151
|
Pan ZX, He X, Chen YY, Tang WJ, Shi JB, Tang YL, Song BA, Li J, Liu XH. New 2H-chromene-3-carboxamide derivatives: Design, synthesis and use as inhibitors of hMAO. Eur J Med Chem 2014; 80:278-84. [DOI: 10.1016/j.ejmech.2014.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/08/2014] [Accepted: 04/21/2014] [Indexed: 12/29/2022]
|
152
|
Follmer C. Monoamine oxidase and α-synuclein as targets in Parkinson’s disease therapy. Expert Rev Neurother 2014; 14:703-16. [DOI: 10.1586/14737175.2014.920235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
153
|
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson's disease. J Neurochem 2014; 129:898-915. [PMID: 24548101 DOI: 10.1111/jnc.12686] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ-1 (PARK7), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1), serine/threonine-protein kinase (PINK-1), leucine-rich repeat kinase 2 (LRRK2), cation-transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o-quinone, aminochrome and 5,6-indolequinone are formed. However, both dopamine o-quinone and 5,6-indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o-quinone, aminochrome and 5,6-indolequinone polymerization to neuromelanin and (iii) two-electron reduction of aminochrome catalyzed by DT-diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone plays an important role in neurodegeneration in Parkinson's disease since they induce mitochondria and protein degradation dysfunction; formation of neurotoxic alpha synuclein protofibrils and oxidative stress. However, the cells have a protective system against dopamine oxidation composed by dopamine uptake mediated by Vesicular monoaminergic transporter-2 (VMAT-2), neuromelanin formation, two-electron reduction and GSH-conjugation mediated by Glutathione S-transferase M2-2 (GSTM2).
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
154
|
Esteban G, Allan J, Samadi A, Mattevi A, Unzeta M, Marco-Contelles J, Binda C, Ramsay RR. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1104-10. [PMID: 24642166 DOI: 10.1016/j.bbapap.2014.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAO) and cholinesterases are validated targets in the design of drugs for the treatment of Alzheimer's disease. The multi-target compound N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)-N-methylprop-2-yn-1-amine (ASS234), bearing the MAO-inhibiting propargyl group attached to a donepezil moiety that inhibits cholinesterases, retained activity against human acetyl- and butyryl-cholinesterases. The inhibition of MAO A and MAO B by ASS234 was characterized and compared to other known MAO inhibitors. ASS234 was almost as effective as clorgyline (kinact/KI=3×10(6) min(-1)M(-1)) and was shown by structural studies to form the same N5 covalent adduct with the FAD cofactor.
Collapse
Affiliation(s)
- Gerard Esteban
- Departamento de Bioquímica i Biología Molecular, Institute of Neuroscience, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jennifer Allan
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 8QP, UK
| | - Abdelouahid Samadi
- Laboratorio de Química Medica (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Mercedes Unzeta
- Departamento de Bioquímica i Biología Molecular, Institute of Neuroscience, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José Marco-Contelles
- Laboratorio de Química Medica (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy.
| | - Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 8QP, UK.
| |
Collapse
|
155
|
Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer's disease (Review). Mol Med Rep 2014; 9:1533-41. [PMID: 24626484 DOI: 10.3892/mmr.2014.2040] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/10/2014] [Indexed: 11/06/2022] Open
Abstract
Activated monoamine oxidase (MAO) has a critical role in the pathogenesis of Alzheimer's disease (AD), including the formation of amyloid plaques from amyloid β peptide (Aβ) production and accumulation, formation of neurofibrillary tangles, and cognitive impairment via the destruction of cholinergic neurons and disorder of the cholinergic system. Several studies have indicated that MAO inhibitors improve cognitive deficits and reverse Aβ pathology by modulating proteolytic cleavage of amyloid precursor protein and decreasing Aβ protein fragments. Thus, MAO inhibitors may be considered as promising therapeutic agents for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China
| |
Collapse
|
156
|
Electroacupuncture Attenuates Reference Memory Impairment Associated with Astrocytic NDRG2 Suppression in APP/PS1 Transgenic Mice. Mol Neurobiol 2014; 50:305-13. [DOI: 10.1007/s12035-013-8609-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/08/2013] [Indexed: 11/26/2022]
|
157
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
158
|
Sun Y, Chen J, Chen X, Huang L, Li X. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine–Homoisoflavonoid hybrids. Bioorg Med Chem 2013; 21:7406-17. [DOI: 10.1016/j.bmc.2013.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023]
|
159
|
Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson's disease mice. Chem Biol Interact 2013; 206:239-47. [PMID: 24095822 DOI: 10.1016/j.cbi.2013.09.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/04/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
Abstract
Mangiferin, a polyphenol compound of C-glucoside, is well-known for its anti-inflammatory, antioxidant, anticancer, antidiabetic and cognitive enhancement properties. In this study, we investigated the neuroprotective effect of mangiferin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), which is most popular and widely used to evaluate therapeutic implications of new protective agents. Male C57BL/6 mice were orally treated with mangiferin (10, 20 and 40 mg/kg body wt.) for 14 days and from 10th day onwards MPTP (30 mg/kg, i.p.) was injected for last 5 days. MPTP treatment leads to enhanced oxidative stress, induction of apoptosis (upregulates the expression of Bax, proapoptotic protein and downregulates the expression of anti-apoptotic marker Bcl-2), and loss of dopominergic neurons which results in motor impairments. Results of our study confirmed that mangiferin prevented MPTP-induced behavioral deficits, oxidative stress, apoptosis, dopaminergic neuronal degeneration and dopamine depletion. Taken together, we conclude that mangiferin attenuates the dopaminergic neurodegeneration mainly through its potent antioxidant and antiapoptotic properties.
