sugarcane theoretical production and yield, and remarkably enhanced soil nutrient status, especially Si, AP, and AK. It was also observed that bacterial diversity demonstrated tissue-dependent distribution patterns, with the bulk soil, rhizosphere soil, and root endosphere revealing the highest amount of bacterial diversity compared with the stem and leaf tissues. Moreover, Si exhibited the advantage of considerably promoting bacterial abundance in the various plant compartments. Co-occurrence interactions demonstrated that Si application has the potential to increase bacterial diversity maintenance, coexistence, and plant–soil systems bacteria connections, thereby increasing the functional diversity in the various plant tissues, which, in turn, could trigger positive growth effects in plants. Network analysis further revealed that metabolite profiles exhibited a strong association with bacterial community structures. It was also revealed that Si content had a considerable positive association with bacterial structures. Our findings suggest that the dynamic changes in microbe’s community composition in different plant and soil compartments were compartment-specific. Our study provides comprehensive empirical evidence of the significance of Si in agriculture and illuminated on differential metabolite profiles and soil microbe’s relationship.
Collapse
Affiliation(s)
- Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
- *Correspondence: Zhaonian Yuan,
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongmei Zhou
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Dong
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
167
|
Tran T, French E, Iyer-Pascuzzi AS. In vitro functional characterization predicts the impact of bacterial root endophytes on plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5758-5772. [PMID: 35596672 DOI: 10.1093/jxb/erac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Utilizing beneficial microbes for crop improvement is one strategy to achieve sustainable agriculture. However, identifying microbial isolates that promote crop growth is challenging, in part because using bacterial taxonomy to predict an isolate's effect on plant growth may not be reliable. The overall aim of this work was to determine whether in vitro functional traits of bacteria were predictive of their in planta impact. We isolated 183 bacterial endophytes from field-grown roots of two tomato species, Solanum lycopersicum and S. pimpinellifolium. Sixty isolates were screened for six in vitro functional traits: auxin production, siderophore production, phosphate solubilization, antagonism to a soilborne pathogen, and the presence of two antimicrobial metabolite synthesis genes. Hierarchical clustering of the isolates based on the in vitro functional traits identified several groups of isolates sharing similar traits. We called these groups 'functional groups'. To understand how in vitro functional traits of bacteria relate to their impact on plants, we inoculated three isolates from each of the functional groups on tomato seedlings. Isolates within the same functional group promoted plant growth at similar levels, regardless of their host origin or taxonomy. Together, our results demonstrate the importance of examining root endophyte functions for improving crop production.
Collapse
Affiliation(s)
- Tri Tran
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Elizabeth French
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
168
|
Guajardo-Leiva S, Alarcón J, Gutzwiller F, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro M, Crandall KA, Pérez-Losada M, Castro-Nallar E. Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Front Microbiol 2022; 13:916210. [PMID: 36160194 PMCID: PMC9493328 DOI: 10.3389/fmicb.2022.916210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Jaime Alarcón
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Florence Gutzwiller
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gallardo-Cerda
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Marco Molina-Montenegro
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación en Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
- Division of Emergency Medicine, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Children’s National Hospital, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- *Correspondence: Eduardo Castro-Nallar,
| |
Collapse
|
169
|
Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Amruthesh KN, Murali M, Poczai P, Gafur A, Almalki WH, Sayyed RZ. Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review. Antioxidants (Basel) 2022; 11:1763. [PMID: 36139837 PMCID: PMC9495777 DOI: 10.3390/antiox11091763] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022] Open
Abstract
Agriculture has a lot of responsibility as the rise in the world's population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield.
Collapse
Affiliation(s)
| | | | - Natarajamurthy Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Kalegowda Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, India
| | | | | | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al Qura University, Makkah 77207, Saudi Arabia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, S.I. Patil Arts, G.B. Patel Science & STKV Sangh Commerce College, Shahada 425409, India
| |
Collapse
|
170
|
Chen S, Sun Y, Wei Y, Li H, Yang S. Different rhizosphere soil microbes are recruited by tomatoes with different fruit color phenotypes. BMC Microbiol 2022; 22:210. [PMID: 36045321 PMCID: PMC9429755 DOI: 10.1186/s12866-022-02620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background To explore and utilize abundant soil microbes and their beneficial functions, the bacterial and fungal compositions in rhizospheres between red- and yellow-fruited tomato varieties were analyzed using high-throughput sequencing technique. Result Our results indicated that different soil microbes in rhizospheres of tomatoes were exactly recruited by different color fruit tomatoes. For the reasons as not only soil bacterial community, but also soil fungal compositions were all different between red and yellow fruit tomatoes. For example, Nocardioides, norank_f_norank_o_Vicinamibacterales, norank_f_norank_o_norank_c_KD4-96, norank_f_Birii41, norank_f_norank_o_S085 and Bradyrhizobium were the specific dominant soil bacterial genera, and Lecythophora, Derxomyces and unclassified_f_Pyronemataceae were the dominant soil fungal genera in the rhizospheres of red tomato varieties. By contrast, unclassified_f__Micromonsporaceae, Acidipila, Roseisolibacter, Gaiella and norank_f_Xanthobacteraceae were the unique dominant soil bacterial genera in the rhizospheres of yellow tomato varieties. And unclassified_o__Onygenales, Trichocladium, unclassified_c__Sordariomycetes, Pseudogymnoascus, Acremonium, Oidiodendron, Phialemonium, Penicillium, Phialosimplex were the unique dominant soil fungal genera in rhizospheres of yellow tomato varieties. Moreover, a higher abundance of specific soil bacterial and fungal genera in the rhizosphere was found in rhizospheres of the yellow than those of the red tomato varieties. Conclusion Soil bacterial and fungal compositions in rhizospheres between red- and yellow-fruited tomato varieties were found significantly different which growing in the same environment under the identical managements. It suggested that different soil microbes in rhizospheres exactly were recruited by different phenotypes tomato varieties related to fruit color formation.
