151
|
Straube K, Blackwell JS, Pemberton LF. Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions. TRAFFIC (COPENHAGEN, DENMARK) 2009; 11:185-97. [PMID: 19929865 DOI: 10.1111/j.1600-0854.2009.01010.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We analyzed the nuclear import and regulation of the yeast histone variant Htz1 (H2A.Z), and the role of histone chaperones Nap1 and Chz1 in this process. Copurification suggested that Htz1 and H2B dimerized in the cytoplasm prior to import. Like H2B, Htz1 contained a nuclear localization signal (NLS) in its N-terminus that is recognized by multiple karyopherins (also called importins), indicating multiple transport pathways into the nucleus. However, Kap114 and Kap123 appeared to play the major role in Htz1 import. We also identified a role for Nap1 in the import of Htz1/H2B heterodimers, and Nap1 formed a RanGTP-insensitive import complex with Htz1/H2B and Kap114. Nap1 was necessary for maintaining a soluble pool of Htz1, indicating that its chaperone function may be important for the dynamic exchange of histones within nucleosomes. In contrast, Chz1 was imported by a distinct import pathway, and Chz1 did not appear to interact with Htz1 in the cytoplasm. Genetic analysis indicated that NAP1 has a function in the absence of HTZ1 that is not shared with CHZ1. This provides further evidence that the histone chaperones Nap1 and Chz1 have separate Htz1-dependent and -independent functions.
Collapse
Affiliation(s)
- Korinna Straube
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
152
|
Tapia H, Morano KA. Hsp90 nuclear accumulation in quiescence is linked to chaperone function and spore development in yeast. Mol Biol Cell 2009; 21:63-72. [PMID: 19889838 PMCID: PMC2801720 DOI: 10.1091/mbc.e09-05-0376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein chaperone Hsp90 and its co-chaperone Sba1/p23 are found to accumulate in the nucleus of haploid yeast cells as glucose is exhausted and in sporulating diploids. Novel and existing Hsp90 mutants exhibit defects in nuclear translocation and spore development, linking these two phenomena. The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Δ cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the α/β importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.
Collapse
Affiliation(s)
- Hugo Tapia
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
153
|
Ben-Efraim I, Frosst PD, Gerace L. Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol 2009; 10:74. [PMID: 19835572 PMCID: PMC2770460 DOI: 10.1186/1471-2121-10-74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/16/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies 1 involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins alpha and beta from Xenopus laevis egg extracts 2, although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus34. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin beta and importin alpha by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay. RESULTS We found that Tpr binds strongly and specifically to importin alpha, importin beta, and a CRM1 containing trimeric export complex, and that the binding sites for importins alpha and beta are distinct. We also determined that the nuclear import of Tpr is dependent on cytosolic factors and energy and is efficiently mediated by the importin alpha/beta import pathway. CONCLUSION Based on the binding and nuclear import assays, we propose that Tpr is imported into the nucleus by the importin alpha/beta heterodimer. In addition, we suggest that Tpr can serve as a nucleoporin binding site for importin beta during import of importin beta cargo complexes and/or importin beta recycling. Our finding that Tpr bound preferentially to CRM1 in an export complex strengthens the notion that Tpr is involved in protein export.
Collapse
Affiliation(s)
- Iris Ben-Efraim
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Phyllis D Frosst
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland 20892, USA
| | - Larry Gerace
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
154
|
A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans. Genetics 2009; 183:1397-419. [PMID: 19805813 DOI: 10.1534/genetics.109.110171] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their "germ granule" counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells.
Collapse
|
155
|
Peters R. Functionalization of a nanopore: the nuclear pore complex paradigm. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1533-9. [PMID: 19596381 PMCID: PMC2756448 DOI: 10.1016/j.bbamcr.2009.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
Biological cells maintain a myriad of nanopores which, although relying on the same basic small-hole principle, serve a large variety of functions. Here we consider how the nuclear pore complex (NPC), a large nanopore mediating the traffic between genetic material and protein synthesizing apparatus, is functionalized to carry out a set of transport functions. A major parameter of NPC functionalization is a lining of it external and internal surfaces with so-called phenylalanine glycine (FG) proteins. FG proteins integrate a multitude of transport factor binding sites into intrinsically disordered domains. This surprising finding has given rise to a number of transport models assigning direct gating functions to FG proteins. However, recent data suggest that the properties of FG proteins cannot be properly assessed by considering only the purified, transport-factor-stripped NPC. At physiological conditions transport factors may shape FG proteins in a way allotting an essential role to surface diffusion, reconciling tight binding with efficient transport. Thus, NPC studies are revealing both general traits and novel aspects of nanopore functionalization. In addition, they inspire artificial molecule sorters for proteomic and pharmaceutical applications.
Collapse
Affiliation(s)
- Reiner Peters
- The Rockefeller University, Laboratory for mass spectrometry and gaseous ion chemistry, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
156
|
Lee MS, Huang YH, Huang SP, Lin RI, Wu SF, Li C. Identification of a nuclear localization signal in the polo box domain of Plk1. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1571-8. [PMID: 19631697 DOI: 10.1016/j.bbamcr.2009.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 plays an essential role in mitosis and cytokinesis. Expression and nuclear localization of Plk1 during the S phase are necessary for its functions. Although it was reported that a bipartite nuclear localization signal located at the N-terminal kinase domain is required for nuclear import of Plk1, Plk1 carrying mutations in the polo box I of the polo box domain exhibited increased cytoplasmic accumulation. We further showed that the polo box domain was able to confer nuclear import of beta-galactosidase in vivo and GST-EGFP in vitro. The import carriers transportin and importin alpha were found to interact with the polo box domain directly in a Ran-GTP sensitive manner. These results indicate the presence of a nuclear localization signal in the polo box domain. A 38 amino acid sequence with the function of nuclear localization signal was identified to interact with transportin. Our findings demonstrated that a transportin-dependent nuclear localization signal is present in the polo box domain of Plk1, possibly required for efficient nuclear import. Showing little similarity to the M9 sequence, the 38 amino acid sequence identified here likely represents a novel nuclear localization signal.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chia-Yi, Taiwan
| | | | | | | | | | | |
Collapse
|
157
|
Busch A, Kiel T, Heupel WM, Wehnert M, Hübner S. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants. Exp Cell Res 2009; 315:2373-85. [PMID: 19442658 DOI: 10.1016/j.yexcr.2009.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 04/12/2009] [Accepted: 05/06/2009] [Indexed: 01/29/2023]
Abstract
Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.