Collapse
|
160
|
Pazini AM, Gomes GM, Villarinho JG, da Cunha C, Pinheiro F, Ferreira APO, Mello CF, Ferreira J, Rubin MA. Selegiline reverses aβ₂₅₋₃₅-induced cognitive deficit in male mice. Neurochem Res 2013; 38:2287-94. [PMID: 24005822 DOI: 10.1007/s11064-013-1137-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is biochemically characterized by the occurrence of extracellular deposits of amyloid beta peptide (Aβ) and intracellular deposits of the hyperphosphorylated tau protein, which are causally related to the pathological hallmarks senile plaques and neurofibrillary tangles. Monoamine oxidase B (MAO-B) activity, involved in the oxidation of biogenic monoamines, is particularly high around the senile plaques and increased in AD patients in middle to late clinical stages of the disease. Selegiline is a selective and irreversible MAO-B inhibitor and, although clinical trials already shown the beneficial effect of selegiline on cognition of AD patients, its mechanism of action remains to be elucidated. Therefore, we first investigated whether selegiline reverses the impairment of object recognition memory induced by Aβ25-35 in mice, an established model of AD. In addition, we investigated whether selegiline alters MAO-B and MAO-A activities in the hippocampus, perirhinal and remaining cerebral cortices of Aβ25-35-injected male mice. Acute (1 and 10 mg/kg, p.o., immediately post-training) and subchronic (10 mg/kg, p.o., seven days after Aβ25-35 injection and immediately post-training) administration of selegiline reversed the cognitive impairment induced by Aβ25-35 (3 nmol, i.c.v.). Acute administration of selegiline (1 mg/kg, p.o.) in combination with Aβ25-35 (3 nmol) decreased MAO-B activity in the perirhinal and remaining cerebral cortices. Acute administration of selegiline (10 mg/kg, p.o.) decreased MAO-B activity in hippocampus, perirhinal and remaining cerebral cortices, regardless of Aβ25-35 or Aβ35-25 treatment. MAO-A activity was not altered by selegiline or Aβ25-35. In summary, the current findings further support a role for cortical monoaminergic transmission in the cognitive deficits observed in AD.
Collapse
Affiliation(s)
- Andréia M Pazini
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Avenida Roraima 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Marutle A, Gillberg PG, Bergfors A, Yu W, Ni R, Nennesmo I, Voytenko L, Nordberg A. ³H-deprenyl and ³H-PIB autoradiography show different laminar distributions of astroglia and fibrillar β-amyloid in Alzheimer brain. J Neuroinflammation 2013; 10:90. [PMID: 23880036 PMCID: PMC3733895 DOI: 10.1186/1742-2094-10-90] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathological features in Alzheimer's disease (AD) brain include the accumulation and deposition of β-amyloid (Aβ), activation of astrocytes and microglia and disruption of cholinergic neurotransmission. Since the topographical characteristics of these different pathological processes in AD brain and how these relate to each other is not clear, this motivated further exploration using binding studies in postmortem brain with molecular imaging tracers. This information could aid the development of specific biomarkers to accurately chart disease progression. RESULTS In vitro binding assays demonstrated increased [³H]-PIB (fibrillar Aβ) and [³H]-PK11195 (activated microglia) binding in the frontal cortex (FC) and hippocampus (HIP), as well as increased binding of [³H]-L-deprenyl (activated astrocytes) in the HIP, but a decreased [³H]-nicotine (α4β2 nicotinic acetylcholine receptor (nAChR)) binding in the FC of AD cases compared to age-matched controls. Quantitative autoradiography binding studies were also performed to investigate the regional laminar distributions of [³H]-L-deprenyl, [³H]-PIB as well as [¹²⁵I]-α-bungarotoxin (α7 nAChRs) and [³H]-nicotine in hemisphere brain of a typical AD case. A clear lamination pattern was observed with high [³H]-PIB binding in all layers and [³H]-deprenyl in superficial layers of the FC. In contrast, [³H]-PIB showed low binding to fibrillar Aβ, but [³H]-deprenyl high binding to activated astrocytes throughout the HIP. The [³H]-PIB binding was also low and the [³H]-deprenyl binding high in all layers of the medial temporal gyrus and insular cortex in comparison to the frontal cortex. Low [³H]-nicotine binding was observed in all layers of the frontal cortex in comparison to layers in the medial temporal gyrus, insular cortex and hippocampus. Immunohistochemical detection in the AD case revealed abundant glial fibrillary acidic protein positive (GFAP+) reactive astrocytes and α7 nAChR expressing GFAP+ astrocytes both in the vicinity and surrounding Aβ neuritic plaques in the FC and HIP. Although fewer Aβ plaques were observed in the HIP, some hippocampal GFAP+ astrocytes contained Aβ-positive (6 F/3D) granules within their somata. CONCLUSIONS Astrocytosis shows a distinct regional pattern in AD brain compared to fibrillar Aβ, suggesting that different types of astrocytes may be associated with the pathophysiological processes in AD.