Collapse
|
171
|
Yin C, Hagerty CH, Paulitz TC. Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen. Front Microbiol 2022; 13:908981. [PMID: 36118206 PMCID: PMC9473337 DOI: 10.3389/fmicb.2022.908981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 01/23/2023] Open
Abstract
Synthetic microbial communities (SynComs) could potentially enhance some functions of the plant microbiome and emerge as a promising inoculant for improving crop performance. Here, we characterized a collection of bacteria, previously isolated from the wheat rhizosphere, for their antifungal activity against soilborne fungal pathogens. Ten SynComs with different compositions from 14 bacterial strains were created. Seven SynComs protected wheat from Rhizoctonia solani AG8 infection, although SynComs were not more effective than single strains in reducing wheat root rot disease. Further, the mechanisms of interaction of the tested bacteria with each other and plants were explored. We found that nine bacteria and nine SynComs impacted the root growth of Arabidopsis. Nine bacteria and four SynComs significantly inhibited the growth of AG8 by producing volatiles. The cell-free supernatants from six bacteria inhibited the growth of AG8. Together, this study provided the potential for improving crop resilience by creating SynComs.
Collapse
Affiliation(s)
- Chuntao Yin
- North Central Agriculture Research Laboratory, USDA-ARS, Brookings, SD, United States
- *Correspondence: Chuntao Yin,
| | - Christina H. Hagerty
- Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR, United States
| | - Timothy C. Paulitz
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, United States
| |
Collapse
|
172
|
Highmore CJ, Melaugh G, Morris RJ, Parker J, Direito SOL, Romero M, Soukarieh F, Robertson SN, Bamford NC. Translational challenges and opportunities in biofilm science: a BRIEF for the future. NPJ Biofilms Microbiomes 2022; 8:68. [PMID: 36038607 PMCID: PMC9424220 DOI: 10.1038/s41522-022-00327-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Biofilms are increasingly recognised as a critical global issue in a multitude of industries impacting health, food and water security, marine sector, and industrial processes resulting in estimated economic cost of $5 trillion USD annually. A major barrier to the translation of biofilm science is the gap between industrial practices and academic research across the biofilms field. Therefore, there is an urgent need for biofilm research to notice and react to industrially relevant issues to achieve transferable outputs. Regulatory frameworks necessarily bridge gaps between different players, but require a clear, science-driven non-biased underpinning to successfully translate research. Here we introduce a 2-dimensional framework, termed the Biofilm Research-Industrial Engagement Framework (BRIEF) for classifying existing biofilm technologies according to their level of scientific insight, including the understanding of the underlying biofilm system, and their industrial utility accounting for current industrial practices. We evidence the BRIEF with three case studies of biofilm science across healthcare, food & agriculture, and wastewater sectors highlighting the multifaceted issues around the effective translation of biofilm research. Based on these studies, we introduce some advisory guidelines to enhance the translational impact of future research.
Collapse
Affiliation(s)
- C J Highmore
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - G Melaugh
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - R J Morris
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - J Parker
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - S O L Direito
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - M Romero
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK
| | - F Soukarieh
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK
| | - S N Robertson
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK.
- Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - N C Bamford
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK.
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
173
|
Cowan DA, Lebre PH, Amon C, Becker RW, Boga HI, Boulangé A, Chiyaka TL, Coetzee T, de Jager PC, Dikinya O, Eckardt F, Greve M, Harris MA, Hopkins DW, Houngnandan HB, Houngnandan P, Jordaan K, Kaimoyo E, Kambura AK, Kamgan-Nkuekam G, Makhalanyane TP, Maggs-Kölling G, Marais E, Mondlane H, Nghalipo E, Olivier BW, Ortiz M, Pertierra LR, Ramond JB, Seely M, Sithole-Niang I, Valverde A, Varliero G, Vikram S, Wall DH, Zeze A. Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes. MICROBIOME 2022; 10:131. [PMID: 35996183 PMCID: PMC9396824 DOI: 10.1186/s40168-022-01297-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/15/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Top-soil microbiomes make a vital contribution to the Earth's ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa's top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. Video Abstract.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - P H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Cer Amon
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| | - R W Becker
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - H I Boga
- Taita Taveta University, Voi, Kenya
| | - A Boulangé
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
- UMR InterTryp, CIRAD-IRD, 34398, Montpellier, France
| | - T L Chiyaka
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - T Coetzee
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - P C de Jager
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - O Dikinya
- Department of Environmental Science, University of Botswana, Gaborone, Botswana
| | - F Eckardt
- Department of Geography, University of Cape Town, Cape Town, South Africa
| | - M Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M A Harris
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - D W Hopkins
- Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - H B Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - P Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - K Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Kaimoyo
- University of Zambia, Lusaka, Zambia
| | | | - G Kamgan-Nkuekam
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - T P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - E Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - H Mondlane
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - E Nghalipo
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - B W Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - L R Pertierra
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - J-B Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Seely
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - I Sithole-Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - A Valverde
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - S Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, USA
| | - A Zeze
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| |
Collapse
|
174
|
Dhar K, Panneerselvan L, Venkateswarlu K, Megharaj M. Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture. Biodegradation 2022; 33:575-591. [PMID: 35976498 PMCID: PMC9581816 DOI: 10.1007/s10532-022-09996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia. .,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
175
|
Li H, Kang Z, Hua J, Feng Y, Luo S. Root exudate sesquiterpenoids from the invasive weed Ambrosia trifida regulate rhizospheric Proteobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155263. [PMID: 35439515 DOI: 10.1016/j.scitotenv.2022.155263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The adaption of Ambrosia trifida to the environment to which it has been introduced is crucial to its successful invasion. Microbial diversity analyses suggested that the abundance of Proteobacteria was relatively high in rhizospheric soil surrounding A. trifida roots. Three of these bacterial taxa were isolated and identified as Acinetobacter sp. LHD-1, Pseudomonas sp. LHD-12, and Enterobacter sp. LHD-19. Furthermore, three sesquiterpenoids were authenticated as the main metabolites in the root exudates of A. trifida, and include one new germacrane sesquiterpenoid (1E,4E)-germacrdiene-6β,15-diol (2) and two known sesquiterpenoids, (E)-4β,5α-epoxy-7αH-germacr-1(10)-ene-2β,6β-diol (1) and (2R)-δ-cadin-4-ene-2,10-diol (3). Their chemical structures were elucidated using NMR spectroscopy and single crystal X-ray diffraction analyses. In UPLC-MS/MS analyses, compounds 1-3 showed values of 10.29 ± 2.21, 0.02 ± 0.01, and 0.78 ± 0.52 μg/g FW, respectively, in A. trifida rhizospheric soil. Interestingly, those compounds were able to inhibit the growth of Acinetobacter sp. LHD-1 and promote the growth of Enterobacter sp. LHD-19 where concentrations were close to those secreted into rhizospheric soil. Furthermore, the rhizospheric bacteria Acinetobacter sp. LHD-1 and Enterobacter sp. LHD-19 were able to regulate the growth of A. trifida seedlings in potted planting verification experiments. Interestingly, root exudate sesquiterpenoids could also improve the concentration of IAA in Enterobacter sp. LHD-19, indicating that this bacterium may promote plant growth through regulating the IAA pathway. These results provided new evidence for the rapid adaptation of plants to new environments, allowing their invasive behavior.
