151
|
Guptasarma P. Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays 1995; 17:987-97. [PMID: 8526893 DOI: 10.1002/bies.950171112] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Over 80% of the genes in the E. coli chromosome express fewer than a hundred copies each of their protein products per cell. It is argued here that transcription of these genes is neither constitutive nor regulated by protein factors, but rather, induced by the act of replication. The utility of such replication-induced (RI) transcription to the temporal regulation of synthesis of determinate quantities of low copy number (LCN) proteins is described. It is suggested that RI transcription may be necessitated, as well as facilitated, by the folding of the bacterial chromosome into a compact nucleoid. Mechanistic aspects of the induction of transcription by replication are discussed with respect to the modulation of transcriptional initiation by negative supercoiling effects, promoter methylation status and derepression. It is shown that RI transcription offers plausible explanations for the constancy of the C period of the E. coli cell cycle and the remarkable conservation of gene order in the chromosomes of enteric bacteria. Some experimental tests of the hypothesis are proposed.
Collapse
Affiliation(s)
- P Guptasarma
- Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
152
|
Blanc-Potard AB, Gari E, Spirito F, Figueroa-Bossi N, Bossi L. RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:680-92. [PMID: 7616959 DOI: 10.1007/bf00290399] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Some rifampicin-resistance (RifR) mutations make bacteria slightly resistant to the gyrase inhibitors novobiocin (Nov) and nalidixic acid (Nal). This suggested that it might be possible to isolate rpoB mutants using either drug for positive selection. In an initial test, we confirmed the presence of Rif-resistant isolates among clones selected for Nov resistance. These mutants are also more resistant to Nal. In a subsequent experiment, we found that mutants selected for low-level resistance to Nal include isolates harboring mutations genetically linked to the rpoB locus; of two such mutants studied, one is temperature-sensitive for growth. These two mutants, which are only marginally affected in their response to Nov, are normally sensitive to Rif and thus might be representative of a new class of rpoB alleles. The Rif-resistant and Rif-sensitive rpoB alleles that increase resistance to gyrase inhibitors have one property in common: they all suppress, to varying degrees, the defect in his operon regulation (transcriptional deattenuation) caused by a gyrase defect or inhibition by novobiocin. To further analyse the transcription-supercoiling relationships in these mutants, we examined the ability of RNA polymerase to recruit gyrase activity during transcription. This was done by two independent approaches: (i) observing transcription-induced accumulation of hyper-negatively supercoiled plasmid DNA in a topA mutant background and (ii) measuring transcription-induced plasmid DNA cleavage in the presence of oxolinic acid. Results indicate that the rpoB alleles described in this study diminish the recruitment of gyrase activity by the transcription process. This property correlates with a decrease in the rate of transcription initiation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A B Blanc-Potard
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique Associé à l'Université P. et M. Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
153
|
Dorman CJ. 1995 Flemming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1271-1280. [PMID: 7670631 DOI: 10.1099/13500872-141-6-1271] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College,Dublin 2,Republic of Ireland
| |
Collapse
|
154
|
Marincs F, White DW. Divergent transcription and a remote operator play a role in control of expression of a nopaline catabolism promoter in Agrobacterium tumefaciens. J Biol Chem 1995; 270:12339-42. [PMID: 7759474 DOI: 10.1074/jbc.270.21.12339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nocP-nocR divergent gene arrangement of the nopaline catabolism (noc) operon of the Agrobacterium tumefaciens Ti plasmid pTiT37 was examined with respect to the expression of the nocP promoter. Under repressive conditions, i.e. in the absence of nopaline, four distinct levels of PnocP expression were observed. The lowest level of expression, i.e. full repression, was detected in the presence of the NocR repressor, together with the remote noc operator and productive transcription from the divergent nocR promoter. The next level was observed in the absence of either the NocR protein or of the operator or of both. The third level was detected when abortive transcription from the nocR promoter occurred, irrespective of the presence or absence of the NocR protein. The highest level of PnocP expression was observed in the absence of both productive transcription from PnocR and the operator sequence, whether or not the NocR protein was present. Under inductive conditions, i.e. in the presence of nopaline, expression of PnocP was activated if both the NocR protein and the operator were present. Absence of either NocR or the operator resulted in lack of inducibility of the nocP promoter. Transcription from the divergent nocR promoter had no influence on the activation of PnocP. It was also found that the absence of the operator affected plasmid supercoiling in vivo. The results suggest that DNA topology has a role in the regulation of the nocP promoter.
Collapse
Affiliation(s)
- F Marincs
- Plant Molecular Genetics Laboratory, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | |
Collapse
|
155
|
Ljungman M, Hanawalt PC. Presence of negative torsional tension in the promoter region of the transcriptionally poised dihydrofolate reductase gene in vivo. Nucleic Acids Res 1995; 23:1782-9. [PMID: 7784183 PMCID: PMC306936 DOI: 10.1093/nar/23.10.1782] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA topology has been suggested to play an important role in the process of transcription. Negative torsional tension has been shown to stimulate both pre-initiation complex formation and promoter clearance on plasmid DNA in vitro. We recently showed that genomic DNA in human cells contains localized torsional tension. In the present study we have further characterized and mapped torsional tension in the dihydrofolate reductase (DHFR) gene in Chinese hamster ovary (CHO) cells and investigated the effects of differential rates of transcription on the magnitude and location of this tension. Using psoralen photo-cross-linking in conjunction with X-irradiation, we found that relaxable psoralen hypersensitivity was specifically localized to the promoter region of the serum-regulated DHFR gene in serum-stimulated, but not in serum-starved, cells. Moreover, this hypersensitivity did not appear to be caused by transcription elongation, since it persisted in cells in which transcription of the DHFR gene had been reduced by the transcription inhibitor 5,6-dichloro-1-beta-D-ribofurano-sylbenzimidazole (DRB). We suggest that the generation of negative torsional tension in DNA may play an important role in gene regulation by poising genes for transcription.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor 48109-0582, USA
| | | |
Collapse
|
156
|
Dove SL, Dorman CJ. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol Microbiol 1994; 14:975-88. [PMID: 7715458 DOI: 10.1111/j.1365-2958.1994.tb01332.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the effect of altering the in vivo level of DNA supercoiling on the phase-variable expression of the Escherichia coli fimA gene. Transcription from the fimA promoter was unaffected by changes in DNA supercoiling whether caused by the introduction of a topA::Tn10 mutation or by inhibition of DNA gyrase with the antibiotic novobiocin. However, inversion of the fimA promoter fragment was altered in response to perturbation of DNA supercoiling. Specifically, inactivation of topA reduced the rate of promoter fragment inversion in both the ON-to-OFF and the OFF-to-ON directions. This effect correlated with the loss of functional topA and not with the global level of DNA supercoiling. Inhibition of DNA gyrase introduced a bias in favour of the OFF-to-ON inversion; the ON-to-OFF inversion was affected only slightly. Changes in expression of fimB, the gene coding for the recombinase that catalyses fimA promoter fragment inversion in the strains used in this study, did not correlate with effects on fimA phase variation: we found that transcription of fimB was inhibited by loss of functional topA and was enhanced by inhibition of DNA gyrase in a manner that correlated well with the global level of in vivo DNA supercoiling. A model is presented to account for the effects of lost topoisomerase function on fimA gene expression.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- DNA Probes/genetics