Collapse
Affiliation(s)
- Amelia Marutle
- Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum Floor-5, Stockholm S-14186, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Cardia MC, Sanna ML, Meleddu R, Distinto S, Yañez M, Viña D, Lamela M, Maccioni E. A Novel Series of 3,4-Disubstituted Dihydropyrazoles: Synthesis and Evaluation for MAO Enzyme Inhibition. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria Cristina Cardia
- Dipartimento Farmaco Chimico Tecnologico; Università degli Studi di Cagliari; Via Ospedale; 72, 09124; Cagliari; Italy
| | - Maria Luisa Sanna
- Dipartimento Farmaco Chimico Tecnologico; Università degli Studi di Cagliari; Via Ospedale; 72, 09124; Cagliari; Italy
| | - Rita Meleddu
- Dipartimento Farmaco Chimico Tecnologico; Università degli Studi di Cagliari; Via Ospedale; 72, 09124; Cagliari; Italy
| | - Simona Distinto
- Dipartimento di Scienze Farmaco Biologiche; University “Magna Graecia” of Catanzaro; Campus “S. Venuta,”; 88100; Catanzaro (CZ); Italy
| | - Matilde Yañez
- Departamento de Farmacología and Instituto de Farmacia Industrial; Universidad de Santiago de Compostela, Campus Universitario Sur; E-15782; Santiago de Compostela; Spain
| | - Dolores Viña
- Departamento de Farmacología and Instituto de Farmacia Industrial; Universidad de Santiago de Compostela, Campus Universitario Sur; E-15782; Santiago de Compostela; Spain
| | - Manuel Lamela
- Departamento de Farmacología and Instituto de Farmacia Industrial; Universidad de Santiago de Compostela, Campus Universitario Sur; E-15782; Santiago de Compostela; Spain
| | - Elias Maccioni
- Dipartimento Farmaco Chimico Tecnologico; Università degli Studi di Cagliari; Via Ospedale; 72, 09124; Cagliari; Italy
| |
Collapse
|
163
|
Lu C, Zhou Q, Yan J, Du Z, Huang L, Li X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer's disease. Eur J Med Chem 2013; 62:745-53. [DOI: 10.1016/j.ejmech.2013.01.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
|
164
|
Youdim MBH. Multi target neuroprotective and neurorestorative anti-Parkinson and anti-Alzheimer drugs ladostigil and m30 derived from rasagiline. Exp Neurobiol 2013; 22:1-10. [PMID: 23585716 PMCID: PMC3620452 DOI: 10.5607/en.2013.22.1.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/28/2022] Open
Abstract
Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the properties of ladostigil and similar neuroprotective activity to ladostigil, but is not a ChE inhibitor. M30 has a neurorestorative activity in post-lesion of nigrostriatal dopamine neurons in MPTP, lacatcystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity is related to the ability of the drug to activate hypoxia inducing factor (HIF) which induces the production of such neurotrophins as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and erythropoietin as well as glia-derived neurotrophic factor (GDNF). The unique multiple actions of ladostigil and M30 make the potentially useful drugs for the treatment of dementia with Parkinsonian-like symptoms and depression.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion Rappaort Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Haifa, Haifa 30196, Israel. ; Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
165
|
Pisani L, Barletta M, Soto-Otero R, Nicolotti O, Mendez-Alvarez E, Catto M, Introcaso A, Stefanachi A, Cellamare S, Altomare C, Carotti A. Discovery, Biological Evaluation, and Structure–Activity and −Selectivity Relationships of 6′-Substituted (E)-2-(Benzofuran-3(2H)-ylidene)-N-methylacetamides, a Novel Class of Potent and Selective Monoamine Oxidase Inhibitors. J Med Chem 2013; 56:2651-64. [DOI: 10.1021/jm4000769] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Maria Barletta
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Ramon Soto-Otero
- Grupo de Neuroquimica,
Departamento
de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago de Compostela, Spain
| | - Orazio Nicolotti
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Estefania Mendez-Alvarez
- Grupo de Neuroquimica,
Departamento
de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago de Compostela, Spain
| | - Marco Catto
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Antonellina Introcaso
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Cosimo Altomare
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| | - Angelo Carotti
- Dipartimento di Farmacia −
Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125
Bari, Italy
| |
Collapse
|
166
|
Matos MJ, Vilar S, Gonzalez-Franco RM, Uriarte E, Santana L, Friedman C, Tatonetti NP, Viña D, Fontenla JA. Novel (coumarin-3-yl)carbamates as selective MAO-B inhibitors: synthesis, in vitro and in vivo assays, theoretical evaluation of ADME properties and docking study. Eur J Med Chem 2013; 63:151-61. [PMID: 23474901 DOI: 10.1016/j.ejmech.2013.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 01/02/2023]
Abstract
A series of (coumarin-3-yl)carbamates was synthesized and evaluated in vitro as monoamine oxidase (MAO-A and MAO-B) inhibitors. Most of the new compounds selectively inhibited MAO-B isoenzyme with IC50 values in the micro or nanoMolar ranges. Since these compounds must achieve the brain cells, theoretical evaluation of ADME properties were also carried out. Compound 8 (benzyl(coumarin-3-yl)carbamate), which presented the most interesting in vitro MAO-B inhibitory profile (IC50 against MAO-B = 45 nM), was subjected to further studies. This in vitro MAO-B inhibitory activity is comparable with that of the selegiline, the reference compound (IC50 against MAO-B = 20 nM). Taking into account the in vitro results of compound 8, in vivo assays and docking calculations were also carried out for this derivative.