Collapse
Affiliation(s)
- Albert Busch
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
158
|
FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 2009; 28:2554-67. [PMID: 19680227 PMCID: PMC2728434 DOI: 10.1038/emboj.2009.199] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 06/18/2009] [Indexed: 12/30/2022] Open
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls all nucleo-cytoplasmic exchange. It is freely permeable for small molecules. Objects larger than ≈30 kDa can efficiently cross this barrier only when bound to nuclear transport receptors (NTRs) that confer translocation-promoting properties. We had shown earlier that the permeability barrier can be reconstituted in the form of a saturated FG/FxFG repeat hydrogel. We now show that GLFG repeats, the other major FG repeat type, can also form highly selective hydrogels. While supporting massive, reversible importin-mediated cargo influx, FG/FxFG, GLFG or mixed hydrogels remained firm barriers towards inert objects that lacked nuclear transport signals. This indicates that FG hydrogels immediately reseal behind a translocating species and thus possess ‘self-healing' properties. NTRs not only left the barrier intact, they even tightened it against passive influx, pointing to a role for NTRs in establishing and maintaining the permeability barrier of NPCs.
Collapse
|
159
|
|
160
|
Lonhienne TG, Forwood JK, Marfori M, Robin G, Kobe B, Carroll BJ. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. J Biol Chem 2009; 284:22549-58. [PMID: 19549784 DOI: 10.1074/jbc.m109.019935] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.
Collapse
Affiliation(s)
- Thierry G Lonhienne
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Chemistry and Molecular Biosciences, University of Queensland, QLD 4072, St. Lucia, Australia.
| | | | | | | | | | | |
Collapse
|
161
|
DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP, Chait BT. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 2009; 8:2119-30. [PMID: 19525551 PMCID: PMC2742445 DOI: 10.1074/mcp.m900038-mcp200] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nuclear pore complex (NPC) is a macromolecular assembly embedded within the nuclear envelope that mediates bidirectional exchange of material between the nucleus and cytoplasm. Our recent work on the yeast NPC has revealed a simple modularity in its architecture and suggested a common evolutionary origin of the NPC and vesicle coating complexes in a progenitor protocoatomer. However, detailed compositional and structural information is currently only available for vertebrate and yeast NPCs, which are evolutionarily closely related. Hence our understanding of NPC composition in a full evolutionary context is sparse. Moreover despite the ubiquitous nature of the NPC, sequence searches in distant taxa have identified surprisingly few NPC components, suggesting that much of the NPC may not be conserved. Thus, to gain a broad perspective on the origins and evolution of the NPC, we performed proteomics analyses of NPC-containing fractions from a divergent eukaryote (Trypanosoma brucei) and obtained a comprehensive inventory of its nucleoporins. Strikingly trypanosome nucleoporins clearly share with metazoa and yeast their fold type, domain organization, composition, and modularity. Overall these data provide conclusive evidence that the majority of NPC architecture is indeed conserved throughout the Eukaryota and was already established in the last common eukaryotic ancestor. These findings strongly support the hypothesis that NPCs share a common ancestry with vesicle coating complexes and that both were established very early in eukaryotic evolution.
Collapse
Affiliation(s)
- Jeffrey A DeGrasse
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Transport through the nuclear pore complex (NPC), a keystone of the eukaryotic building plan, is known to involve a large channel and an abundance of phenylalanine-glycine (FG) protein domains serving as binding sites for soluble nuclear transport receptors and their cargo complexes. However, the conformation of the FG domains in vivo, their arrangement in relation to the transport channel and their function(s) in transport are still vividly debated. Here, we revisit a number of representative transport models-specifically Brownian affinity gating, selective phase gating, reversible FG domain collapse, and reduction of dimensionality (ROD)-in the light of new data obtained by optical single transporter recording, optical superresolution microscopy, artificial nanopores, and many other techniques. The analysis suggests that a properly adapted, simplified version of the ROD model accounts well for the available data. This has implications for nucleocytoplasmic transport in general.
Collapse
Affiliation(s)
- Reiner Peters
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 , USA.
| |
Collapse
|
163
|
The role of the nuclear transport system in cell differentiation. Semin Cell Dev Biol 2009; 20:590-9. [PMID: 19465141 DOI: 10.1016/j.semcdb.2009.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 04/24/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022]
Abstract
The eukaryotic cell nuclear transport system selectively mediates molecular trafficking to facilitate the regulation of cellular processes. The components of this system include diverse transport factors such as importins and nuclear pore components that are precisely organized to coordinate cellular events. A number of studies have demonstrated that the nuclear transport system is indispensible in many types of cellular responses. In particular, the nuclear transport machinery has been shown to be an important regulator of development, organogenesis, and tissue formation, wherein altered nuclear transport of key transcription factors can lead to disease. Importantly, precise switching between distinct forms of importin alpha is central to neural lineage specification, consistent with the hypothesis that importin expression can be a key mediator of cell differentiation.
Collapse
|
164
|
Miao L, Schulten K. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 2009; 17:449-59. [PMID: 19278659 DOI: 10.1016/j.str.2008.12.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/09/2008] [Accepted: 12/21/2008] [Indexed: 02/07/2023]
Abstract
Nuclear pore complexes (NPCs) are selectively gated pathways between nucleoplasm and cytoplasm. Whereas small molecules can diffuse freely through NPCs, large molecules (>40 kD) can pass only when bound to transport receptors. The NPC central channel is filled with disordered proteins, rich in phenylalanine-glycine (FG) repeats, referred to as FG-nups. Our simulations, carried out at coarse-grained and all-atom levels, show that arrays of FG-nups tethered to a planar surface, at an FG-repeat density found in the NPC, form dynamic brush-like structures of multiprotein bundles, whereas individual FG-nups form dynamic globular structures. More than half of the FG-repeats are found on the surface of the bundles, offering a favorable environment for transport receptors. Binding to FG-repeats and a sliding motion of NTF2 induced by binding and unbinding to phenylalanines were observed when adding this transport receptor into one of the brush-like structures.