Collapse
Affiliation(s)
- Hongdi Li
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Zongli Kang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Yulong Feng
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China.
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China.
| |
Collapse
|
176
|
Host genotype controls ecological change in the leaf fungal microbiome. PLoS Biol 2022; 20:e3001681. [PMID: 35951523 PMCID: PMC9371330 DOI: 10.1371/journal.pbio.3001681] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon sequencing across an entire growing season in a diversity panel of switchgrass (Panicum virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to compare the importance of time, space, ecology, and genetics. We found a strong successional pattern in the microbiome shaped both by host genetics and environmental factors. Further, we used genome-wide association (GWA) mapping and RNA sequencing to show that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated with microbiome structure. We confirmed GWAS results in an independent set of genotypes for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA markers. Fungal pathogens were central to microbial covariance networks, and genotypes susceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host immune genes are a principal means of controlling the entire leaf microbiome. Leaf fungal microbiomes can strongly influence host plant success. Monitoring the leaf fungal microbiome of switchgrass over time shows microbial ecological succession, and reveals the host plant genes that influence community-wide changes.
Collapse
|
177
|
Zhao ZY, Wang PY, Xiong XB, Wang YB, Zhou R, Tao HY, Grace UA, Wang N, Xiong YC. Environmental risk of multi-year polythene film mulching and its green solution in arid irrigation region. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128981. [PMID: 35523090 DOI: 10.1016/j.jhazmat.2022.128981] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental risk of multi-year polythene film mulching (PM) was evaluated and investigated. The location observation following 19-year (2000-2018) PM in irrigated region indicated that the cumulative accumulation of soil microplastics was as high as 2900 ± 19.5 n kg-1. Microplastic accumulation was tightly associated with soil plasticizer concentration (Pearson's r = 0.728, p <0.05), and the concentration of dominant phthalic acid esters (PAEs) was up to 117.5-705 μg kg-1. As such, we conducted organic mulching substitute experiment (2019-2020) with non-mulching (CK), maize straw mulching (SM), living clover mulching (CM), PM, PM+SM and PM+CM respectively. The data showed that organic mulching (SM, CM) achieved similar productivity benefit as PM-involved treatments (p > 0.05). Critically, total concentration of PAEs decreased by 6.43% in SM relative to CK, and by 9.61% in PM+SM relative to PM respectively. High throughput sequencing indicated that the proportions of predominant bacteria and fungi were totally lower in PM than those of organic mulching, particularly Sphingomonadaceae and Stachybotryaceae. KEGG analyses indicated that organic mulching promoted the metabolisms of polycyclic aromatic hydrocarbons, benzoic acid (probability>75%) and heterologous organism metabolism (p<0.001), due to improved microbial community assembly. Therefore, organic mulching efficiently accelerated microbial mineralization of PM pollutants, and may act as a green solution to displace PM.
Collapse
Affiliation(s)
- Ze-Ying Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Bin Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yi-Bo Wang
- Gansu Key Laboratory of Resource Utilization of Agricultural Solid Wastes, Tianshui Normal University, Tianshui 741000, China
| | - Rui Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong-Yan Tao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Uzamurera Aimee Grace
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ning Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
178
|
Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing Rhodobacter sphaeroides SIR03 and Biochar. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) with biochar is apprised to be a promising bio-fertilizer for improving the soil fertility and plant growth and development. The current study aimed to identify a potential plant growth-promoting rhizobacterium alongside biochar to improve sesame seedling productivity. Our results revealed that among the nine isolates, SIR01, SIR03, and SIR07 significantly improved the growth and biomass of sesame and Waito-C rice seedlings. The increase in growth of Waito-C rice seedlings through isolate SIR01, SIR03, and SIR07, suggests their ability to produce phytohormones such as GA4, GA9, GA24, and GA34. Furthermore, the application of isolate SIR03 and biochar together revealed a synergistic increase in sesame seedling growth and biomass (fresh and dry weight) compared with their individual applications. This may be explained by enhancement of photosynthetic rate, chlorophyll fluorescence, stomatal conductance, and transpiration rate by the combined SIR03 and biochar treatment. This suggests that co-inoculation with SIR03 alongside the application of biochar can be considered an eco-friendly, low-cost bio-fertilizer to potentially improve sesame seedling growth and development.
Collapse
|
179
|
Miyamoto Y, Maximov TC, Kononov A, Sugimoto A. Soil propagule banks of ectomycorrhizal fungi associated with <i>Larix cajanderi</i> above the treeline in the Siberian Arctic. MYCOSCIENCE 2022; 63:142-148. [PMID: 37090475 PMCID: PMC10042316 DOI: 10.47371/mycosci.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
Microbial symbionts are essential for plant niche expansion into novel habitats. Dormant propagules of ectomycorrhizal (EM) fungi are thought to play an important role in seedling establishment in invasion fronts; however, propagule bank communities above the treeline are poorly understood in the Eurasian Arctic, where treelines are expected to advance under rapid climate change. To investigate the availability of EM fungal propagules, we collected 100 soil samples from Arctic tundra sites and applied bioassay experiments using Larix cajanderi as bait seedlings. We detected 11 EM fungal operational taxonomic units (OTUs) by obtaining entire ITS regions. Suillus clintonianus was the most frequently observed OTU, followed by Cenococcum geophilum and Sebacinales OTU1. Three Suillus and one Rhizopogon species were detected in the bioassay seedlings, indicating the availability of Larix-specific suilloid spores at least 30 km from the contemporary treeline. Spores of S. clintonianus and S. spectabilis remained infective after preservation for 14 mo and heat treatment at 60 °C, implying the durability of the spores. Long-distance dispersal capability and spore resistance to adverse conditions may represent ecological strategies employed by suilloid fungi to quickly associate with emerging seedlings of compatible hosts in treeless habitats.