Collapse
Affiliation(s)
- Maria J Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Salgın-Gökşen U, Gökhan-Kelekçi N, Yabanoglu-Çiftci S, Yelekçi K, Uçar G. Synthesis, molecular modeling, and in vitro screening of monoamine oxidase inhibitory activities of some novel hydrazone derivatives. J Neural Transm (Vienna) 2013; 120:883-91. [DOI: 10.1007/s00702-013-0968-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/04/2013] [Indexed: 01/19/2023]
|
168
|
Riemer J, Kins S. Axonal Transport and Mitochondrial Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2013; 12:111-24. [DOI: 10.1159/000342020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
|
169
|
NGP1-01, a multi-targeted polycyclic cage amine, attenuates brain endothelial cell death in iron overload conditions. Brain Res 2012; 1489:133-9. [DOI: 10.1016/j.brainres.2012.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/12/2012] [Accepted: 10/14/2012] [Indexed: 11/23/2022]
|
170
|
Nebbioso M, Pascarella A, Cavallotti C, Pescosolido N. Monoamine oxidase enzymes and oxidative stress in the rat optic nerve: age-related changes. Int J Exp Pathol 2012; 93:401-5. [PMID: 23082958 DOI: 10.1111/j.1365-2613.2012.00832.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/21/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, age-related changes in the monoamine oxidases (MAO) were studied in the optic nerve (ON) of both young and aged male rats. The aim of the study was to assess the role of MAO in age-related changes in the rat ON and explain the mechanisms of neuroprotection mediated by MAO-B-specific inhibitors. Fifteen three month old and fifteen 26 month old Sprague-Dawley rats were used. The animals were killed by terminal anaesthesia. Staining of MAO, quantitative analysis of images, biochemical assays and statistical analysis of data were carried out. Samples of the ON were washed in water, fixed in Bowen fluid, dehydrated and embedded in Entellan. Histological sections were stained for MAO-enzymatic activities. The specificity of the reaction was evaluated by incubating control sections in a medium either without substrate or without dye. The quantitative analysis of images was carried out at the same magnification and the same lighting using a Zeiss photomicroscope. The histochemical findings were compared with the biochemical results. After enzymatic staining, MAO could be demonstrated in the ON fibres of both young and aged animals; however, MAO were increased in the nerve fibres of the elderly rats. These morphological findings were confirmed biochemically. The possibility that age-related changes in MAO levels may be attributed to impaired energy production mechanisms and/or represent the consequence of reduced energy needs is discussed.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Center of Ocular Electrophysiology, Department of Sense Organs, Sapienza University of Rome, Rome, Italy.
| | | | | | | |
Collapse
|
171
|
Foley P, Gerlach M, Youdim MB, Riederer P. MAO-B inhibitors: multiple roles in the therapy of neurodegenerative disorders? Parkinsonism Relat Disord 2012; 6:25-47. [PMID: 18591148 DOI: 10.1016/s1353-8020(99)00043-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Revised: 06/29/1999] [Accepted: 06/29/1999] [Indexed: 11/16/2022]
Abstract
Monoamine oxidases play a central role in catecholamine catabolism in the central nervous system. The biochemical and pharmacological properties of inhibitors of the monoamine oxidase type B are reviewed. The evidence for biochemical activities distinct from their ability to inhibit MAO-B is discussed, including possible antioxidative and antiapoptotic activities of these agents. The significance of these properties for the pharmacological management of Parkinson's disease and the evidence for a neuroprotective effect of one such agent (selegiline) is also discussed.
Collapse
Affiliation(s)
- P Foley
- Clinical Neurochemistry, Department of Psychiatry, University of Würzburg, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
172
|
Aspartic acid substitutions in monoamine oxidase-A reveal both catalytic-dependent and -independent influences on cell viability and proliferation. J Neural Transm (Vienna) 2012; 119:1285-94. [DOI: 10.1007/s00702-012-0779-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/16/2012] [Indexed: 12/17/2022]
|
173
|
Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 2012; 53:37-46. [PMID: 22213821 DOI: 10.2967/jnumed.110.087031] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Astrocytes colocalize with fibrillar amyloid-β (Aβ) plaques in postmortem Alzheimer disease (AD) brain tissue. It is therefore of great interest to develop a PET tracer for visualizing astrocytes in vivo, enabling the study of the regional distribution of both astrocytes and fibrillar Aβ. A multitracer PET investigation was conducted for patients with mild cognitive impairment (MCI), patients with mild AD, and healthy controls using (11)C-deuterium-L-deprenyl ((11)C-DED) to measure monoamine oxidase B located in astrocytes. Along with (11)C-DED PET, (11)C-Pittsburgh compound B ((11)C-PIB; fibrillar Aβ deposition), (18)F-FDG (glucose metabolism), T1 MRI, cerebrospinal fluid, and neuropsychologic data were acquired from the patients. METHODS (11)C-DED PET was performed in MCI patients (n = 8; mean age ± SD, 62.6 ± 7.5 y; mean Mini Mental State Examination, 27.5 ± 2.1), AD patients (n = 7; mean age, 65.1 ± 6.3 y; mean Mini Mental State Examination, 24.4 ± 5.7), and healthy age-matched controls (n = 14; mean age, 64.7 ± 3.6 y). A modified reference Patlak model, with cerebellar gray matter as a reference, was chosen for kinetic analysis of the (11)C-DED data. (11)C-DED data from 20 to 60 min were analyzed using a digital brain atlas. Mean regional (18)F-FDG uptake and (11)C-PIB retention were calculated for each patient, with cerebellar gray matter as a reference. RESULTS ANOVA analysis of the regional (11)C-DED binding data revealed a significant group effect in the bilateral frontal and bilateral parietal cortices related to increased binding in the MCI patients. All patients, except 3 with MCI, showed high (11)C-PIB retention. Increased (11)C-DED binding in most cortical and subcortical regions was observed in MCI (11)C-PIB+ patients relative to controls, MCI (11)C-PIB (negative) patients, and AD patients. No regional correlations were found between the 3 PET tracers. CONCLUSION Increased (11)C-DED binding throughout the brain of the MCI (11)C-PIB+ patients potentially suggests that astrocytosis is an early phenomenon in AD development.