Collapse
Affiliation(s)
- Lingling Miao
- Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
165
|
Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 2009; 83:6522-33. [PMID: 19369352 DOI: 10.1128/jvi.02061-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to traverse an intact nuclear envelope and productively infect nondividing cells is a salient feature of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses, but the viral factors and mechanism of nuclear entry have not been defined. HIV-1 integrase (IN) is implicated to play a role in the nuclear import of the virus, but the cellular pathway for IN trafficking and the role of IN in mediating the nuclear import of viral particles are unknown. Using a semipermeabilized cell assay, we observed that the nuclear import of IN was not the result of passive diffusion but occurred independently of cytosolic factors, metabolic energy, and the classical receptor-mediated, Ran-dependent import pathways. To determine if IN enters the nucleus by interacting with the nucleopore complex (NPC), we found that IN bound directly with the FxFG-rich C-terminal domain of nucleoporin 153 (NUP153C). When added in excess to the import assay, NUP153C inhibited the nuclear import of IN. Known binding partners of NUP153C competed with IN for binding with NUP153 and also inhibited the nuclear import of IN. In cultured cells, overexpression of NUP153C reduced the infectivity of an HIV-derived vector by interfering with the nuclear translocation of the viral cDNA. These results support a functional role for the IN-NUP153 interaction in HIV-1 replication and suggest that HIV-1 subviral particles gain access to the nucleus by interacting directly with the NPC via the binding of particle-associated IN to NUP153C.
Collapse
|
166
|
Hutten S, Wälde S, Spillner C, Hauber J, Kehlenbach RH. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J Cell Sci 2009; 122:1100-10. [PMID: 19299463 DOI: 10.1242/jcs.040154] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nup358 (also known as RanBP2), a component of the cytoplasmic filaments of the nuclear pore complex, has been implicated in various nucleocytoplasmic transport pathways. Here, we identify Nup358 as an important factor for transportin-mediated nuclear import. Depletion of Nup358 resulted in a strong inhibition of nuclear import of the human immunodeficiency virus type 1 (HIV-1) Rev protein. HIV-1 Rev is an RNA-binding protein that is required for CRM1 (also known as exportin 1)-dependent nuclear export of unspliced or partially spliced viral RNA. We show that transportin is the major nuclear import receptor for HIV-1 Rev in HeLa cells. Overexpression of transportin strongly promoted nuclear import of HIV-1 Rev in Nup358-depleted cells, indicating that the import receptor becomes rate-limiting under these conditions. Importantly, the import rate of other transportin-dependent proteins was also significantly reduced in Nup358-depleted cells. Our data therefore suggest a general role for Nup358 in transportin-mediated nuclear import.
Collapse
Affiliation(s)
- Saskia Hutten
- Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, 37073, Göttingen, Germany
| | | | | | | | | |
Collapse
|
167
|
Mehmood R, Yasuhara N, Oe S, Nagai M, Yoneda Y. Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization. Exp Cell Res 2009; 315:1639-52. [PMID: 19272376 DOI: 10.1016/j.yexcr.2009.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 02/13/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
Abstract
The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand the nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
168
|
Vuletic S, Dong W, Wolfbauer G, Day JR, Albers JJ. PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:584-91. [PMID: 19321130 PMCID: PMC2692677 DOI: 10.1016/j.bbamcr.2009.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/09/2008] [Accepted: 01/05/2009] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP), one of the key lipid transfer proteins in plasma and cerebrospinal fluid, is nearly ubiquitously expressed in cells and tissues. Functions of secreted PLTP have been extensively studied. However, very little is known about potential intracellular PLTP functions. In the current study, we provide evidence for PLTP localization in the nucleus of cells that constitutively express PLTP (human neuroblastoma cells, SK-N-SH; and human cortical neurons, HCN2) and in cells transfected with human PLTP (Chinese hamster ovary and baby hamster kidney cells). Furthermore, we have shown that incubation of these cells with leptomycin B (LMB), a specific inhibitor of nuclear export mediated by chromosome region maintenance 1 (CRM1), leads to intranuclear accumulation of PLTP, suggesting that PLTP nuclear export is CRM1-dependent. We also provide evidence for entry of secreted PLTP into the cell and its translocation to the nucleus, and show that intranuclear PLTP is active in phospholipid transfer. These findings suggest that PLTP is involved in novel intracellular functions.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Weijiang Dong
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
- Xi’an Jiaotong University School of Medicine, Department of Human Anatomy and Histology & Embryology, Yanta West Road 76, Xi’an 710061, People’s Republic of China
| | - Gertrud Wolfbauer
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Joseph R. Day
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - John J. Albers
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| |
Collapse
|
169
|
Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition by cardioviruses. J Virol 2008; 83:1941-51. [PMID: 19073724 DOI: 10.1128/jvi.01752-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Picornaviruses disrupt nucleocytoplasmic trafficking pathways during infection. Poliovirus and rhinovirus inhibit nuclear protein import/export through a series of 2A protease-dependent cleavages within nuclear pore proteins (nucleoporins [Nups]), including Nup62, Nup98, and Nup153. Cardioviruses lack the same protease and instead affect trafficking inhibition through an activity mapped to their leader (L) protein, a 67- to 76-amino acid (aa) polypeptide with no known enzymatic activity. We have shown that L from encephalomyocarditis virus (EMCV) binds and inhibits the activity of Ran-GTPase, a key regulator of nucleocytoplasmic transport. We now report that recombinant EMCV L triggers the unregulated efflux of protein cargo from preloaded HeLa cell nuclei in cell-free reactions dependent upon Xenopus egg cytosol or HeLa cell-derived cytosol. Recombinant L was the only viral protein necessary for this activity or for nuclear protein import inhibition. Mutational disruption of the L protein zinc finger domain (C(19)A) abrogated the inhibitory activity for both import and efflux in cell extracts, but mutations in the C-terminal acidic domain of L (aa 37 to 61) did not. Notably, HeLa cell nuclei treated with L, or those from EMCV-infected cells, showed reproducibly altered patterns of nucleoporin phosphorylation. Nup62, Nup153, and Nup214 each became hyperphosphorylated in an L-dependent manner. Staurosporine, a broad-spectrum kinase inhibitor, blocked this phosphorylation and rescued nuclear import/export activity from L-dependent inhibition. Therefore, cardioviruses target the same group of nucleoporins as enteroviruses, but the effector mechanism triggered by L (or L-Ran complexes) involves a unique cytosol-dependent phosphorylation cascade rather than proteolysis.