- DNA Topoisomerases, Type I/genetics
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fimbriae Proteins
- Fimbriae, Bacterial
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Molecular Sequence Data
- Mutation
- Novobiocin/pharmacology
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Recombination, Genetic
- Topoisomerase II Inhibitors
- Transcription, Genetic
Collapse
Affiliation(s)
- S L Dove
- Department of Biochemistry, University of Dundee, UK
| | | |
Collapse
|
157
|
Bergerat A, Gadelle D, Forterre P. Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47037-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
158
|
Gadelle D, Forterre P. DNA intercalating drugs inhibit positive supercoiling induced by novobiocin in halophilic archaea. FEMS Microbiol Lett 1994; 123:161-6. [PMID: 7988884 DOI: 10.1111/j.1574-6968.1994.tb07216.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The two DNA intercalators, actinomycin D and 2-methyl-9-hydroxy-ellipticine, and the DNA minor groove ligant DAPI inhibited the growth of the haloarchaeon Halobacterium sp. GRB and bind to its plasmid pGRB-1. In contrast to specific DNA topoisomerase II inhibitors, they produced neither double-stranded breaks nor relaxation of plasmidic DNA. The two DNA intercalators inhibited positive supercoiling induced by novobiocin, suggesting that positive supercoiling in haloarchaea is due to transcription, as in the domain Bacteria. Plasmids from haloarchaea could thus be used to prescreen for DNA intercalators and to discriminate between different drug families via their mode of action.
Collapse
Affiliation(s)
- D Gadelle
- Institute de Génétique et Microbiologie, Université Paris-Sud, CNRS, URA 1352, Orsay, France
| | | |
Collapse
|
159
|
Bowater RP, Chen D, Lilley DM. Elevated unconstrained supercoiling of plasmid DNA generated by transcription and translation of the tetracycline resistance gene in eubacteria. Biochemistry 1994; 33:9266-75. [PMID: 8049227 DOI: 10.1021/bi00197a030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our previous studies have indicated that the leu-500 promoter of Salmonella typhimurium is activated by local supercoiling arising from the transcription of a divergent promoter (Chen et al., 1992). For this to occur on a plasmid, we have shown that the transcribing RNA polymerase must be anchored to the cell membrane by transcription, translation, and export of the tetA gene and that the cell background must be topA. In this study we have used (AT)n reporter sequences to analyze changes in unconstrained supercoiling of plasmid DNA under the circumstances in which the leu-500 promoter becomes activated. (AT)n sequences undergo a structural transition to a cruciform at a threshold level of negative supercoiling that is determined by the length of the tract, and this can be detected in the cellular DNA by in situ chemical probing. These studies have shown that there is elevated unconstrained supercoiling in tetA-carrying plasmids in either Escherichia coli or S. typhimurium cells in exponential growth. This oversupercoiling depends on the function of the tetA gene in cis and the delta topA cell background. These are exactly the conditions that lead to the activation of the leu-500 promoter, supporting the proposed mechanism for the suppression of the leu-500 mutation by topA. Use of (AT)n sequences of different lengths has permitted us to estimate the extent of oversupercoiling. When the tetA gene was initiated using the strong tac promoter, we were able to detect increased unconstrained DNA supercoiling even in topA+ E. coli cells.
Collapse
Affiliation(s)
- R P Bowater
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University, Dundee, U.K
| | | | | |
Collapse
|
160
|
Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31881-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
161
|
Brooks W, Jackson V. The rapid transfer and selective association of histones H2A and H2B onto negatively coiled DNA at physiological ionic strength. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
162
|
Chen D, Bowater R, Lilley DM. Topological promoter coupling in Escherichia coli: delta topA-dependent activation of the leu-500 promoter on a plasmid. J Bacteriol 1994; 176:3757-64. [PMID: 8206854 PMCID: PMC205565 DOI: 10.1128/jb.176.12.3757-3764.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The leu-500 promoter of Salmonella typhimurium is activated in topA mutants. We have previously shown that this promoter can be activated on circular plasmids in a manner that depends on transcription and translation of the tetracycline resistance gene tetA and insertion of its product into the cell membrane. We have suggested that in the absence of enzymatic relaxation by topoisomerase I, the local domain of transcription-induced DNA supercoiling reaches a steady-state level that leads to the activation of the leu-500 promoter. In the present paper, we have shown that the leu-500 promoter may also be activated in Escherichia coli. Comparison of the closely related pair of E. coli strains DM800 (delta topA) and SD108 (topA+) shows that the activation is dependent on the presence of a null mutation in topA. We have also shown that activation of the plasmid-borne leu-500 promoter depends, as in S. typhimurium, on the function of an adjacent tetA gene, suggesting that membrane anchorage of the TetA peptide prevents dissipation of transcription-induced supercoiling by superhelical diffusion. The activity of the leu-500 promoter is boosted by placing a divergent tac promoter on the side opposite to tetA. The topoisomer distributions of these plasmids extracted from the cell have been analyzed. We find that when the parent plasmid pLEU500Tc, containing the leu-500 promoter upstream of the complete tetA gene, is extracted from E. coli DM800 (delta topA), the distribution of linking numbers is bimodal. There is a fraction with a lower level of supercoiling (mean linking difference approximately -0.05) that is constant for all plasmids extracted from either delta topA or topA+ cells. In addition, we observe a second fraction with highly negatively supercoiled DNA (mean linking difference approximately -0.09) only in DNA extracted from delta topA cells. The proportion of the oversupercoiled fraction correlates with the activity of the leu-500 promoter: it is strongly reduced when the tetA promoter is deleted or when translation of TetA is prematurely terminated, while it is increased when the strong tac promoter is present in cis. We suggest that this oversupercoiled fraction represents the proportion of plasmid molecules active in tetA transcription and that it is this supercoiling that activates the leu-500 promoter.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, The University, Dundee, United Kingdom
| | | | | |
Collapse
|
163
|
Jackson S, Brooks W, Jackson V. Dynamics of the interactions of histones H2A,H2B and H3,H4 with torsionally stressed DNA. Biochemistry 1994; 33:5392-403. [PMID: 8180162 DOI: 10.1021/bi00184a006] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interactions of histones H2A,H2B and H3,H4 with closed circular DNA maintained in either a positively or negatively coiled state have been studied. The interactions were assayed by measuring the rate at which negative stress was stored in the DNA by the histones and by the salt concentration sufficient to cause dissociation on sucrose gradients. Additional experiments were performed in which DNAs of substantially different molecular weights and opposite topological states were mixed with the histones in order to study histone mobility under varied conditions. This mobility was characterized by separating the complexes on sucrose gradients and by analyzing the DNA's topological state after topoisomerase I treatment. Histones H3,H4 were found to differ substantially from histones H2A,H2B with regard to the DNA topology with which they prefer to interact. The results are consistent with a model in which transcription-induced positive stress in advance of the RNA polymerase unfolds the nucleosome to facilitate the release of H2A,H2B. The data are also consistent with a model in which histones H3,H4 remain associated with the DNA during polymerase passage and serve as a nucleation site for the reassociation of H2A,H2B. The rapid production of transcription-induced negative stress in the wake of a polymerase would have substantial importance in facilitating the reassociation of histones H2A,H2B.