Collapse
Affiliation(s)
- Stephen F Carter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
174
|
Santos MA, Marques SM, Chaves S. Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
175
|
Serra S, Ferino G, Matos MJ, Vázquez-Rodríguez S, Delogu G, Viña D, Cadoni E, Santana L, Uriarte E. Hydroxycoumarins as selective MAO-B inhibitors. Bioorg Med Chem Lett 2012; 22:258-61. [DOI: 10.1016/j.bmcl.2011.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 01/26/2023]
|
176
|
Viña D, Matos MJ, Yáñez M, Santana L, Uriarte E. 3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer's disease. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00221j] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
177
|
Nag S, Varrone A, Tóth M, Thiele A, Kettschau G, Heinrich T, Lehmann L, Halldin C. In vivo evaluation in cynomolgus monkey brain and metabolism of [¹⁸F]fluorodeprenyl: a new MAO-B pet radioligand. Synapse 2011; 66:323-30. [PMID: 22124971 DOI: 10.1002/syn.21514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/28/2011] [Indexed: 11/11/2022]
Abstract
In this study, we evaluated the in vivo characteristics of a new monoamine oxidase type B (MAO-B) radioligand, [¹⁸F]fluorodeprenyl, by positron emission tomography (PET) in two cynomolgus monkeys. The brain uptake of [¹⁸F]fluorodeprenyl was more than 7% (600% SUV) of the total injected radioactivity and similar to that of [¹¹C]deprenyl, an established MAO-B radioligand. The highest uptake was observed in the striatum, one of the MAO-B-rich regions, with a peak at approximately 2-3 min after injection, followed by lower uptake in the thalamus and the cortex and lowest uptake in the cerebellum. Brain uptake of [¹⁸F]fluorodeprenyl was largely inhibited by preadministration of the MAO-B inhibitor, L-deprenyl, whereas clorgyline, a MAO Type A blocker, had no significant inhibitory effect, thus demonstrating selectivity for MAO-B. [¹⁸F]Fluorodeprenyl showed relatively slow metabolism with the presence of two radiometabolite peaks with similar retention time as the labeled metabolites of [¹¹C]deprenyl. These results suggest that [¹⁸F]fluorodeprenyl is a potential PET radioligand for visualization of MAO-B activity.
Collapse
Affiliation(s)
- Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Distinto S, Yáñez M, Alcaro S, Cardia MC, Gaspari M, Sanna ML, Meleddu R, Ortuso F, Kirchmair J, Markt P, Bolasco A, Wolber G, Secci D, Maccioni E. Synthesis and biological assessment of novel 2-thiazolylhydrazones and computational analysis of their recognition by monoamine oxidase B. Eur J Med Chem 2011; 48:284-95. [PMID: 22222137 DOI: 10.1016/j.ejmech.2011.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 11/25/2011] [Accepted: 12/18/2011] [Indexed: 12/26/2022]
Abstract
Monoamine oxidase B (MAO-B) is a promising target for the treatment of neurodegenerative disorders. We report the synthesis and the biological evaluation of halogenated derivatives of 1-aryliden-2-(4-phenylthiazol-2-yl)hydrazines. The fluorinated series shows interesting activity and great selectivity toward the human recombinant MAO-B isoform expressed in baculovirus infected BTI insect cells. The multiple crystal structures alignment of the enzyme highlighted pronounced induced fit (IF) adaptations with respect to bound ligands. Therefore, IF docking (IFD) experiments and molecular dynamic (MD) simulations were carried out to reveal the putative binding mode and to explain the experimentally observed differences in the activity of 1-(aryliden-2-(4-(4-chlorophenyl)thiazol-2-yl)hydrazines. The importance of water molecules within the binding site was also investigated. These are known to play an important role in the binding site cavity and to mediate protein-ligand interactions. Detailed analyses of the trajectories provide insights on the chemical features required for the activity of this scaffold. In particular it was highlighted the importance of fluorine atom interacting with the water close to the cofactor and the influence of steric bulkiness of substituents in the arylidene moiety. Free energy perturbation (FEP) analysis confirmed experimental data. The information we deduced will help to develop novel high-affinity MAO-B inhibitors.
Collapse
Affiliation(s)
- Simona Distinto
- Dipartimento di Scienze della Salute, Università degli Studi Magna Græcia di Catanzaro, Campus Salvatore Venuta, Viale Europa, 88100 Catanzaro (CZ), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Nag S, Lehmann L, Heinrich T, Thiele A, Kettschau G, Nakao R, Gulyás B, Halldin C. Synthesis of Three Novel Fluorine-18 Labeled Analogues of l-Deprenyl for Positron Emission Tomography (PET) studies of Monoamine Oxidase B (MAO-B). J Med Chem 2011; 54:7023-9. [DOI: 10.1021/jm200710b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden
| | - Lutz Lehmann
- Bayer Healthcare AG, Global Drug Discovery, Berlin, Germany
| | | | - Andrea Thiele
- Bayer Healthcare AG, Global Drug Discovery, Berlin, Germany
| | | | - Ryuji Nakao
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden
| | - Balázs Gulyás
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden
| |
Collapse
|
180
|
In vivo imaging of astrocytosis in Alzheimer’s disease: an 11C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging 2011; 38:2202-8. [DOI: 10.1007/s00259-011-1895-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/25/2011] [Indexed: 11/27/2022]
|
181
|
Maccioni E, Alcaro S, Cirilli R, Vigo S, Cardia MC, Sanna ML, Meleddu R, Yanez M, Costa G, Casu L, Matyus P, Distinto S. 3-Acetyl-2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoles: a new scaffold for the selective inhibition of monoamine oxidase B. J Med Chem 2011; 54:6394-8. [PMID: 21777011 DOI: 10.1021/jm2002876] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Acetyl-2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoles were designed, synthesized, and tested as inhibitors against human monoamine oxidase (MAO) A and B isoforms. Several compounds, obtained as racemates, were identified as selective MAO-B inhibitors. The enantiomers of some derivatives were separated by enantioselective HPLC and tested. The R-enantiomers always showed the highest activity. Docking study and molecular dynamic simulations demonstrated the putative binding mode. We conclude that these 1,3,4-oxadiazoles derivatives are promising reversible and selective MAO-B inhibitors.