Collapse
|
170
|
Ben-Nissan G, Cui W, Kim DJ, Yang Y, Yoo BC, Lee JY. Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules,. PLANT PHYSIOLOGY 2008; 4:652-4. [PMID: 18945931 PMCID: PMC2593671 DOI: 10.1104/pp.108.129346] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/17/2008] [Indexed: 05/18/2023]
Abstract
Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases that are involved in various cellular, physiological, and developmental processes in yeast and metazoans, but the biological roles of CK1 members in plants are not well understood. Here, we report that an Arabidopsis (Arabidopsis thaliana) CK1 member named casein kinase 1-like 6 (CKL6) associates with cortical microtubules in vivo and phosphorylates tubulins in vitro. The unique C-terminal domain of CKL6 was shown to contain the signal that allows localization of CKL6 to the cortical microtubules. This domain on its own was sufficient to associate with microtubules in vivo and to bind tubulins in vitro. CKL6 was able to phosphorylate soluble tubulins as well as microtubule polymers, and its endogenous activity was found to associate with a tubulin-enriched subcellular fraction. Two major in vitro phosphorylation sites were mapped to serine-413 and serine-420 of tubulin beta. Ectopic expression of wild-type CKL6 or a kinase-inactive mutant form induced alterations in cortical microtubule organization and anisotropic cell expansion. Collectively, these results demonstrate that CKL6 is a protein kinase containing a novel tubulin-binding domain and plays a role in anisotropic cell growth and shape formation in Arabidopsis through the regulation of microtubule organization, possibly through the phosphorylation of tubulins.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | | | |
Collapse
|
171
|
Joining the dots: Production, processing and targeting of U snRNP to nuclear bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2137-44. [DOI: 10.1016/j.bbamcr.2008.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/20/2022]
|
172
|
Batrakou DG, Kerr ARW, Schirmer EC. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J Proteomics 2008; 72:56-70. [PMID: 18852071 DOI: 10.1016/j.jprot.2008.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/26/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022]
Abstract
Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.
Collapse
Affiliation(s)
- Dzmitry G Batrakou
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
173
|
Schrader N, Koerner C, Koessmeier K, Bangert JA, Wittinghofer A, Stoll R, Vetter IR. The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex. Structure 2008; 16:1116-25. [PMID: 18611384 DOI: 10.1016/j.str.2008.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/14/2008] [Accepted: 03/22/2008] [Indexed: 10/21/2022]
Abstract
Nucleoporin (Nup) 153 is a highly mobile, multifunctional, and essential nuclear pore protein. It contains four zinc finger motifs that are thought to be crucial for the regulation of transport-receptor/cargo interactions via their binding to the small guanine nucleotide binding protein, Ran. We found this interaction to be independent of the phoshorylation state of the nucleotide. Ran binds with the highest affinity to the second zinc finger motif of Nup153 (Nup153ZnF2). Here we present the crystal structure of this complex, revealing a new type of Ran-Ran interaction partner interface together with the solution structure of Nup153ZnF2. According to our complex structure, Nup153ZnF2 binding to Ran excludes the formation of a Ran-importin-beta complex. This finding suggests a local Nup153-mediated Ran reservoir at the nucleoplasmic distal ring of the nuclear pore, where nucleotide exchange may take place in a ternary Nup153-Ran-RCC1 complex, so that import complexes are efficiently terminated.
Collapse
Affiliation(s)
- Nils Schrader
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
174
|
McLane LM, Pulliam KF, Devine SE, Corbett AH. The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus. Nucleic Acids Res 2008; 36:4317-26. [PMID: 18586821 PMCID: PMC2490736 DOI: 10.1093/nar/gkn383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 12/26/2022] Open
Abstract
Like its retroviral relatives, the long terminal repeat retrotransposon Ty1 in the yeast Saccharomyces cerevisiae must traverse a permanently intact nuclear membrane for successful transposition and replication. For retrotransposition to occur, at least a subset of Ty1 proteins, including the Ty1 integrase, must enter the nucleus. Nuclear localization of integrase is dependent upon a C-terminal nuclear targeting sequence. However, the nuclear import machinery that recognizes this nuclear targeting signal has not been defined. We investigated the mechanism by which Ty1 integrase gains access to nuclear DNA as a model for how other retroelements, including retroviruses like HIV, may utilize cellular nuclear transport machinery to import their essential nuclear proteins. We show that Ty1 retrotransposition is significantly impaired in yeast mutants that alter the classical nuclear protein import pathway, including the Ran-GTPase, and the dimeric import receptor, importin-alpha/beta. Although Ty1 proteins are made and processed in these mutant cells, our studies reveal that an integrase reporter is not properly targeted to the nucleus in cells carrying mutations in the classical nuclear import machinery. Furthermore, we demonstrate that integrase coimmunoprecipitates with the importin-alpha transport receptor and directly binds to importin-alpha. Taken together, these data suggest Ty1 integrase can employ the classical nuclear protein transport machinery to enter the nucleus.