Collapse
Affiliation(s)
- S Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | | | |
Collapse
|
164
|
Blanc-Potard AB, Bossi L. Phenotypic suppression of DNA gyrase deficiencies by a deletion lowering the gene dosage of a major tRNA in Salmonella typhimurium. J Bacteriol 1994; 176:2216-26. [PMID: 7512550 PMCID: PMC205342 DOI: 10.1128/jb.176.8.2216-2226.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
One of the pleiotropic phenotypes of mutations affecting DNA gyrase activity in Salmonella typhimurium is the constitutive deattenuation of the histidine operon. In the present work, we isolated and characterized a suppressor mutation which restores his attenuation in the presence of a defective gyrase. Such a suppressor, initially named sgdA1 (for suppressor gyrase deficiency), was found to correct additional phenotypes associated with defective gyrase function. These include the aberrant nucleoid partitioning of a gyrB mutant and the conditional lethality of a gyrA mutation. Furthermore, the sgdA1 mutation was found to confer low-level resistance to nalidixic acid. The last phenotype permitted isolation of a number of additional sgdA mutants. Genetic analysis established the recessive character of these alleles as well as the position of the sgdA locus at 57 U on the Salmonella genetic map. All of the sgdA mutants result from the same molecular event: a deletion removing three of the four tandemly repeated copies of argV, the gene which specifies tRNA(2Arg), the major arginine isoacceptor tRNA. These findings, combined with the observation of some Sgd-like phenotypes in a tRNA modification mutant (hisT mutant), lead us to propose that protein synthesis contributes, directly or indirectly, to the pathology of gyrase alterations in growing bacteria. We discuss plausible mechanisms which may be responsible for these effects.
Collapse
MESH Headings
- Base Sequence
- DNA Topoisomerases, Type II/genetics
- Gene Deletion
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Genes, Suppressor/genetics
- Genes, Suppressor/physiology
- Histidine/genetics
- Histidine/metabolism
- Molecular Sequence Data
- Mutation/drug effects
- Mutation/genetics
- Mutation/physiology
- Nalidixic Acid/pharmacology
- Phenotype
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/physiology
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
Collapse
Affiliation(s)
- A B Blanc-Potard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | |
Collapse
|
165
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
166
|
Dröge P. Protein tracking-induced supercoiling of DNA: a tool to regulate DNA transactions in vivo? Bioessays 1994; 16:91-9. [PMID: 8147849 DOI: 10.1002/bies.950160205] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An interplay between DNA-dependent biological processes appears to be crucial for cell viability. At the molecular level, this interplay relies heavily on the communication between DNA-bound proteins, which can be facilitated and controlled by the dynamic structure of double-stranded DNA. Hence, DNA structural alterations are recognized as potential tools to transfer biological information over some distance within a genome. Until recently, however, direct evidence for DNA structural information as a mediator between cellular processes was lacking. This changed when the concept of transient waves of DNA supercoiling, induced by proteins tracking along the right-handed DNA double helix, came into the limelight. Indeed, a number of observations now suggest that helix tracking-induced DNA structural information might be exploited to participate in the regulation of a variety of DNA transactions in vivo.
Collapse
Affiliation(s)
- P Dröge
- Department of Biology, University of Konstanz, Germany
| |
Collapse
|
167
|
Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol Cell Biol 1994. [PMID: 8264606 DOI: 10.1128/mcb.14.1.391] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents.
Collapse
|
168
|
The dynamics of chromatin condensation: redistribution of topoisomerase II in the 87A7 heat shock locus during induction and recovery. Mol Cell Biol 1994. [PMID: 8246970 DOI: 10.1128/mcb.13.12.7522] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the in vivo sites of action for topoisomerases II in the 87A7 heat shock locus as a function of gene activity. When the hsp70 genes are induced, there is a dramatic redistribution of topoisomerase II in the locus which parallels many of the observed alterations in chromatin structure. In addition to changes in the topoisomerase II distribution within the locus, we find topoisomerase II localized around the putative domain boundaries scs and scs'. During recovery, when the chromatin fiber of the locus recondenses, the major sites of action for topoisomerase II appear to be located within the two hsp70 genes and in the intergenic spacer separating the two genes.
Collapse
|
169
|
Deng WP, Nickoloff JA. Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol Cell Biol 1994; 14:391-9. [PMID: 8264606 PMCID: PMC358388 DOI: 10.1128/mcb.14.1.391-399.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents.