Collapse
Affiliation(s)
- Elias Maccioni
- Dipartimento Farmaco Chimico Tecnologico, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Dong WJ, Cui FH, Gao ZL, Li RS, Shen GL, Dong HS. An efficient synthesis of 5-aryl-4,5-dihydro-3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-1-(4-phenylthiazol-2-yl)pyrazoles. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
183
|
The emergence of designed multiple ligands for neurodegenerative disorders. Prog Neurobiol 2011; 94:347-59. [PMID: 21536094 DOI: 10.1016/j.pneurobio.2011.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline.
Collapse
|
184
|
Pugliese M, Rodríguez MJ, Gimeno-Bayon J, Pujadas L, Billett EE, Wells C, Mahy N. Alzheimer's disease modifies progenitor cell expression of monoamine oxidase B in the subventricular zone. J Neurosci Res 2011; 88:2588-97. [PMID: 20648649 DOI: 10.1002/jnr.22423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the adult brain, progenitor cells remaining in the subventricular zone (SVZ) are frequently identified as glial fibrillary acidic protein (GFAP)-positive cells that retain attributes reminiscent of radial glia. Because the very high expression of monoamine oxidase B (MAO-B) in the subventricular area has been related to epithelial and astroglial expression, we sought to ascertain whether it was also expressed by progenitor cells of human control and Alzheimer's disease (AD) patients. In the SVZ, epithelial cells and astrocyte-like cells presented rich MAO-B activity and immunolabeling. Nestin-positive cells were found in the same area, showing a radial glia-like morphology. When coimmunostaining and confocal microscopy were performed, most nestin-positive cells showed MAO-B activity and labeling. The increased progenitor activity in SVZ proposed for AD patients was confirmed by the positive correlation between the SVZ nestin/MAO-B ratio and the progression of the disease. Nestin/GFAP-positive cells, devoid of MAO-B, can represent a distinct subpopulation of an earlier phase of maturation. This would indicate that MAO-B expression takes place in a further step of nestin/GFAP-positive cell differentiation. In the early AD stages, the discrete MAO-B reduction, different from the severe GFAP decrease, would reflect the capacity of this population of MAO-B-positive progenitor cells to adapt to the neurodegenerative process.
Collapse
Affiliation(s)
- Marco Pugliese
- Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
185
|
Alzheimer disease-related presenilin-1 variants exert distinct effects on monoamine oxidase-A activity in vitro. J Neural Transm (Vienna) 2011; 118:987-95. [PMID: 21373759 DOI: 10.1007/s00702-011-0616-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Monoamine oxidase-A (MAO-A) has been associated with both depression and Alzheimer disease (AD). Recently, carriers of AD-related presenilin-1 (PS-1) alleles have been found to be at higher risk for developing clinical depression. We chose to examine whether PS-1 could influence MAO-A function in vitro. Overexpression of selected AD-related PS-1 variants (wildtype, Y115H, ΔEx9 and M146V) in mouse hippocampal HT-22 cells affects MAO-A catalytic activity in a variant-specific manner. The ability of the PS-1 substrate-competitor DAPT to induce MAO-A activity in cells expressing either PS-1 wildtype or PS-1(M146V) suggests the potential for a direct influence of PS-1 on MAO-A function. In support of this, we were able to co-immunoprecipitate MAO-A with FLAG-tagged PS-1 wildtype and M146V proteins. This potential for a direct protein-protein interaction between PS-1 and MAO-A is not specific for HT-22 cells as we were also able to co-immunoprecipitate MAO-A with FLAG-PS-1 variants in N2a mouse neuroblastoma cells and in HEK293 human embryonic kidney cells. Finally, we demonstrate that the two PS-1 variants reported to be associated with an increased incidence of clinical depression [e.g., A431E and L235V] both induce MAO-A activity in HT-22 cells. A direct influence of PS-1 variants on MAO-A function could provide an explanation for the changes in monoaminergic tone observed in several neurodegenerative processes including AD. The ability to induce MAO-A catalytic activity with a PS-1/γ-secretase inhibitor should also be considered when designing secretase inhibitor-based therapeutics.