Collapse
Affiliation(s)
| | | | | | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, NE, Atlanta, GA 30322, USA
| |
Collapse
|
175
|
Zilman A, Di Talia S, Chait BT, Rout MP, Magnasco MO. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol 2008; 3:e125. [PMID: 17630825 PMCID: PMC1914370 DOI: 10.1371/journal.pcbi.0030125] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 05/17/2007] [Indexed: 01/16/2023] Open
Abstract
All materials enter or exit the cell nucleus through nuclear pore complexes (NPCs), efficient transport devices that combine high selectivity and throughput. NPC-associated proteins containing phenylalanine–glycine repeats (FG nups) have large, flexible, unstructured proteinaceous regions, and line the NPC. A central feature of NPC-mediated transport is the binding of cargo-carrying soluble transport factors to the unstructured regions of FG nups. Here, we model the dynamics of nucleocytoplasmic transport as diffusion in an effective potential resulting from the interaction of the transport factors with the flexible FG nups, using a minimal number of assumptions consistent with the most well-established structural and functional properties of NPC transport. We discuss how specific binding of transport factors to the FG nups facilitates transport, and how this binding and competition between transport factors and other macromolecules for binding sites and space inside the NPC accounts for the high selectivity of transport. We also account for why transport is relatively insensitive to changes in the number and distribution of FG nups in the NPC, providing an explanation for recent experiments where up to half the total mass of the FG nups has been deleted without abolishing transport. Our results suggest strategies for the creation of artificial nanomolecular sorting devices. The DNA at the heart of our cells is contained in the nucleus. This nucleus is surrounded by a barrier in which are buried gatekeepers, termed nuclear pore complexes (NPCs), which allow the quick and efficient passage of certain materials while excluding all others. It has long been known that materials must bind to the NPC to be transported across it, but how this binding translates into selective passage through the NPC has remained a mystery. Here we describe a theory to explain how the NPC works. Our theory accounts for the observed characteristics of NPC–mediated transport, and even suggests strategies for the creation of artificial nanomolecular sorting devices.
Collapse
Affiliation(s)
- Anton Zilman
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
| | - Stefano Di Talia
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (MPR); (MOM)
| | - Marcelo O Magnasco
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (MPR); (MOM)
| |
Collapse
|
176
|
|
177
|
Kapon R, Topchik A, Mukamel D, Reich Z. A possible mechanism for self-coordination of bidirectional traffic across nuclear pores. Phys Biol 2008; 5:036001. [DOI: 10.1088/1478-3975/5/3/036001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
178
|
A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008; 28:5446-57. [PMID: 18591258 PMCID: PMC2519741 DOI: 10.1128/mcb.00463-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genome-wide screen for synthetic lethal (SL) interactions with loss of the nuclear exosome cofactors Rrp47/Lrp1 or Air1 identified 3'-->5' exonucleases, the THO complex required for mRNP assembly, and Ynr024w (Mpp6). SL interactions with mpp6Delta were confirmed for rrp47Delta and nuclear exosome component Rrp6. The results of bioinformatic analyses revealed homology between Mpp6 and a human exosome cofactor, underlining the high conservation of the RNA surveillance system. Mpp6 is an RNA binding protein that physically associates with the exosome and was localized throughout the nucleus. The results of functional analyses demonstrated roles for Mpp6 in the surveillance of both pre-rRNA and pre-mRNAs and in the degradation of "cryptic" noncoding RNAs (ncRNAs) derived from intergenic regions and the ribosomal DNA spacer heterochromatin. Strikingly, these ncRNAs are also targeted by other exosome cofactors, including Rrp47, the TRAMP complex (which includes Air1), and the Nrd1/Nab3 complex, and are degraded by both Rrp6 and the core exosome. Heterochromatic transcripts and other ncRNAs are characterized by very rapid degradation, and we predict that functional redundancy is an important feature of ncRNA metabolism.
Collapse
|
179
|
Abstract
The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| | | |
Collapse
|
180
|
Classical NLS proteins from Saccharomyces cerevisiae. J Mol Biol 2008; 379:678-94. [PMID: 18485366 DOI: 10.1016/j.jmb.2008.04.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/12/2008] [Accepted: 04/15/2008] [Indexed: 02/02/2023]
Abstract
Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin alpha (Impalpha), which possesses the cNLS binding site, and importin beta (Impbeta), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impalpha and Impbeta mutants, direct binding to purified Impalpha, and stimulation of this binding by Impbeta. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impalpha. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/alpha/beta complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impalpha binding. Impbeta enhances the affinity of Impalpha for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impalpha results from a faster association in the presence of Impbeta, whereas the dissociation rate is unaffected by Impbeta. This implies that, after entry into the nucleus, the release of Impbeta by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impalpha subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impalpha in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.
Collapse
|
181
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
182
|
Schrader N, Stelter P, Flemming D, Kunze R, Hurt E, Vetter IR. Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol Cell 2008; 29:46-55. [PMID: 18206968 DOI: 10.1016/j.molcel.2007.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/27/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
Nic96 is a conserved nucleoporin that recruits the Nsp1-Nup49-Nup57 complex, a module with Phe-Gly (FG) repeats, to the central transport channel of the nuclear pore complex (NPC). Nic96 binds the Nsp1 complex via its N domain and assembles into the NPC framework via its central and C domain. Here, we report the crystal structure of a large structural nucleoporin, Nic96 without its N domain (Nic96DeltaN). Nic96DeltaN is composed of three domains and is a straight molecule that--although almost entirely helical--exhibits strong deviations from the predicted alpha-solenoid fold. The missing N domain projects midway from the Nic96 molecule, indicating how the Nsp1 complex might be located with respect to the rod-like Nic96. Notably, Nic96DeltaN binds in vitro to FG repeats of the Nsp1 complex. These data suggest a model of how Nic96 could organize a transport module with coiled-coil domains and FG repeats in the central pore channel.
Collapse
Affiliation(s)
- Nils Schrader
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
183
|
Hutten S, Flotho A, Melchior F, Kehlenbach RH. The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import. Mol Biol Cell 2008; 19:2300-10. [PMID: 18305100 DOI: 10.1091/mbc.e07-12-1279] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.