Collapse
Affiliation(s)
- W P Deng
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
170
|
Drolet M, Wu HY, Liu LF. Roles of DNA topoisomerases in transcription. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:135-46. [PMID: 7826855 DOI: 10.1016/s1054-3589(08)60543-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Drolet
- Department of Microbiology and Immunology, University of Montreal, Quebec, Canada
| | | | | |
Collapse
|
171
|
Spirito F, Figueroa-Bossi N, Bossi L. The relative contributions of transcription and translation to plasmid DNA supercoiling in Salmonella typhimurium. Mol Microbiol 1994; 11:111-22. [PMID: 7511771 DOI: 10.1111/j.1365-2958.1994.tb00294.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations affecting DNA topoisomerase I (topA) in Salmonella typhimurium were isolated and graded on the basis of their ability to reverse the effects of gyrB mutations on his operon expression. Different topA and gyrB alleles (in otherwise isogenic strains) were used to gather insights into the transcription-dependent variability of plasmid DNA-linking deficit in growing bacteria. This study showed that modulation of DNA supercoiling by transcription results from the action of two components: one is highly dependent on the coupling of translation to RNA-chain elongation; and the other is unrelated to protein synthesis and entirely dependent on promoter determinants. The former greatly predominates in DNA topoisomerase I mutants (topA and topA gyrB) while the latter is the sole contributor to plasmid DNA-linking deficit in wild-type cells. Altogether, these data suggest that whereas translation acts by enhancing the formation of twin supercoiled domains during elongation, the promoter-dependent effects bear no relation to the twin-supercoiled-domain model and are better explained by a mechanism which responds to the binding/unwinding of template DNA by RNA polymerase.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Blotting, Northern
- DNA Gyrase
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/metabolism
- Gene Expression Regulation, Bacterial/genetics
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Plasmids/isolation & purification
- Protein Biosynthesis
- RNA, Bacterial/analysis
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
- Transcription, Genetic
- Transduction, Genetic
Collapse
Affiliation(s)
- F Spirito
- Centre de Génétique Moléculaire, Université P. et M. Curie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
172
|
Wassermann K. Intragenomic heterogeneity of DNA damage formation and repair: a review of cellular responses to covalent drug DNA interaction. Crit Rev Toxicol 1994; 24:281-322. [PMID: 7857520 DOI: 10.3109/10408449409017921] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemical DNA interaction and its processing can now be studied at the level of specific genomic regions. Such investigations have revealed important new information about the molecular biology of the cellular responses to genomic insult and especially of the repair processes. They also have demonstrated that both the formation and repair of DNA damage display patterns of intragenomic heterogeneity. Therefore, mechanistic studies should involve examination of DNA damage formation and repair in specific genomic sequences besides in the overall genome to provide clues to the way in which specific modifications of DNA or chromatin could have specific biological effects. This review primarily focuses on studies done to elucidate the nature of DNA damage induction and intragenomic processing provoked by covalent drug-DNA modification in mammalian cells. The involvement of DNA damage formation and cellular processing as critical factors for genomic injury is exemplified by studies of the novel alkylating morpholinyl anthracyclines and the bifunctional alkylating agent nitrogen mustard as a prototype agent for covalent drug DNA interaction.
Collapse
Affiliation(s)
- K Wassermann
- Department of Toxicology and Biology, National Institute of Occupational Health, Copenhagen, Denmark
| |
Collapse
|
173
|
|
174
|
|
175
|
Abstract
The developmental regulation of globin gene expression in the chicken has been studied. All of the genes are regulated by a small number of general erythroid factors. In addition, expression of individual members of the family must be controlled in a lineage (stage)-specific manner. In some cases, the relevant factors may be stage specific, but in others they are not confined to one stage, but exert their control through developmentally regulated changes in their abundance within the nucleus. Chromatin structural elements, such as locus control regions and insulators, are also involved in control of eukaryotic gene expression. Because so much is understood about regulation of individual genes, the globin family has proven valuable in investigating control of transcription at the level of chromatin structure.
Collapse
Affiliation(s)
- G Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
176
|
Udvardy A, Schedl P. The dynamics of chromatin condensation: redistribution of topoisomerase II in the 87A7 heat shock locus during induction and recovery. Mol Cell Biol 1993; 13:7522-30. [PMID: 8246970 PMCID: PMC364824 DOI: 10.1128/mcb.13.12.7522-7530.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have examined the in vivo sites of action for topoisomerases II in the 87A7 heat shock locus as a function of gene activity. When the hsp70 genes are induced, there is a dramatic redistribution of topoisomerase II in the locus which parallels many of the observed alterations in chromatin structure. In addition to changes in the topoisomerase II distribution within the locus, we find topoisomerase II localized around the putative domain boundaries scs and scs'. During recovery, when the chromatin fiber of the locus recondenses, the major sites of action for topoisomerase II appear to be located within the two hsp70 genes and in the intergenic spacer separating the two genes.
Collapse
Affiliation(s)
- A Udvardy
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
177
|
Abstract
The homologous recombination between direct repeat sequences separated by either 200 or 1000 bp was induced by active transcription of the downstream gene when poly(dG)-poly(dC) sequences exist between the two direct repeats. This dG tract-mediated and transcription-induced recombination was RecA independent, and the frequency of recombination was dependent on both the length and the orientation of the poly(dG)-poly(dC) sequences relative to the gene. An intramolecular dG.dG.dC triplex formation was detected in Escherichia coli cells in a length-dependent manner when the transcription of the downstream gene was activated. We suggest that the negative superhelical strain generated by active transcription of the downstream gene induces poly(dG)-poly(dC) sequences to adopt a triple-helix structure in vivo and that this structure brings two remote sequences together to stimulate homologous recombination.
Collapse
Affiliation(s)
- Y Kohwi
- La Jolla Cancer Research Foundation, California 92037
| | | |
Collapse
|
178
|
Hwong C, Chen C, Shang H, Hwang J. Increased synthesis and degradation of DNA topoisomerase I during the initial phase of human T lymphocyte proliferation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46723-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
179
|
Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8384303 DOI: 10.1128/mcb.13.4.2081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of Ty1 and Ty2 retrotransposons of the yeast Saccharomyces cerevisiae is modulated by multiple downstream regulatory sites. Both transposon families include a positively acting site within the transcribed region which resembles a higher eukaryotic enhancer. We have demonstrated the existence of a repression site distal to the enhancer of the Ty2-917 element. Here we describe experiments investigating the internal structure of this site. We show that this 200-bp region includes three distinct repression sites which we term DRSI (downstream repression site I), DRSII, and DRSIII. Individually each site causes almost twofold repression, and together the sites repress eightfold. Unexpectedly, when the entire region encompassing the DRS sites is moved outside the transcription unit, it acts as a qualitatively positively acting element. In this context the DRS sites still repress transcription, since eliminating them increases transcription further. That the region can activate transcription implies that it includes activation sites in addition to the three repression sites. The change from qualitatively negatively acting to positively acting must reflect a change in the relative effects of the multiple positive and negative sites; when moved outside the transcription unit, the activators predominate. Importantly, DRSII and DRSIII repress transcription autonomously when inserted upstream of a heterologous promoter activated by the transcriptional activator GCN4, showing that they are indeed transcriptional repression sites.