Collapse
|
186
|
Richards G, Messer J, Waldvogel HJ, Gibbons HM, Dragunow M, Faull RL, Saura J. Up-regulation of the isoenzymes MAO-A and MAO-B in the human basal ganglia and pons in Huntington's disease revealed by quantitative enzyme radioautography. Brain Res 2011; 1370:204-14. [DOI: 10.1016/j.brainres.2010.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/16/2022]
|
187
|
Multimodal drugs and their future for Alzheimer's and Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:107-25. [DOI: 10.1016/b978-0-12-386467-3.00006-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
188
|
Kadir A, Marutle A, Gonzalez D, Schöll M, Almkvist O, Mousavi M, Mustafiz T, Darreh-Shori T, Nennesmo I, Nordberg A. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer's disease. ACTA ACUST UNITED AC 2010; 134:301-17. [PMID: 21149866 PMCID: PMC3009843 DOI: 10.1093/brain/awq349] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The accumulation of β-amyloid in the brain is an early event in Alzheimer’s disease. This study presents the first patient with Alzheimer’s disease who underwent positron emission tomography imaging with the amyloid tracer, Pittsburgh Compound B to visualize fibrillar β-amyloid in the brain. Here we relate the clinical progression, amyloid and functional brain positron emission tomography imaging with molecular neuropathological alterations at autopsy to gain new insight into the relationship between β-amyloid accumulation, inflammatory processes and the cholinergic neurotransmitter system in Alzheimer’s disease brain. The patient underwent positron emission tomography studies with 18F-fluorodeoxyglucose three times (at ages 53, 56 and 58 years) and twice with Pittsburgh Compound B (at ages 56 and 58 years), prior to death at 61 years of age. The patient showed a pronounced decline in cerebral glucose metabolism and cognition during disease progression, while Pittsburgh Compound B retention remained high and stable at follow-up. Neuropathological examination of the brain at autopsy confirmed the clinical diagnosis of pure Alzheimer’s disease. A comprehensive neuropathological investigation was performed in nine brain regions to measure the regional distribution of β-amyloid, neurofibrillary tangles and the levels of binding of 3H-nicotine and 125I-α-bungarotoxin to neuronal nicotinic acetylcholine receptor subtypes, 3H-L-deprenyl to activated astrocytes and 3H-PK11195 to microglia, as well as butyrylcholinesterase activity. Regional in vivo11C-Pittsburgh Compound B-positron emission tomography retention positively correlated with 3H-Pittsburgh Compound B binding, total insoluble β-amyloid, and β-amyloid plaque distribution, but not with the number of neurofibrillary tangles measured at autopsy. There was a negative correlation between regional fibrillar β-amyloid and levels of 3H-nicotine binding. In addition, a positive correlation was found between regional 11C-Pittsburgh Compound B positron emission tomography retention and 3H-Pittsburgh Compound B binding with the number of glial fibrillary acidic protein immunoreactive cells, but not with 3H-L-deprenyl and 3H-PK-11195 binding. In summary, high 11C-Pittsburgh Compound B positron emission tomography retention significantly correlates with both fibrillar β-amyloid and losses of neuronal nicotinic acetylcholine receptor subtypes at autopsy, suggesting a closer involvement of β-amyloid pathology with neuronal nicotinic acetylcholine receptor subtypes than with inflammatory processes.
Collapse
Affiliation(s)
- Ahmadul Kadir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC, Nag S, Hermecz I, Magyar K, Halldin C. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 2010; 58:60-8. [PMID: 21075154 DOI: 10.1016/j.neuint.2010.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/24/2010] [Accepted: 10/26/2010] [Indexed: 11/25/2022]
Abstract
In the human brain the monoaminooxidase-B enzyme or MAO-B is highly abundant in astrocytes. As astrocyte activity and, consequently, the activity of the MAO-B enzyme, is up-regulated in neuroinflammatory processes, radiolabelled analogues of deprenyl may serve as an imaging biomarker in neuroinflammation and neurodegeneration, including Alzheimer's disease. In the present study [(11)C]-L-deprenyl, the PET radioligand version of L-deprenyl or selegiline®, a selective irreversible MAO-B inhibitor was used in whole hemisphere autoradiographic experiments in human brain sections in order to test the radioligand's binding to the MAO-B enzyme in human brain tissue, with an eye on exploring the radioligand's applicability as a molecular imaging biomarker in human PET studies, with special regard to diagnostic detection of reactive astrogliosis. Whole hemisphere brain sections obtained from Alzheimer patients and from age matched control subjects were examined. In control brains the binding of [(11)C]-L-deprenyl was the highest in the hippocampus, in the basal ganglia, the thalamus, the substantia nigra, the corpus geniculatum laterale, the nucleus accumbens and the periventricular grey matter. In Alzheimer brains significantly higher binding was observed in the temporal lobes and the white matter. Furthermore, in the Alzheimer brains in the hippocampus, temporal lobe and white matter the binding negatively correlated with Braak stages. The highest binding was observed in Braak I-II, whereas it decreased with increasing Braak grades. The increased regional binding in Alzheimer brains coincided with the presence of an increased number of activated astrocytes, as demonstrated by correlative immunohistochemical studies with GFAP in adjacent brain slices. Deprenyl itself as well as the MAO-B antagonist rasagiline did effectively block the binding of the radioligand, whereas the MAO-A antagonist pirlindole did not affect it. Compounds with high affinity for the PBR system did not block the radioligand binding either, providing evidence for the specificity of [(11)C]-L-deprenyl for the MAO-B enzyme. In conclusion, the present observations indicate that [(11)C]-L-deprenyl may be a promising and selective imaging biomarker of increased MAO-B activity in the human brain and can therefore serve as a prospective PET tracer targeting neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Balázs Gulyás
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Lin SM, Wang SW, Ho SC, Tang YL. Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 2010; 26:1195-200. [DOI: 10.1016/j.nut.2009.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 11/15/2009] [Accepted: 11/16/2009] [Indexed: 11/26/2022]