Collapse
Affiliation(s)
- Saskia Hutten
- Department of Biochemistry I, Faculty of Medicine, Georg-August University of Göttingen, 37073, Göttingen, Germany
| | | | | | | |
Collapse
|
184
|
Van Impe K, Hubert T, De Corte V, Vanloo B, Boucherie C, Vandekerckhove J, Gettemans J. A new role for nuclear transport factor 2 and Ran: nuclear import of CapG. Traffic 2008; 9:695-707. [PMID: 18266911 DOI: 10.1111/j.1600-0854.2008.00720.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The small GTPase Ran plays a central role in nucleocytoplasmic transport. Nuclear transport of Ran itself depends on nuclear transport factor 2 (NTF2). Here, we report that NTF2 and Ran control nuclear import of the filamentous actin capping protein CapG. In digitonin-permeabilized cells, neither GTPgammaS nor the GTP hydrolysis-deficient Ran mutant RanQ69L affect transit of CapG to the nucleus in the presence of cytosol. Obstruction of nucleoporins prevents nuclear transport of CapG, and we show that CapG binds to nucleoporin62. In addition, CapG interacts with NTF2, associates with Ran and is furthermore able to bind the NTF2-Ran complex. NTF2-Ran interaction is required for CapG nuclear import. This is corroborated by a NTF2 mutant with reduced affinity for Ran and a Ran mutant that does not bind NTF2, both of which prevent CapG import. Thus, a ubiquitously expressed protein shuttles to the nucleus through direct association with NTF2 and Ran. The role of NTF2 may therefore not be solely confined to sustaining the Ran gradient in cells.
Collapse
Affiliation(s)
- Katrien Van Impe
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC.
Collapse
|
186
|
Mutations affecting spindle pole body and mitotic exit network function are synthetically lethal with a deletion of the nucleoporin NUP1 in S. cerevisiae. Curr Genet 2007; 53:95-105. [PMID: 18058101 DOI: 10.1007/s00294-007-0168-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/15/2007] [Accepted: 11/20/2007] [Indexed: 01/07/2023]
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope of eukaryotic cells and function to regulate passage of macromolecules in and out of the nucleus. Nup1 is one of 30 nucleoporins comprising the NPC of the yeast Saccharomyces cerevisiae and is located on the nucleoplasmic face of the NPC where it plays a role in mRNA export and protein transport. In order to further characterize the function of Nup1 we used a genetic approach to identify mutations that are synthetically lethal in combination with a deletion of NUP1 (nup1Delta). We have identified one such nup1 lethal mutant (nle6) as a temperature sensitive allele of nud1. NUD1 encodes a component of the yeast spindle pole body (SPB) and acts as scaffolding for the mitotic exit network (MEN). We observe that nle6/nud1 mutant cells have a normal distribution of NPCs within the nuclear envelope and exhibit normal rates of nuclear protein import at both the permissive and restrictive temperatures. nup1Delta also exhibits synthetic lethality with bub2Delta and bfa1Delta, both of which encode proteins that colocalize with Nud1 at spindle pole bodies and function in the mitotic exit network. However, we do not observe genetic interactions among nle6/nud1, bub2Delta, or bfa1Delta and mutations in the nucleoporin encoding genes NUP60 or NUP170, nor is nup1Delta synthetically lethal with the absence of components downstream in the mitotic exit network, including Lte1, Swi5, and Dbf2. Our results suggest a novel functional connection between Nup1 and proteins comprising both the spindle pole body and early mitotic exit network.
Collapse
|
187
|
Thomson E, Rappsilber J, Tollervey D. Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA (NEW YORK, N.Y.) 2007; 13:2165-74. [PMID: 17956976 PMCID: PMC2080597 DOI: 10.1261/rna.747607] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete.
Collapse
Affiliation(s)
- Emma Thomson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | | | | |
Collapse
|
188
|
Yao W, Lutzmann M, Hurt E. A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J 2007; 27:6-16. [PMID: 18046452 DOI: 10.1038/sj.emboj.7601947] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/14/2007] [Indexed: 01/20/2023] Open
Abstract
The transport receptor Mex67-Mtr2 functions in mRNA export, and also by a loop-confined surface on the heterodimer binds to and exports pre-60S particles. We show that Mex67-Mtr2 through the same surface that recruits pre-60S particles interacts with the Nup84 complex, a structural module of the nuclear pore complex devoid of Phe-Gly domains. In vitro, pre-60S particles and the Nup84 complex compete for an overlapping binding site on the loop-extended Mex67-Mtr2 surface. Chemical crosslinking identified Nup85 as the subunit in the Nup84 complex that directly binds to the Mex67 loop. Genetic studies revealed that this interaction is crucial for mRNA export. Notably, pre-60S subunit export impaired by mutating Mtr2 or the 60S adaptor Nmd3 could be partially restored by second-site mutation in Nup85 that caused dissociation of Mex67-Mtr2 from the Nup84 complex. Thus, the Mex67-Mtr2 export receptor employs a versatile binding platform on its surface that could create a crosstalk between mRNA and ribosome export pathways.
Collapse
Affiliation(s)
- Wei Yao
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
189
|
Isgro TA, Schulten K. Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Structure 2007; 15:977-91. [PMID: 17698002 DOI: 10.1016/j.str.2007.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/26/2007] [Accepted: 06/27/2007] [Indexed: 01/07/2023]
Abstract
Nuclear pore proteins with phenylalanine-glycine repeats are vital to the functional transport of molecules across the nuclear pore complex. The current study investigates the binding of these FG-nucleoporins to the Cse1p:Kap60p:RanGTP nuclear export complex. Fourteen binding spots for FG-nucleoporin peptides are revealed on the surface of Cse1p, and 5 are revealed on the Kap60p surface. Taken together, and along with binding data for two other transport receptors, the data suggest that the ability to bind FG-nucleoporins by itself is not enough to ensure viable nuclear transport. Rather, it is proposed that the density of binding spots on the transport receptor surface is key in determining transport viability. The number of binding spots on the transport receptor surface should be large enough to ensure multiple, simultaneous FG-repeat binding, and their arrangement should be close enough to ensure multiple binding from the same FG-nucleoporin.