Collapse
Affiliation(s)
| | - Trofim C. Maximov
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences
| | | | | |
Collapse
|
180
|
Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha−1 is salt-stressed, out of which 2.95 million ha−1 are saline soil (including coastal) and 3.78 million ha−1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.
Collapse
|
181
|
Xin A, Jin H, Yang X, Guan J, Hui H, Liu H, Cui Z, Dun Z, Qin B. Allelochemicals from the Rhizosphere Soil of Potato ( Solanum tuberosum L.) and Their Interactions with the Soilborne Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151934. [PMID: 35893638 PMCID: PMC9331876 DOI: 10.3390/plants11151934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 05/13/2023]
Abstract
To reveal the allelopathic effects of potato, seven compounds were isolated from the rhizosphere soil: 7-methoxycoumarin (1), palmitic acid (2), caffeic acid (3), chlorogenic acid (4), quercetin dehydrate (5), quercitrin (6), and rutin (7). Bioassays showed that compounds 1, 2, 4, and 6 had inhibitory effects on the growth of L. sativa and tissue culture seedlings of potato. The existence of the allelochemicals was confirmed by HPLC, and their contents were quantified with a total concentration of 9.02 μg/g in the rhizosphere soil of replanted potato. Approaches on the interactions of the allelochemicals and pathogens of potato including A. solani, B. cinerea, F. solani, F. oxysporum, C. coccodes, and V. dahlia revealed that compound 1 had inhibitory effects but compounds 2-4 promoted the colony growth of the pathogens. These findings demonstrated that the autotoxic allelopathy and enhancement of the pathogens caused by the accumulation of the allelochemicals in the continuously cropped soil should be one of the main reasons for the replant problems of potato.
Collapse
Affiliation(s)
- Aiyi Xin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (A.X.); (H.J.); (X.Y.); (H.H.); (H.L.)
- School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Hui Jin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (A.X.); (H.J.); (X.Y.); (H.H.); (H.L.)
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (A.X.); (H.J.); (X.Y.); (H.H.); (H.L.)
| | - Jinfeng Guan
- Institute for Food and Drug Control, Tongliao City, Inner Mongolia Autonomous Region, Tongliao 028000, China;
| | - Heping Hui
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (A.X.); (H.J.); (X.Y.); (H.H.); (H.L.)
| | - Haoyue Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (A.X.); (H.J.); (X.Y.); (H.H.); (H.L.)
| | - Zengtuan Cui
- Cultivated Land Quality Construction and Management Station of Gansu Province, Lanzhou 730030, China; (Z.C.); (Z.D.)
| | - Zhiheng Dun
- Cultivated Land Quality Construction and Management Station of Gansu Province, Lanzhou 730030, China; (Z.C.); (Z.D.)
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (A.X.); (H.J.); (X.Y.); (H.H.); (H.L.)
- Correspondence: ; Tel.: +86-931-4968371; Fax: +86-931-4968019
| |
Collapse
|
182
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
183
|
Kour D, Yadav AN. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr Microbiol 2022; 79:248. [PMID: 35834053 DOI: 10.1007/s00284-022-02939-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Climate change is emerging as a crucial issue with global attention and leading to abiotic stress conditions. There are different abiotic stress which affects the crop production among which drought is known to be most destructive stress affecting crop productivity and world's food security. Different approaches are under consideration to increase adaptability of the plants under drought stress with plant-microbe interactions being a greater area of focus. Stress-adaptive microbes either from the rhizosphere, internal tissue, or aerial parts of plants have been reported which through different mechanisms help the plants to cope up with drought and also promote their growth. These mechanisms include the accumulation of osmolytes, decrease in the inhibitory levels of ethylene by aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, and furnishing the unavailable nutrients to plants. Microbial genera including Azotobacter, Bacillus, Ochrobactrum, Pseudomonas, and Serratia are known to be self-adaptive and growth promoters under drought stressed conditions. Stress-adaptive plant growth promoting (PGP) microbes thus are excellent candidates for stress alleviation in drought environment to provide maximum benefits to the plants. The present review deals with the effect of the drought stress on plants, biodiversity of the drought-adaptive microbes, mechanisms of the drought stress alleviation through enhancement of stress alleviators, reduction of the stress aggravators, and modification of the molecular pathways as well as the multiple PGP attributes of the drought-adaptive microbes.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
184
|
Awad AAM, Ahmed AI, Elazem AHA, Sweed AAA. Mitigation of CaCO3 Influence on Ipomoea batatas Plants Using Bacillus megaterium DSM 2894. AGRONOMY 2022; 12:1571. [DOI: 10.3390/agronomy12071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The application of PGPB is considered a surrogate approach to reducing the amounts of phosphorus fertilizers applied in addition to its role in improving nutrient availability under stress conditions. The objective of this study was to evaluate five levels of calcium superphosphate (CSP); ultimately, CSP was applied in five levels: CSP20, CSP40, CSP60, CSP80, and CSP100 were applied at 69, 138, 207, 276, and 345 kg ha−1, respectively, and two treatments of Bacillus megaterium DSM 2894 (with and without) were applied on sweet potato (Beauregard cv.) plants grown in calcareous soils in the 2019 and 2020 seasons in Egypt. Some macro- and micronutrient (i.e., nitrogen (N), phosphorus (P), calcium (Ca), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu)) uptake, antiradical power (ARP), and protein and total root yields (TRYs) were determined. The plants inoculated with B. megaterium DSM 2894 had increased leaf N, P, and Mn contents in both seasons; in addition, Ca was increased in the second season. Furthermore, all of the root nutrient contents (except N) as well as the ARP and TRY were increased in both seasons as compared with those of the noninoculated plants. On the other hand, the maximum values of the leaf Ca, Fe, and Cu contents and the root Ca, Fe, and Zn contents were recorded with the CSP20 treatment in both seasons. CSP60 was the superior treatment for N (in the leaves), Mn (in the roots), ARP, protein contents, and TRY in both seasons and for the leaf Zn content in the 2019 season. The application of the CSP100 treatment gave the highest values for the leaf and root P contents and the root Cu contents in both seasons as well as for the leaf Mn content in the first season and the root N content in the 2020 growth season. Thus, it was concluded that the application of CSP20, CSP60, and CSP100 treatments with the B. megaterium DSM2894 mixture gave the best values compared to the use of CSP or DSM2894 individually to attenuate CaCO3-induced damage.