Collapse
|
180
|
Abstract
Transcription of a topologically relaxed, circular DNA triggers recombination between two directly repeated res sites by gamma delta resolvase in vitro. This activation of recombination depends on the res site-to-site distance and the orientation of sites with respect to the direction of RNA polymerase tracking. In addition to functioning as a site-specific recombinase, gamma delta resolvase acts as a site-specific topoisomerase and increases the topological linking number of templates during transcription. The data suggest that the link between transcription and recombination could be negative DNA supercoiling that transiently builds up on a relatively short DNA segment in the wake of an advancing RNA polymerase. Surprisingly, transcription-driven recombination is not inhibited by the presence of large amounts of eukaryotic topoisomerase type I, indicating that site-specific recombination can override relaxation by diffusible topoisomerases. This in vitro system might therefore serve as a model for some transcription-directed recombination events observed in vivo.
Collapse
Affiliation(s)
- P Dröge
- Department of Biology, University of Konstanz, Germany
| |
Collapse
|
181
|
Farabaugh PJ, Vimaladithan A, Türkel S, Johnson R, Zhao H. Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:2081-90. [PMID: 8384303 PMCID: PMC359529 DOI: 10.1128/mcb.13.4.2081-2090.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription of Ty1 and Ty2 retrotransposons of the yeast Saccharomyces cerevisiae is modulated by multiple downstream regulatory sites. Both transposon families include a positively acting site within the transcribed region which resembles a higher eukaryotic enhancer. We have demonstrated the existence of a repression site distal to the enhancer of the Ty2-917 element. Here we describe experiments investigating the internal structure of this site. We show that this 200-bp region includes three distinct repression sites which we term DRSI (downstream repression site I), DRSII, and DRSIII. Individually each site causes almost twofold repression, and together the sites repress eightfold. Unexpectedly, when the entire region encompassing the DRS sites is moved outside the transcription unit, it acts as a qualitatively positively acting element. In this context the DRS sites still repress transcription, since eliminating them increases transcription further. That the region can activate transcription implies that it includes activation sites in addition to the three repression sites. The change from qualitatively negatively acting to positively acting must reflect a change in the relative effects of the multiple positive and negative sites; when moved outside the transcription unit, the activators predominate. Importantly, DRSII and DRSIII repress transcription autonomously when inserted upstream of a heterologous promoter activated by the transcriptional activator GCN4, showing that they are indeed transcriptional repression sites.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Catonsville 21228
| | | | | | | | | |
Collapse
|
182
|
Caldecott K, Banks G, Jeggo P. The induction and reversal of topoisomerase II cleavable complexes formed by nuclear extract from the CHO DNA repair mutant, xrs1. Mutat Res 1993; 293:259-67. [PMID: 7679476 DOI: 10.1016/0921-8777(93)90077-t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gamma-ray sensitive CHO cell mutant xrs1 is hypersensitive to antitumour drugs that stabilise DNA topoisomerase II (topoII) cleavable complexes. Sensitivity appears to result from DNA double-strand breaks (DSBs) that persist in xrs1 cells, but not wild-type CHO-K1 cells, following drug removal. One possible explanation for the persistence of DSBs in xrs1 cells is a defect in topoII which reduces its ability to reseal the DSBs associated with cleavable complexes following drug removal. To address this possibility, cleavable complexes formed in vitro by incubating VP16, plasmid DNA and nuclear extract from either CHO-K1 or xrs1 cells were induced to reverse by adding EDTA or salt to the reaction, or by raising the temperature to 65 degrees C, or by dilution of the drug. The fraction of drug-induced cleavable complexes that reversed in these experiments was dependent on how reversal was induced, and ranged from 55 to 95%. However, the extent of reversal was independent of the source of nuclear extract in all of the experiments, indicating that CHO-KI and xrs1 topoII is equally able to reseal complex-associated DSBs during cleavable complex reversal in vitro.
Collapse
Affiliation(s)
- K Caldecott
- Genetics Division, National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
183
|
Dunaway M, Ostrander EA. Local domains of supercoiling activate a eukaryotic promoter in vivo. Nature 1993; 361:746-8. [PMID: 8441472 DOI: 10.1038/361746a0] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Experiments correlating template topology with transcriptional activity suggest that DNA topology plays a role in eukaryotic gene expression. Linear templates transfected into cultured cells produce far fewer transcripts than do circular transcription templates, and no transcripts can be detected from linear templates injected into Xenopus oocytes. Further, when transcriptionally active circular templates in Xenopus oocytes are linearized by injection of a restriction enzyme, transcription dramatically decreases. Here we show that transcription by phage T7 RNA polymerase from a divergent promoter can partially replace the requirement for circular Xenopus ribosomal RNA transcription templates in Xenopus oocytes. Supercoiled domains can apparently be generated on short pieces of DNA having no known sequences that result in association with the nuclear architecture, suggesting that localized, transient domains of supercoiling fulfil the minimum topological needs for Xenopus rRNA transcription in vivo.
Collapse
Affiliation(s)
- M Dunaway
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
184
|
Baldridge GD, Dalton MW, Fallon AM. Is higher-order structure conserved in eukaryotic ribosomal DNA intergenic spacers? J Mol Evol 1992; 35:514-23. [PMID: 1474605 DOI: 10.1007/bf00160212] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Computer-based structural analysis of the ribosomal DNA intergenic spacer (IGS) from the mosquito Aedes albopictus revealed a potential to form strong and extensive secondary structures throughout a 4.7-kilobase (kb) region. The predicted stability of secondary structures was particularly high within a 3.15-kb region containing 17 tandem 201 base-pair subrepeats. Similarly strong secondary structure potential was also found when IGS subrepeats were analyzed from 17 phylogenetically diverse eukaryotes, including vertebrates, invertebrates, and plants. Conservation of higher-order structure potential in the IGS region of ribosomal DNA may reflect evolutionary and functional constraints on chromatin organization, transcriptional regulation of the ribosomal RNA genes, and/or transcript processing and stability.