Collapse
Affiliation(s)
- Timothy A Isgro
- Department of Physics, University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
| | | |
Collapse
|
190
|
Abstract
The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
Collapse
Affiliation(s)
- Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
191
|
Lim RYH, Fahrenkrog B, Köser J, Schwarz-Herion K, Deng J, Aebi U. Nanomechanical basis of selective gating by the nuclear pore complex. Science 2007; 318:640-3. [PMID: 17916694 DOI: 10.1126/science.1145980] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nuclear pore complex regulates cargo transport between the cytoplasm and the nucleus. We set out to correlate the governing biochemical interactions to the nanoscopic responses of the phenylalanineglycine (FG)-rich nucleoporin domains, which are involved in attenuating or promoting cargo translocation. We found that binding interactions with the transport receptor karyopherin-beta1 caused the FG domains of the human nucleoporin Nup153 to collapse into compact molecular conformations. This effect was reversed by the action of Ran guanosine triphosphate, which returned the FG domains into a polymer brush-like, entropic barrier conformation. Similar effects were observed in Xenopus oocyte nuclei in situ. Thus, the reversible collapse of the FG domains may play an important role in regulating nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Roderick Y H Lim
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland.
| | | | | | | | | | | |
Collapse
|
192
|
Patel SS, Rexach MF. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 2007; 7:121-31. [PMID: 17897934 DOI: 10.1074/mcp.m700407-mcp200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A highly sensitive, equilibrium-based binding assay termed "Bead Halo" was used here to identify and characterize interactions involving components of the nucleocytoplasmic transport machinery in eukaryotes. Bead Halo uncovered novel interactions between the importin Kap95 and the nucleoporins (nups) Nic96, Pom34, Gle1, Ndc1, Nup84, and Seh1, which likely occur during nuclear pore complex biogenesis. Bead Halo was also used to characterize the molecular determinants for binding between Kap95 and the family of nups that feature multiple phenylalanine-glycine motifs (FG nups). Binding was sensitive to the number of FG motifs present and to amino acid (AA) residues immediately flanking the FG motifs. Also, binding was reduced but not abolished when phenylalanine residues in all FG motifs were replaced by tyrosine or tryptophan. These results suggest flexibility in the binding pockets of Kap95 and synergism in binding FG motifs. The hypothesis that Nup53 and Nup59 bind directly to membranes through a C-terminal amphipathic alpha helix and to DNA via an RNA recognition motif domain was also tested and validated using Bead Halo. The results support a role for these nups in nuclear pore membrane biogenesis and in gene expression. Finally, Bead Halo detected binding of the nups Gle1, Nup60, and Nsp1 to phospholipid bilayers. This may reflect the known interaction between Gle1 and phosphoinositides and suggests similar interactions for Nup60 and Nsp1. As the Bead Halo assay detected molecular interactions in cell lysates, as well as between purified components, it can be adapted for large-scale proteomic studies using automated robotics and microscopy.
Collapse
Affiliation(s)
- Samir S Patel
- Department of Molecular, Cell, & Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
193
|
Frey S, Görlich D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 2007; 130:512-23. [PMID: 17693259 DOI: 10.1016/j.cell.2007.06.024] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/21/2007] [Accepted: 06/13/2007] [Indexed: 01/14/2023]
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls the exchange between nucleus and cytoplasm. It suppresses the flux of inert macromolecules > or = 30 kDa but allows rapid passage of even very large cargoes, provided these are bound to appropriate nuclear transport receptors. We show here that a saturated hydrogel formed by a single nucleoporin FG-repeat domain is sufficient to reproduce the permeability properties of NPCs. Importin beta and related nuclear transport receptors entered such hydrogel >1000x faster than a similarly sized inert macromolecule. The FG-hydrogel even reproduced import signal-dependent and importin-mediated cargo influx, allowing importin beta to accelerate the gel entry of a large cognate cargo more than 20,000-fold. Intragel diffusion of the importin beta-cargo complex occurred rapidly enough to traverse an NPC within approximately 12 ms. We extend the "selective phase model" to explain these effects.
Collapse
Affiliation(s)
- Steffen Frey
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
194
|
Waldmann I, Wälde S, Kehlenbach RH. Nuclear import of c-Jun is mediated by multiple transport receptors. J Biol Chem 2007; 282:27685-92. [PMID: 17652081 DOI: 10.1074/jbc.m703301200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
c-Jun and c-Fos are major components of the transcriptional complex AP-1. Here, we investigate the nuclear import pathway(s) of the transcription factor c-Jun. c-Jun bound specifically to the nuclear import receptors importin beta, transportin, importin 5, importin 7, importin 9, and importin 13. In digitonin-permeabilized cells, importin beta, transportin, importin 7, and importin 9 promoted efficient import of c-Jun into the nucleus. Importin alpha, by contrast, inhibited nuclear import of c-Jun in vitro. A single basic region preceding the leucine zipper of c-Jun functions as a nuclear localization signal (NLS) and was required for interaction with all tested import receptors. In vivo, nuclear import of a c-Jun reporter protein lacking the leucine zipper strictly depended on this NLS. In a leucine zipper-dependent manner, c-Jun with mutations in its NLS was still imported into the nucleus in a complex with endogenous leucine zipper proteins or, for example, with cotransfected c-Fos. Together, these results explain the highly efficient nuclear import of the transcription factor c-Jun.
Collapse
Affiliation(s)
- Inga Waldmann
- Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
195
|
Abstract
Nucleocytoplasmic exchange of proteins and RNAs is mediated by receptors that usher their cargo through the nuclear pores. Peptide localization signals on each cargo determine the receptors with which it will interact. Those interactions are normally regulated by the small GTPase Ran. Hydrolysis of GTP provides the chemical energy required to create a bona fide thermodynamic pump that selectively and directionally accumulates its substrates across the nuclear envelope. A common perception is that cargo delivery is irreversible, e.g., a protein imported to the nucleus does not return to the cytoplasm except perhaps via a specific export receptor. Quantitative measurements using cell-free nuclei reconstituted in Xenopus egg extract show that nuclear accumulation follows first-order kinetics and reaches steady state at a level that follows a Michaelis-Menten function of the cytoplasmic cargo concentration. This saturation suggests that receptor-mediated translocation across the nuclear pore occurs bidirectionally. The reversibility of accumulation was demonstrated directly by exchange of the cytosolic medium and by fluorescence recovery after photobleaching. Based on our results, we offer a simple biophysical model that predicts the observed behavior. A far-reaching consequence is that the nuclear localization signal dictates the fate of a protein population rather than that of the individual molecules that bear it, which remain free to shuttle back and forth. This implies an open communication between the nucleus and cytoplasm and a ubiquitous mechanism for signaling in both directions.