Collapse
|
185
|
Oburger E, Schmidt H, Staudinger C. Harnessing belowground processes for sustainable intensification of agricultural systems. PLANT AND SOIL 2022; 478:177-209. [PMID: 36277079 PMCID: PMC9579094 DOI: 10.1007/s11104-022-05508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant-microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.
Collapse
Affiliation(s)
- Eva Oburger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christiana Staudinger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Japan
| |
Collapse
|
186
|
Biologicals and their plant stress tolerance ability. Symbiosis 2022. [DOI: 10.1007/s13199-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
187
|
Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Gene 2022; 836:146671. [PMID: 35714801 DOI: 10.1016/j.gene.2022.146671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Insights into the application of endophytic bacilli in sustainable agricultural practices have opened up new avenues for the inhibition of soil-borne pathogens and the improvement of plant health. Bacillus subtilis K1, an endophytic bacterium originally isolated from aerial roots of Ficus benghalensis is a potential biocontrol agent secreting a mixture of surfactins, iturins and fengycins. The current study extends the characterization of this bacterium through genomic and comparative genomics approaches. The sequencing of the bacterial genome at Illumina MiSeq platform revealed that it possessed a 4,103,502-bp circular chromosome with 45.98% GC content and 4325 predicted protein-coding sequences. Based on phylogenomics and whole-genome average nucleotide identity, the B. subtilis K1 was taxonomically classified as Bacillus velezensis. The formerly evaluated phenotypic traits viz. C-source utilization and lipopeptide-mediated fungal antagonism were correlated to their molecular determinants. The genome also harbored several genes associated with induced systemic resistance and plant growth promotion i.e, phytohormone production, nitrogen assimilation and reduction, siderophore production, phosphate solubilization, biofilm formation, swarming motility, acetoin and butanediol synthesis. The production of antifungal volatile organic compounds and plant growth promotion was experimentally demonstrated by volatile compound assay and seed germination assay on cumin and groundnut. The isolate also holds great prospects for application as a soil inoculant as indicated by enhancement in the growth of groundnut via in planta pot studies. Bacterial pan-genome analysis based on a comparison of whole genomes with eighteen other Bacillus strains was also conducted. Comparative examination of biosynthetic gene clusters across all genomes indicated that the largest number of gene clusters were harbored by the K1 genome. Based on the findings, we propose K1 as a model for scrutinizing non-ribosomally synthesized peptide synthetase and polyketide synthetase derived molecules.
Collapse
|
188
|
Peng M, Wang C, Wang Z, Huang X, Zhou F, Yan S, Liu X. Differences between the effects of plant species and compartments on microbiome composition in two halophyte Suaeda species. Bioengineered 2022; 13:12475-12488. [PMID: 35593105 PMCID: PMC9275862 DOI: 10.1080/21655979.2022.2076009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Root-related or endophytic microbes in halophytes play an important role in adaptation to extreme saline environments. However, there have been few comparisons of microbial distribution patterns in different tissues associated with halophytes. Here, we analyzed the bacterial communities and distribution patterns of the rhizospheres and tissue endosphere in two Suaeda species (S. salsa and S. corniculata Bunge) using the 16S rRNA gene sequencing. The results showed that the bacterial abundance and diversity in the rhizosphere were significantly higher than that of endophytic, but lower than that of bulk soil. Microbial-diversity analysis showed that the dominant phyla of all samples were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Firmicutes, among which Proteobacteria were extremely abundant in all the tissue endosphere. Heatmap and Linear discriminant analysis Effect Size (LEfSe) results showed that there were notable differences in microbial community composition related to plant compartments. Different networks based on plant compartments exhibited distinct topological features. Additionally, the bulk soil and rhizosphere networks were more complex and showed higher centrality and connectedness than the three endosphere networks. These results strongly suggested that plant compartments, and not species, affect microbiome composition.
Collapse
Affiliation(s)
- Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chao Wang
- Zibo Academy of Agricultural Sciences, Zibo, China
| | - Zhiyong Wang
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Xiufang Huang
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Fangzhen Zhou
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Shaopeng Yan
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaopeng Liu
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| |
Collapse
|
189
|
He Y, Guo W, Peng J, Guo J, Ma J, Wang X, Zhang C, Jia N, Wang E, Hu D, Wang Z. Volatile Organic Compounds of Streptomyces sp. TOR3209 Stimulated Tobacco Growth by Up-Regulating the Expression of Genes Related to Plant Growth and Development. Front Microbiol 2022; 13:891245. [PMID: 35668752 PMCID: PMC9164152 DOI: 10.3389/fmicb.2022.891245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the mechanism underlying the plant growth-promoting (PGP) effects of strain Streptomyces sp. TOR3209, PGP traits responsible for indoleacetic acid production, siderophore production, and phosphate solubilization were tested by culturing the strain TOR3209 in the corresponding media. The effects of volatile organic compounds (VOCs) produced by the strain TOR3209 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were estimated by performing a transcriptome analysis, and VOCs were identified by the solid-phase micro-extraction (SPME) method. The results showed positive reactions for the three tested PGP traits in the culture of strain TOR3209, while the tobacco seedlings co-cultured with strain TOR3209 revealed an increase in the fresh weight by up to 100% when compared to that of the control plants, demonstrating that the production VOCs was also a PGP trait. In transcriptome analysis, plants co-cultured with strain TOR3209 presented the highest up-regulated expression of the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as a regulator of plant gene expression. Among the VOCs produced by the strain TOR3209, two antifungal molecules, 2,4-bis(1,1-dimethylethyl)-phenol and hexanedioic acid dibutyl ester, were found as the main compounds. Conclusively, up-regulation in the expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain TOR3209. Further efforts to explore the effective VOCs and investigate the effects of the two main VOCs in the future are recommended.