Collapse
Affiliation(s)
- G D Baldridge
- Department of Entomology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
185
|
Coggins LW, O'Prey M, Akhter S. Intrahelical pseudoknots and interhelical associations mediated by mispaired human minisatellite DNA sequences in vitro. Gene 1992; 121:279-85. [PMID: 1446825 DOI: 10.1016/0378-1119(92)90132-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human minisatellite arrays, 33.6 and 33.15, consist of tandem reiterations of a 37-nucleotide (nt) and a 16-nt repeat unit sequence, respectively, both of which contain a majority of purine bases on one strand. Knot-like tertiary structures, which mapped to the cloned arrays, were observed by electron microscopy (EM) in homoduplex molecules produced by denaturation and reannealing in vitro. They result from a primary hybridization between misaligned repeat units of the array, forming a slipped-strand structure with staggered single-stranded DNA loops, followed by a secondary hybridization between repeat units in the two loops. Depending on the relative alignment of the loops when they hybridize, a particular form of intrahelical pseudoknot is produced. Theta-shaped, figure-of-eight, and bow-shaped structures were the most common conformational isomers observed in homoduplexes flattened into two dimensions during EM preparation. At the site of a bow-shaped structure, a conformation-dependent bend of approximately 60 degrees between the flanking DNA segments is induced; the other conformations generally do not deflect the line of the main DNA axis. Paired loops, similar to the bow-shaped structure, were apically situated in some supercoiled plasmids containing the 33.6 array. Both plasmids formed intermolecular associations, consisting of two (or more) homoduplex molecules held together at or immediately adjacent to a nexus which mapped to the minisatellite sequences. These associations might arise either by interhelical hybridization between arrays or by knot-like structures interfering with branch migration of chi-form Holliday junctions.
Collapse
Affiliation(s)
- L W Coggins
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Bearsden, Glasgow, UK
| | | | | |
Collapse
|
186
|
Cook DN, Ma D, Pon NG, Hearst JE. Dynamics of DNA supercoiling by transcription in Escherichia coli. Proc Natl Acad Sci U S A 1992; 89:10603-7. [PMID: 1332053 PMCID: PMC50389 DOI: 10.1073/pnas.89.22.10603] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The relative rotation between RNA polymerase and DNA during transcription elongation can lead to supercoiling of the DNA template. However, the variables that influence the efficiency of supercoiling by RNA polymerase in vivo are poorly understood, despite the importance of supercoiling for DNA metabolism. We describe a model system to measure the rate of supercoiling by transcription and to estimate the rates of topoisomerase turnover in Escherichia coli. Transcription in a strain lacking topoisomerase I can lead to optimal supercoiling, wherein nearly one positive and one negative superturn are produced for each 10.4 base pairs transcribed. This rapid efficient supercoiling is observed during transcription of membrane-associated gene products, encoded by tet (the gene for tetracycline resistance) and phoA (the gene for E. coli alkaline phosphatase), when the genes are oppositely oriented. Replacement of tet by cat, the gene from Tn9 encoding resistance to chloramphenicol, whose gene product is soluble in the cytosol, reduces the efficiency of supercoiling by RNA polymerase. In a wild-type topoisomerase background, both gyrase and topoisomerase I are kinetically competent to relieve superturns produced by transcription. These results suggest that the level of DNA supercoiling in vivo is probably determined by topoisomerase activity, not by transcription.
Collapse
MESH Headings
- Alkaline Phosphatase/genetics
- Base Sequence
- Chloramphenicol O-Acetyltransferase/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA Transposable Elements
- DNA, Superhelical/genetics
- DNA, Superhelical/isolation & purification
- DNA, Superhelical/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Genes, Bacterial
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Plasmids
- Tetracycline Resistance/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- D N Cook
- Melvin Calvin Laboratory, Department of Chemistry, University of California, Berkeley
| | | | | | | |
Collapse
|
187
|
Koo HS, Lau K, Wu HY, Liu LF. Identification of a DNA supercoiling activity in Saccharomyces cerevisiae. Nucleic Acids Res 1992; 20:5067-72. [PMID: 1329038 PMCID: PMC334285 DOI: 10.1093/nar/20.19.5067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A relaxed plasmid DNA is shown to become positively supercoiled in cell extracts from top1 strains of Saccharomyces cerevisiae. This positive supercoiling activity is dependent on the presence of bacterial DNA topoisomerase I and ATP (or dATP), and the positive supercoils generated in this reaction are not constrained by protein(s). Non-hydrolyzable ATP analogs cannot substitute for ATP in this supercoiling reaction, and the supercoiling activity is not due to RNA synthesis. The presence of an ARS sequence in the DNA does not alter the activity. Furthermore, this activity is equally active against UV irradiated or intact DNA. Extracts prepared from rad50 and rad52 mutant cells exhibited the same activity. Partial purification of this activity suggests that a protein factor with a native molecular weight of approximately 150 kDa is primarily responsible for the activity. The possibility that this supercoiling activity may be due to tracking of a protein along the intact duplex DNA is discussed.
Collapse
Affiliation(s)
- H S Koo
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205
| | | | | | | |
Collapse
|
188
|
Abstract
We have determined the fate of a nucleosome core on transcription. A nucleosome core was assembled on a short DNA fragment and ligated into a plasmid containing a promoter and terminators for SP6 RNA polymerase. The nucleosome core was stable in the absence of transcription. The distribution of nucleosome cores after transcription was examined. The histone octamer was displaced from its original site and reformed a nucleosome core at a new site within the same plasmid molecule, with some preference for the untranscribed region behind the promoter. These observations eliminate several models that have been proposed for transcription through a nucleosome core. Our results suggest that a nucleosome core in the path of a transcribing polymerase is displaced by transfer to the closest acceptor DNA.