Collapse
Affiliation(s)
- Ronen Benjamine Kopito
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
196
|
Murrin LC, Talbot JN. RanBPM, a scaffolding protein in the immune and nervous systems. J Neuroimmune Pharmacol 2007; 2:290-5. [PMID: 18040864 DOI: 10.1007/s11481-007-9079-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/29/2007] [Indexed: 01/23/2023]
Abstract
We review the literature for Ran Binding Protein in the Microtubule-Organizing Center (RanBPM; RanBP9), a 90-kDa protein that possesses many characteristics of a scaffolding protein, including protein-interaction motifs, a cytoskeletal-binding domain, and multiple canonical docking sites for signaling intermediates. We focus on studies that have examined functional interactions between RanBPM and other proteins. These studies suggest that RanBPM provides a platform for the interaction of a variety of signaling proteins, including cell surface receptors, nuclear receptors, nuclear transcription factors, and cytosolic kinases. These studies indicate that RanBPM acts as a scaffolding protein and is important in regulating cellular function in both the immune system and the nervous system.
Collapse
Affiliation(s)
- L Charles Murrin
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | | |
Collapse
|
197
|
Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK. Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 2007; 6:2351-66. [PMID: 17488107 PMCID: PMC2570643 DOI: 10.1021/pr0701411] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular Recognition Features (MoRFs) are short, interaction-prone segments of protein disorder that undergo disorder-to-order transitions upon specific binding, representing a specific class of intrinsically disordered regions that exhibit molecular recognition and binding functions. MoRFs are common in various proteomes and occupy a unique structural and functional niche in which function is a direct consequence of intrinsic disorder. Example MoRFs collected from the Protein Data Bank (PDB) have been divided into three subtypes according to their structures in the bound state: alpha-MoRFs form alpha-helices, beta-MoRFs form beta-strands, and iota-MoRFs form structures without a regular pattern of backbone hydrogen bonds. These example MoRFs were indicated to be intrinsically disordered in the absence of their binding partners by several criteria. In this study, we used several geometric and physiochemical criteria to examine the properties of 62 alpha-, 20 beta-, and 176 iota-MoRF complex structures. Interface residues were examined by calculating differences in accessible surface area between the complex and isolated monomers. The compositions and physiochemical properties of MoRF and MoRF partner interface residues were compared to the interface residues of homodimers, heterodimers, and antigen-antibody complexes. Our analysis indicates that there are significant differences in residue composition and several geometric and physicochemical properties that can be used to discriminate, with a high degree of accuracy, between various interfaces in protein interaction data sets. Implications of these findings for the development of MoRF-partner interaction predictors are discussed. In addition, structural changes upon MoRF-to-partner complex formation were examined for several illustrative examples.
Collapse
Affiliation(s)
- Vladimir Vacic
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Computer Science and Engineering Department, University of California, Riverside, CA
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- School of Informatics; Indiana University, Bloomington, IN; Indiana University-Purdue University, Indianapolis, IN
| | - Amrita Mohan
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- School of Informatics; Indiana University, Bloomington, IN; Indiana University-Purdue University, Indianapolis, IN
| | - Predrag Radivojac
- School of Informatics; Indiana University, Bloomington, IN; Indiana University-Purdue University, Indianapolis, IN
| | - Marc S. Cortese
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- CORRESPONDING AUTHOR FOOTNOTE: *Correspondence should be addressed to: Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Health Information and Translational Sciences (HITS), 410 W. 10th Street, HS 5000, Indianapolis, IN 46202. Phone: 317-278-9650; fax: 317-278-9217; E-mail: (V.N.U.) or (A.K.D)
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- CORRESPONDING AUTHOR FOOTNOTE: *Correspondence should be addressed to: Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Health Information and Translational Sciences (HITS), 410 W. 10th Street, HS 5000, Indianapolis, IN 46202. Phone: 317-278-9650; fax: 317-278-9217; E-mail: (V.N.U.) or (A.K.D)
| |
Collapse
|
198
|
Abstract
The nuclear import of proteins through nuclear pore complexes (NPCs) illustrates how a complex biological function can be generated by a spatially and temporally organized cycle of interactions between cargoes, carriers and the Ran GTPase. Recent work has given considerable insight into this process, especially about how interactions are coordinated and the basis for the molecular recognition that underlies the process. Although considerable progress has been made in identifying and characterizing the molecular interactions in the soluble phase that drive the nuclear protein import cycle, understanding the precise mechanism of translocation through NPCs remains a major challenge.
Collapse
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
199
|
Denning DP, Rexach MF. Rapid Evolution Exposes the Boundaries of Domain Structure and Function in Natively Unfolded FG Nucleoporins. Mol Cell Proteomics 2007; 6:272-82. [PMID: 17079785 DOI: 10.1074/mcp.m600309-mcp200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain of Nups from human, fly, worm, and other yeast species is also enriched in these disorder-associated AAs, indicating that structural disorder is a conserved feature of FG Nups and likely serves an important role in NPC function. Despite the conservation of AA composition, FG Nup sequences from different species show extensive divergence. A comparison of the AA substitution rates of proteins with syntenic orthologs in four Saccharomyces species revealed that FG Nups have evolved at twice the rate of average yeast proteins with most substitutions occurring in sequences between FG repeats. The rapid evolution of FG Nups is poorly explained by parameters known to influence AA substitution rate, such as protein expression level, interactivity, and essentiality; instead their rapid evolution may reflect an intrinsic permissiveness of natively unfolded structures to AA substitutions. The overall lack of AA sequence conservation in FG Nups is sharply contrasted by discrete stretches of conserved sequences. These conserved sequences highlight known karyopherin and nucleoporin binding sites as well as other uncharacterized sites that may have important structural and functional properties.
Collapse
Affiliation(s)
- Daniel P Denning
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
200
|
Mirski SEL, Sparks KE, Friedrich B, Köhler M, Mo YY, Beck WT, Cole SPC. Topoisomerase II binds importin alpha isoforms and exportin/CRM1 but does not shuttle between the nucleus and cytoplasm in proliferating cells. Exp Cell Res 2007; 313:627-37. [PMID: 17182034 DOI: 10.1016/j.yexcr.2006.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/12/2006] [Accepted: 11/07/2006] [Indexed: 01/11/2023]
Abstract
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.
Collapse
Affiliation(s)
- Shelagh E L Mirski
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|