Collapse
Affiliation(s)
- Yuxi He
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Wenyu Guo
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jieli Peng
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jinying Guo
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jia Ma
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Cuimian Zhang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Nan Jia
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dong Hu
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- *Correspondence: Dong Hu
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Zhanwu Wang
| |
Collapse
|
190
|
Microbiological properties of Beejamrit, an ancient Indian traditional knowledge, uncover a dynamic plant beneficial microbial network. World J Microbiol Biotechnol 2022; 38:111. [DOI: 10.1007/s11274-022-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
191
|
Yaghoubian I, Antar M, Ghassemi S, Modarres-Sanavy SAM, Smith DL. The Effects of Hydro-Priming and Colonization with Piriformospora indica and Azotobacter chroococcum on Physio-Biochemical Traits, Flavonolignans and Fatty Acids Composition of Milk Thistle ( Silybum marianum) under Saline Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:1281. [PMID: 35631705 PMCID: PMC9142994 DOI: 10.3390/plants11101281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Salinity is an important challenge around the world, effecting all physiological and biochemical processes of plants. It seems that seed priming can diminish the negative impacts of salinity. To study the effects of hydro-priming and inoculation with Piriformospora indica (Pi) and Azotobacter chroococcum (Az) on physio-biochemical traits, flavonolignans and fatty acids composition of milk thistle under saline conditions, a greenhouse experiment was carried out. Our results indicated that under salinity, seed priming, especially Pi, improved physio-biochemical properties in milk thistle. Under 120 mM NaCl, inoculation with Pi increased membrane stability index (MSI) and relative water content (RWC) (by 21.86 and 33.43%, respectively). However, peroxidase (POX) (5.57- and 5.68-fold in roots and leaves, respectively), superoxide dismutase (SOD) (4.74- and 4.44-fold in roots and leaves, respectively), catalase (CAT) (6.90- and 8.50-fold in roots and leaves, respectively) and ascorbate peroxidase (APX) (5.61- and 5.68-fold in roots and leaves, respectively) activities increased with increasing salinity. Contrary to salinity, hydro-priming with Az and Pi positively altered all these traits. The highest content of the osmolytes, adenosine triphosphate (ATP) content and rubisco activity were recorded in Pi treatments under 120 mM NaCl. Stearic acid (20.24%), oleic acid (21.06%) and palmitic acid (10.48%) increased, but oil content (3.81%), linolenic and linoleic acid content (22.21 and 15.07%, respectively) decreased under saline conditions. Inoculations of Pi positively altered all these traits. The present study indicated that seed priming with Pi under 120 mM NaCl resulted in maximum silychristin, taxidolin, silydianin, isosilybin, silybin and silymarin of milk thistle seeds.
Collapse
Affiliation(s)
- Iraj Yaghoubian
- Department of Agronomy, Tarbiat Modares University, Tehran P.O Box 14115-336, Iran; (I.Y.); (S.A.M.M.-S.)
- Department of Plant Science, McGill University, Montreal, QC H9X3V9, Canada;
| | - Mohammed Antar
- Department of Plant Science, McGill University, Montreal, QC H9X3V9, Canada;
| | - Saeid Ghassemi
- Department of Ecophysiology, University of Tabriz, Tabriz 5166616471, Iran;
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC H9X3V9, Canada;
| |
Collapse
|
192
|
Upadhayay VK, Singh AV, Khan A, Singh J, Pareek N, Raghav A. FE-SEM/EDX Based Zinc Mobilization Analysis of Burkholderia cepacia and Pantoea rodasii and Their Functional Annotation in Crop Productivity, Soil Quality, and Zinc Biofortification of Paddy. Front Microbiol 2022; 13:852192. [PMID: 35602065 PMCID: PMC9120762 DOI: 10.3389/fmicb.2022.852192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The experimental study was contrived to characterize two zinc-solubilizing bacteria (ZSB), namely BMRR126 and BMAR64, and their role in zinc (Zn) biofortification of rice. These bacteria solubilized Zn profoundly, determined qualitatively by halo-zone formation on a solid medium and quantitatively in a liquid broth by AAS and SEM-EDX. The lowering of pH and contact angle assessment of the liquid broth unveiled the establishment of the acidic conditions in a medium suitable for Zn solubilization. The characterization of both isolates on the basis of 16S rRNA gene analysis was identified as Burkholderia cepacia and Pantoea rodasii, respectively. These strains were also found to have some plant probiotic traits namely phosphate solubilization, production of siderophore, indole acetic acid (IAA), exopolysaccharide (EPS), and ammonia. The field experiments were performed at two diverse locations and under all treatments; the simultaneous use of BMRR126 and BMAR64 with zinc oxide (ZnO) resulted in the highest growth and productivity of the paddy crop. The utmost Zn achievement in the grain was estimated in a treatment (T9) (25.07 mg/kg) containing a consortium of BMRR126 and BMAR64 along with ZnO for the Terai region. The treatment containing single ZSB bioinoculant BMRR126 (T7) showed an elevated Zn amount in the rice grain (33.25 mg/kg) for the Katchar region. The soil parameters (pH, EC, organic carbon, NPK, available Zn, and dehydrogenase activity) were also positively influenced under all bacterial treatments compared to the uninoculated control. Our study clearly accentuates the need for Zn solubilizing bacteria (ZSB) to provide the benefits of Zn-biofortification in different regions.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Ajay Veer Singh
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
- *Correspondence: Ajay Veer Singh,
| | - Amir Khan
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Jyoti Singh
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, India
| |
Collapse
|
193
|
Ouyang P, Liang C, Liu F, Chen Q, Yan Z, Ran J, Mou S, Yuan Y, Wu X, Yang ST. Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. CHEMOSPHERE 2022; 294:133702. [PMID: 35066073 DOI: 10.1016/j.chemosphere.2022.133702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Graphene has found important applications in various areas and hundred tons of graphene materials are annually produced. It is crucial to investigate both the negative and positive environmental effects of graphene materials to ensure the safe applications and develop environmental applications. In this study, we reported the stimulating effects of reduced graphene oxide (RGO) to nitrogen-fixing bacterium Azotobacter chroococcum. RGO stimulated the cell growth of A. chroococcum at 0.010-0.500 mg/mL according to the growth curves and the colony-forming unit (CFU) increases. RGO wrapped over the A. chroococcum cells without inducing ultrastructural changes. RGO decreased the leakage of cell membrane, but slight oxidative stress was observed in A. chroococcum. RGO promoted the nitrogen fixation activity of A. chroococcum at 0.5 mg/mL according to both isotope dilution method and acetylene reduction activity measurements. Consequently, the increases of soil nitrogen contents were evidenced, in particular about 30% increase of organic nitrogen occurred at 0.5 mg/mL of RGO. In addition, RGO might possibly benefit the plant growth through enhancing the indoleacetic acid production of A. chroococcum. These results highlighted the positive environmental effects of graphene materials to nitrogen-fixing bacteria in nitrogen cycle.