Collapse
Affiliation(s)
- D J Clark
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
189
|
Chen D, Bowater R, Dorman CJ, Lilley DM. Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci U S A 1992; 89:8784-8. [PMID: 1326763 PMCID: PMC50005 DOI: 10.1073/pnas.89.18.8784] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
leu-500 is a chromosomal promoter mutation in Salmonella typhimurium that normally causes the promoter to be inactive in the initiation of RNA synthesis. But in a strain that has mutations in topA, the gene encoding DNA topoisomerase I, the mutant promoter becomes active. We show that the leu-500 promoter can function on a plasmid when it is adjacent to the tetracycline-resistance gene tetA. Activation of the leu-500 promoter requires that the tetA gene is transcribed and translated and that the host cell is topA. We propose that the A----G mutation in the -10 region of the leu-500 promoter is compensated by local negative supercoiling arising from transcription of the tetA gene, which may reach elevated levels in a topA background, provided that diffusional dissipation is reduced due to anchoring of the TetA peptide in the membrane. This is a clear example of the modulation of the activity of a promoter by the activity of another promoter in cis, when they can be coupled through the topology of the template.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, University, Dundee, United Kingdom
| | | | | | | |
Collapse
|
190
|
Abstract
Some evolutionary consequences of different rates and trends in DNA damage and repair are explained. Different types of DNA damaging agents cause nonrandom lesions along the DNA. The type of DNA sequence motifs to be preferentially attacked depends upon the chemical or physical nature of the assaulting agent and the DNA base composition. Higher-order chromatin structure, the nonrandom nucleosome positioning along the DNA, the absence of nucleosomes from the promoter regions of active genes, curved DNA, the presence of sequence-specific binding proteins, and the torsional strain on the DNA induced by an increased transcriptional activity all are expected to affect rates of damage of individual genes. Furthermore, potential Z-DNA, H-DNA, slippage, and cruciform structures in the regulatory region of some genes or in other genomic loci induced by torsional strain on the DNA are more prone to modification by genotoxic agents. A specific actively transcribed gene may be preferentially damaged over nontranscribed genes only in specific cell types that maintain this gene in active chromatin fractions because of (1) its decondensed chromatin structure, (2) torsional strain in its DNA, (3) absence of nucleosomes from its regulatory region, and (4) altered nucleosome structure in its coding sequence due to the presence of modified histones and HMG proteins. The situation in this regard of germ cell lineages is, of course, the only one to intervene in evolution. Most lesions in DNA such as those caused by UV or DNA alkylating agents tend to diminish the GC content of genomes. Thus, DNA sequences not bound by selective constraints, such as pseudogenes, will show an increase in their AT content during evolution as evidenced by experimental observations. On the other hand, transcriptionally active parts may be repaired at rates higher than inactive parts of the genome, and proliferating cells may display higher repair activities than quiescent cells. This might arise from a tight coupling of the repair process with both transcription and replication, all these processes taking place on the nuclear matrix. Repair activities differ greatly among species, and there is a good correlation between life span and repair among mammals. It is predicted that genes that are transcriptionally active in germ-cell lineages have a lower mutation rate than bulk DNA, a circumstance that is expected to be reflected in evolution. Exception to this rule might be genes containing potential Z-DNA, H-DNA, or cruciform structures in their coding or regulatory regions that appear to be refractory to repair.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Boulikas
- Linus Pauling Institute of Science and Medicine, Palo Alto, CA
| |
Collapse
|
191
|
Cook PR, Gove F. Transcription by an immobilized RNA polymerase from bacteriophage T7 and the topology of transcription. Nucleic Acids Res 1992; 20:3591-8. [PMID: 1641325 PMCID: PMC334006 DOI: 10.1093/nar/20.14.3591] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is often assumed that a polymerase moves along the template as it synthesizes RNA. However, a polymerase that tracks along a helical strand will generate a transcript that is entwined about the template. No such interlocking results if the polymerase is immobile and the template moves past it. Therefore we investigated whether immobilization inhibits the RNA polymerase of T7 bacteriophage using a hybrid protein, in which the polymerase is connected through a peptide linker to an immobilizing domain, which in turn was attached through an antibody to protein A covalently linked to plastic beads. Polymerase could be released by cleaving the linker with a protease, factor Xa. Comparison of the activity of the bound and free enzymes showed that immobilization reduced the rate of initiation about fivefold. However, when re-initiation was eliminated by removing excess template, immobilization was found to have little effect on the rate of elongation. Perhaps the untwining problem is sidestepped in vivo by immobilizing the polymerase.
Collapse
Affiliation(s)
- P R Cook
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
192
|
Abstract
Torsional tension in DNA may be both a prerequisite for the efficient initiation of transcription and a consequence of the transcription process itself with the generation of positive torsional tension in front of the RNA polymerase and negative torsional tension behind it. To examine torsional tension in specific regions of genomic DNA in vivo, we developed an assay using photoactivated psoralen as a probe for unconstrained DNA superhelicity and x-rays as a means to relax DNA. Psoralen intercalates more readily into DNA underwound by negative torsional tension than into relaxed. DNA, and it can form interstrand DNA cross-links upon UVA irradiation. By comparing the amount of psoralen-induced DNA cross-links in cells irradiated with x-rays either before or after the psoralen treatment, we examined the topological state of the DNA in specific regions of the genome in cultured human 6A3 cells. We found that although no net torsional tension was detected in the bulk of the genome, localized tension was prominent in the DNA of two active genes. Negative torsional tension was found in the 5' end of the amplified dihydrofolate reductase gene and in a region near the 5' end of the 45S rRNA transcription unit, whereas a low level of positive torsional tension was found in a region near the 3' end of the dihydrofolate reductase gene. These results document an intragenomic heterogeneity of DNA torsional tension and lend support to the twin supercoiled domain model for transcription in the genome of intact human cells.
Collapse
Affiliation(s)
- M Ljungman
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | |
Collapse
|
193
|
Whitehall S, Austin S, Dixon R. DNA supercoiling response of the sigma 54-dependent Klebsiella pneumoniae nifL promoter in vitro. J Mol Biol 1992; 225:591-607. [PMID: 1602472 DOI: 10.1016/0022-2836(92)90388-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription from the sigma 54-dependent Klebsiella pneumoniae nifL and glnAp2 promoters is activated by the general nitrogen regulatory protein NTRC. Unlike the glnAp2 promoter, which is relatively insensitive to changes in DNA supercoiling, transcription from nifL in vitro in a chloride-based buffer is supercoiling-dependent at physiological salt concentrations. The replacement of chloride with an acetate-based buffer decreases the stringency of the nifL supercoiling response, but open complexes formed on linear nifL promoter DNA under these conditions are unstable and less extensive than those found on supercoiled (form I) DNA. We have introduced mutations in particular elements of the nifL promoter that increase its homology to glnAp2. At the wild-type nifL promoter, sigma 54-RNA polymerase makes only limited contacts with the promoter in the absence of NTRC. However, a G to T change at -26 (nifL74) allows the formation of a stable closed complex with sigma 54-holoenzyme on both linear and form I templates in the absence of the activator. The combination of C to T mutations at -3 and -1 (nifL18) increases the A+T rich nature of the melted region and stabilizes open complexes formed on linear DNA. Open complex formation as a function of superhelical density was assessed at each promoter. Formation of open complexes at glnAp2 peaks at -0.024 and declines at higher superhelical densities, whereas at the wild-type nifL promoter, open complex formation peaks at -0.067 and is not detectable at superhelical densities less than -0.032. Both the nifL74 and nifL18 mutations altered the supercoiling response, increasing the ability to form open complexes at low superhelical densities. The presence of the nifL74 and nifL18 mutations in combination further altered the response of the promoter to DNA supercoiling. These observations suggest that the promoter as a whole, and not any one promoter element, mediates the transcriptional response to DNA supercoiling.