Collapse
Affiliation(s)
- Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Chengzhuang Liang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Fangshi Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Qian Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Ziqiao Yan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Junyao Ran
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Shiyu Mou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Xian Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
194
|
Abstract
The practice of agriculture has always been a source of food production. The increase in the global population leads to improvements in agriculture, increasing crop quality and yield. Plant growth results from the interaction between roots and their environment, which is the soil or planting medium that provides structural support as well as water and nutrients to the plant. Therefore, good soil management is necessary to prevent problems that will directly affect plant health. Integrated crop management is a pragmatic approach to crop production, which includes integrated pest management focusing on crop protection. Currently, there is an extended idea that many microorganisms, such as fungi or bacteria, are useful in agriculture since they are attractive eco-friendly alternatives to mineral fertilizers and chemical pesticides. The microbes that interact with the plants supply nutrients to crops, control phytopathogens and stimulate plant growth. These actions have beneficial implications in agriculture. Despite the great benefits of microorganisms in agriculture, their use has been quite limited; however, there has been great growth in recent years. This may be because more progress is needed in field applications. One of the most employed genera in agriculture is Bacillus since it has several mechanisms to act as biofertilizers and biopesticides. In this review, the role of beneficial microorganisms, with special emphasis on the Bacillus genus, in soil and plant health will be discussed, highlighting the recent advances in this topic.
Collapse
|
195
|
Bao L, Sun B, Wei Y, Xu N, Zhang S, Gu L, Bai Z. Grape Cultivar Features Differentiate the Grape Rhizosphere Microbiota. PLANTS (BASEL, SWITZERLAND) 2022; 11:1111. [PMID: 35567111 PMCID: PMC9102929 DOI: 10.3390/plants11091111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Rhizosphere microflora are key determinants that contribute to plant growth and productivity, which are involved in improving the uptake of nutrients, regulation of plants' metabolisms and activation of plants' responses against both biotic and abiotic stresses. However, the structure and diversity of the grape rhizosphere microbiota remains poorly described. To gain a detailed understanding of the assembly of rhizosphere microbiota, we investigated the rhizosphere microbiota of nine grape varieties in northern China by high-throughput sequencing. We found that the richness and diversity of bacterial and fungal community networking in the root compartments were significantly influenced by the grape variety. The bacterial linear discriminant analysis showed that Pseudomonas and Rhizobium, which were considered as potential plant-growth-promoting bacteria, were more enriched in Pinot noir, and Nitrosospira was enriched in Gem. The fungal linear discriminant analysis showed that Fusarium was more enriched in Longan, Sporormiella was more enriched in Merlot, Gibberella and Pseudallescheria were more enriched in Gem and Mortierella was more abundant in Cabernet Sauvignon. The 16S rRNA functional prediction indicated that no significance differentiates among the grape varieties. Understanding the rhizosphere soil microbial diversity characteristics of different grape varieties could provide the basis for exploring microbial associations and maintaining the health of grapes.
Collapse
Affiliation(s)
- Lijun Bao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (L.B.); (N.X.)
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; (B.S.); (Y.W.); (Z.B.)
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; (B.S.); (Y.W.); (Z.B.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxue Wei
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; (B.S.); (Y.W.); (Z.B.)
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (L.B.); (N.X.)
| | - Shiwei Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; (B.S.); (Y.W.); (Z.B.)
| | - Likun Gu
- College of Resources and Environment, Henan University of Engingeering, Zhengzhou 451191, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; (B.S.); (Y.W.); (Z.B.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiongan Institute of Innovation, Xiongan New Area Baoding 071000, China
| |
Collapse
|
196
|
Oleńska E, Małek W, Sujkowska-Rybkowska M, Szopa S, Włostowski T, Aleksandrowicz O, Swiecicka I, Wójcik M, Thijs S, Vangronsveld J. An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Front Microbiol 2022; 13:853407. [PMID: 35495712 PMCID: PMC9051510 DOI: 10.3389/fmicb.2022.853407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The Bolesław waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg–1, 5,000 mg Pb kg–1, and 500 mg Cd kg–1, is a unique habitat for metallicolous plants, such as Trifolium repens L. The purpose of this study was to characterize the association between T. repens and its microbial symbionts, i.e., Rhizobium leguminosarum bv. trifolii and mycorrhizal fungi and to evaluate its applicability for phytostabilization of metal-polluted soils. Rhizobia originating from the nutrient-poor waste heap area showed to be efficient in plant nodulation and nitrogen fixation. They demonstrated not only potential plant growth promotion traits in vitro, but they also improved the growth of T. repens plants to a similar extent as strains from a non-polluted reference area. Our results revealed that the adaptations of T. repens to high Zn-Pb-Cd concentrations are related to the storage of metals predominantly in the roots (excluder strategy) due to nodule apoplast modifications (i.e., thickening and suberization of cell walls, vacuolar storage), and symbiosis with arbuscular mycorrhizal fungi of a substantial genetic diversity. As a result, the rhizobia-mycorrhizal fungi-T. repens association appears to be a promising tool for phytostabilization of Zn-Pb-Cd-polluted soils.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- *Correspondence: Ewa Oleńska,
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
197
|
Ardestani MM, Mudrák O, Vicena J, Sun D, Veselá H, Frouz J. Microbial community from species rich meadow supports plant specialists during meadow restoration. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masoud M. Ardestani
- Institute for Environmental Studies Charles University Benátská 2 CZ‐12801 Czech Republic
- Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre Czech Academy of Sciences Na Sádkách 7 České Budějovice CZ‐37005 Czech Republic
| | - Ondřej Mudrák
- Institute of Botany Czech Academy of Sciences Dukelská 135 CZ‐37982 Třeboň Czech Republic
| | - Jakub Vicena
- Institute for Environmental Studies Charles University Benátská 2 CZ‐12801 Czech Republic
| | - Daquan Sun
- Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre Czech Academy of Sciences Na Sádkách 7 České Budějovice CZ‐37005 Czech Republic
| | - Hana Veselá
- Institute for Environmental Studies Charles University Benátská 2 CZ‐12801 Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies Charles University Benátská 2 CZ‐12801 Czech Republic
- Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre Czech Academy of Sciences Na Sádkách 7 České Budějovice CZ‐37005 Czech Republic
| |
Collapse
|
198
|
Cano-Díaz C, Maestre FT, Wang J, Li J, Singh BK, Ochoa V, Gozalo B, Delgado-Baquerizo M. Effects of vegetation on soil cyanobacterial communities through time and space. THE NEW PHYTOLOGIST 2022; 234:435-448. [PMID: 35088410 DOI: 10.1111/nph.17996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Photoautotrophic soil cyanobacteria play essential ecological roles and are known to exhibit large changes in their diversity and abundance throughout early succession. However, much less is known about how and why soil cyanobacterial communities change as soil develops over centuries and millennia, and the effects that vegetation have on such communities. We combined an extensive field survey, including 16 global soil chronosequences across contrasting ecosystems (from deserts to tropical forests), with molecular analyses to investigate how the diversity and abundance of photosynthetic and nonphotosynthetic soil cyanobacteria are affected by vegetation change during soil development, over time periods from hundreds to thousands of years. We show that, in most chronosequences, the abundance, species richness and community composition of soil cyanobacteria are relatively stable as soil develops (from centuries to millennia). Regardless of soil age, forest chronosequences were consistently dominated by nonphotosynthetic cyanobacteria (Vampirovibrionia), while grasslands and shrublands were dominated by photosynthetic cyanobacteria. Chronosequences undergoing drastic vegetation shifts (e.g. transitions from grasslands to forests) experienced significant changes in the composition of soil cyanobacterial communities. Our results advance our understanding of the ecology of cyanobacterial classes, and of the understudied nonphotosynthetic cyanobacteria in particular, and highlight the key role of vegetation as a major driver of their temporal dynamics as soil develops.
Collapse
Affiliation(s)
- Concha Cano-Díaz
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
- CISAS - Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Juntao Wang
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Jing Li
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
- Beijing Key Laboratory of Wetland Ecological Function and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Brajesh K Singh
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, E-41012, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, 41013, Spain
| |
Collapse
|
199
|
Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By increasing the resistance of seeds against abiotic and biotic stress, the possibility of cereal mold contamination and hence the occurrence of secondary mold metabolites mycotoxins decreases. The use of biological methods of seed treatment represents a complementary strategy, which can be implemented as an environmental-friendlier approach to increase the agricultural sustainability. Whereas the use of resistant cultivars helps to reduce mold growth and mycotoxin contamination at the very beginning of the production chain, biological detoxification of cereals provides additional weapons against fungal pathogens in the later stage. Most efficient techniques can be selected and combined on an industrial scale to reduce losses and boost crop yields and agriculture sustainability, increasing at the same time food and feed safety. This paper strives to emphasize the possibility of implementation of biocontrol methods in the production of resistant seeds and the prevention and reduction in cereal mycotoxin contamination.
Collapse
|
200
|
Zhao Y, Guan D, Liu X, Gao GF, Meng F, Liu B, Xing P, Jiang X, Ma M, Cao F, Li L, Li J. Profound Change in Soil Microbial Assembly Process and Co-occurrence Pattern in Co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 on Soybean. Front Microbiol 2022; 13:846359. [PMID: 35369449 PMCID: PMC8972127 DOI: 10.3389/fmicb.2022.846359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Rhizosphere microbial communities are vital for plant growth and soil sustainability; however, the composition of rhizobacterial communities, especially the assembly process and co-occurrence pattern among microbiota after the inoculation of some beneficial bacteria, remains considerably unclear. In this study, we investigated the structure of rhizomicrobial communities, their assembly process, and interactions contrasting when Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 are co-inoculated or Bradyrhizobium japonicum 5038 mono-inoculated in black and cinnamon soils of soybean fields. The obtained results indicated that the Chao and Shannon indices were all higher in cinnamon soil than that in black soil. In black soil, the co-inoculation increased the Shannon indices of bacteria comparing with that of the mono-inoculation. In cinnamon soil, the co-inoculation decreased the Chao indices of fungi comparing with that of mono-inoculation. Compared with the mono-inoculation, the interactions of microorganisms of co-inoculation in the co-occurrence pattern increased in complexity, and the nodes and edges of co-inoculation increased by 10.94, 40.18 and 4.82, 16.91% for bacteria and fungi, respectively. The co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 increased the contribution of stochastic processes comparing with Bradyrhizobium japonicum 5038 inoculation in the assembly process of soil microorganisms, and owing to the limitation of species diffusion might restrict the direction of pathogenic microorganism movement. These findings support the feasibility of rebuilding the rhizosphere microbial system via specific microbial strain inoculation and provide evidence that the co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 can be adopted as an excellent compound rhizobia agent resource for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, China
| | - Bingqiang Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Hebei, China
| | - Pengfei Xing
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|