Collapse
Affiliation(s)
- S Whitehall
- AFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, U.K
| | | | | |
Collapse
|
194
|
Schroth G, Chou P, Ho P. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49776-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
195
|
Ishii S, Murakami T, Shishido K. A pSC101-parsequence-mediated study on the intracellular state of supercoiling of the pBR322 genome inEscherichia coliDNA topoisomerase I deletion mutant. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05076.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
196
|
Nordström K, Uhlin BE. Runaway–Replication Plasmids as Tools to Produce Large Quantities of Proteins from Cloned Genes in Bacteria. Nat Biotechnol 1992; 10:661-6. [PMID: 1368887 DOI: 10.1038/nbt0692-661] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we review the properties and uses of runaway-replication vectors, a class of versatile plasmids discovered and developed in Escherichia coli. They are based on the IncFII plasmid, R1, in which an antisense RNA (CopA RNA) negatively controls the formation of a protein that is rate-limiting for replication. The copy number of the plasmid is determined by the balance between the rates of formation of CopA RNA and RepA mRNA. A small increase in the rate of formation of the latter drastically reduces the rate of formation of CopA RNA due to convergent transcription, which may lead to a total loss of copy number control (runaway replication), resulting in massive DNA amplification, and plasmid copy numbers up to 1000 per genome. Since this amplification occurs in the presence of protein synthesis, the protein that is encoded by a cloned gene can also be amplified, and may constitute 10-50% of the total protein.
Collapse
Affiliation(s)
- K Nordström
- Department of Microbiology, Uppsala University, Sweden
| | | |
Collapse
|
197
|
Gruzdev AD, Shurdov MA. Topological state of DNA in polytene chromosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:35-40. [PMID: 1581358 DOI: 10.1016/0167-4781(92)90095-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new microfluorometric method was developed for measuring two topological characteristics of DNA in isolated nuclei, chromosomes and other DNA containing structures: (1) the relative amount of the topologically non-closed DNA (tncDNA) and (2) the supercoiling density of the topologically closed unconstrained DNA (tcDNA). The method was applied to isolated polytene nuclei and chromosomes of Chironomus thummi. The relative amount of tncDNA was found to be 0.21. Evidence in favour of the tncDNA localization in transcriptionally active loci (puffs) of the polytene chromosomes is presented. The supercoiling density of tcDNA localized, presumably, in inactive loci (bands) of the polytene chromosomes is about -0.001.
Collapse
Affiliation(s)
- A D Gruzdev
- Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk
| | | |
Collapse
|
198
|
Drolet M, Lau PC. Mobilization protein-DNA binding and divergent transcription at the transfer origin of the Thiobacillus ferrooxidans pTF1 plasmid. Mol Microbiol 1992; 6:1061-71. [PMID: 1584023 DOI: 10.1111/j.1365-2958.1992.tb02171.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The possible interaction of the trans-acting mobilization proteins, MobL and MobS, at the cognate origin of transfer (oriT) region of the Thiobacillus ferrooxidans plasmid pTF1 has been investigated. In gel retardation assays with crude protein extracts from overproducing strains, a truncated MobL (c. 28 kDa) as well as its native protein (42 kDa), but not the 11 kDa MobS protein, were found to bind specifically to a 42-mer oligonucleotide which represents the transferred DNA strand of the minimal oriT fragment of pTF1. In vivo, the binding of MobL was studied by monitoring catechol 2,3-dioxygenase (xylE) activities driven by promoters of the divergently transcribed mobL and mobS genes. The mob promoter sequences were found to resemble the Escherichia coli sigma 70-dependent consensus promoter elements. The '-10' recognition sequences of mobL and one of the two mobS promoters overlap except for one base and they are positioned within the putative 'hairpin' structure in the minimal oriT sequence. In accordance with the twin supercoil-domain model of Liu and Wang (1987) which suggests that transcription can generate local variations in DNA superhelicity, we propose a possible physiological role of DNA supercoiling in the transfer origin with reference to divergent transcription of mobL and mobS genes.
Collapse
Affiliation(s)
- M Drolet
- Molecular Biology Sector, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | |
Collapse
|
199
|
Krohn M, Pardon B, Wagner R. Effects of template topology on RNA polymerase pausing during in vitro transcription of the Escherichia coli rrnB leader region. Mol Microbiol 1992; 6:581-9. [PMID: 1552858 DOI: 10.1111/j.1365-2958.1992.tb01504.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription elongation catalysed by DNA-dependent RNA polymerase does not occur at a constant rate. Instead, during the transcription of many genes pausing occurs at defined template positions. Pausing is known to be influenced by the intracellular NTP concentration, the secondary structure of the growing transcript or by transcription factors like NusA. We have investigated the effects of the template topology of transcriptional pauses in the presence and absence on purified NusA protein. Taking advantage of a method for quantifying transcriptional pauses we have studied pausing behaviour during in vitro transcription of the early region of a plasmid-encoded ribosomal RNA operon. Plasmid templates with different superhelical densities (sigma between +0.0017 and -0.055) were employed in transcription elongation assays. If linearized or relaxed templates are used, some of the characteristic pauses can no longer be detected. For the stronger pauses we could demonstrate a direct correlation between pause strength and the negative superhelical densities of the templates used. This correlation is observed regardless of whether or not pauses are dependent upon NusA. Changes in the average transcription elongation rate, caused by variations in the NTP concentration or the temperature, do not appear to have a comparable effect on transcription pausing. The results are consistent with the assumption that the template topology has a regulatory function in transcription elongation of rRNA genes in Escherichia coli.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
200
|
Abstract
Biological processes such as transcription are expected to generate local variations in DNA supercoiling. The existence of localized supercoiling was recently demonstrated in Escherichia coli by using the supercoil-driven B-to-Z transition as a superhelicity probe. This new methodology is described and its extension to other biological systems discussed.
Collapse
Affiliation(s)
- A R Rahmouni
- Centre de Biophysique Moléculaire, CNRS, Orleans, France
| |
Collapse
|