|
191
|
Zheng H, Fridkin M, Youdim MBH. Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer's disease. Neurochem Res 2010; 35:2117-23. [PMID: 20981484 DOI: 10.1007/s11064-010-0293-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 02/06/2023]
Abstract
chelators can modulate β-amyloid accumulation, protect against tau hyperphosphorylation, and block metal-related oxidative stress, and thereby hold considerable promise as effective anti-AD drugs. At present, a growing interest is focusing on increasing the efficacy and targeting of chelators through drug design. To this end, we have developed a new class of multifunctional prochelators from three FDA- approved drugs rasagiline, rivastigmine, and donepezil or tacrine. HLA20 A was designed by merging the important pharmacophores of rasagiline, rivastigmine, and donepezil into our newly developed multifunctional chelator HLA20. M30D was constructed using the key pharmacophoric moieties from rasagiline, rivastigmine, and tacrine. Experiments showed that both compounds possess potent anti-acetylcholinesterase (AChE) activity in vitro with weak inhibition of butyrylcholinesterase (BuChE), and without significant metal-binding activity. M30D was found also to be a highly potent MAO A inhibitor with moderate inhibition of MAO B in vitro. Both HLA20 and M30D can be activated by inhibition of AChE to release active chelators HLA20 and M30, respectively. HLA20 and M30 have been shown to be able to modulate amyloid precursor protein regulation and beta-amyloid reduction, suppress oxidative stress, and passivate excess metal ions (Fe, Cu, and Zn). Compared with the activated chelator HLA20 or M30, both HLA20A and M30D exhibited lower cytotoxicity in SH-SY5Y neuroblastoma cells, substantiating the prochelator strategy for minimizing toxicity associated with poor targeted chelators.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
192
|
Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MBH. Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 2010; 13:919-49. [PMID: 20095867 DOI: 10.1089/ars.2009.2929] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that many cytotoxic signals occurring in the neurodegenerative brain can initiate neuronal death processes, including oxidative stress, inflammation, and accumulation of iron at the sites of the neuronal deterioration. Neuroprotection by iron chelators has been widely recognized with respect to their ability to prevent hydroxyl radical formation in the Fenton reaction by sequestering redox-active iron. An additional neuroprotective mechanism of iron chelators is associated with their ability to upregulate or stabilize the transcriptional activator, hypoxia-inducible factor-1alpha (HIF-1alpha). HIF-1alpha stability within the cells is under the control of a class of iron-dependent and oxygen-sensor enzymes, HIF prolyl-4-hydroxylases (PHDs) that target HIF-1alpha for degradation. Thus, an emerging novel target for neuroprotection is associated with the HIF system to promote stabilization of HIF-1alpha and increase transcription of HIF-1-related survival genes, which have been reported to be regulated in patient's brains afflicted with diverse neurodegenerative diseases. In accordance, a new potential therapeutic strategy for neurodegenerative diseases is explored, by which iron chelators would inhibit PHDs, target the HIF-1-signaling pathway and ultimately activate HIF-1-dependent neuroprotective genes. This review discusses two interrelated approaches concerning therapy targets in neurodegeneration, sharing in common the implementation of iron chelation activity: antioxidation and HIF-1-pathway activation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | | | |
Collapse
|
193
|
Zheng H, Youdim MBH, Fridkin M. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer's therapy. ACS Chem Biol 2010; 5:603-10. [PMID: 20455574 DOI: 10.1021/cb900264w] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chelators have the potential to treat the underlying cause of Alzheimer's disease (AD), but their therapeutic use is hampered by their poor targeting and poor permeability to the brain and/or toxic effects. Here, we report a new strategy for designing site-activated chelators targeting both acetylcholinesterase (AChE) and monoamine oxidase (MAO). We demonstrated that our lead 2 inhibited both AChE and MAO in vitro, but with little affinity for metal (Fe, Cu, and Zn) ions. Compound 2 can be activated by inhibition of AChE to release an active chelator M30. M30 has been shown to be able to modulate amyloid precursor protein regulation and beta-amyloid reduction, suppress oxidative stress, and passivate excess metal ions (Fe, Cu, and Zn). Compound 2 was less cytotoxic and more lipophilic than the brain-permeable chelator M30. Our new strategy is relatively simple and generally produces small and simple molecules with drug-like properties; it thus holds a potential use in designing site-activated multifunctional chelators with safer and more efficacious properties for treating other metal-related diseases such as Parkinson's disease and cancer where specific elimination of metals in cancer cells is required.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- Current address: Department of Medicinal Chemistry, Intra-cellular Therapies Inc., 3960 Broadway, New York, New York 10032
| | - Moussa B. H. Youdim
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases and Department of Pharmacology, Technion-Rappaport Family Faculty of Medicine Haifa, 31096, Israel
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
194
|
Galindo MF, Ikuta I, Zhu X, Casadesus G, Jordán J. Mitochondrial biology in Alzheimer's disease pathogenesis. J Neurochem 2010; 114:933-45. [PMID: 20492350 DOI: 10.1111/j.1471-4159.2010.06814.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the increasing knowledge of Alzheimer's disease (AD) management with novel pharmacologic agents, most of them are only transiently fixing symptomatic pathology. Currently there is rapid growth in the field of neuroprotective pharmacology and increasing focus on the involvement of mitochondria in this devastating disease. This review is directed at understanding the role of mitochondria-mediated pathways in AD and integrating basic biology of the mitochondria with knowledge of possible pharmacologic targets for AD treatment in an attempt to elucidate novel mitochondria-driven therapeutic interventions useful to both clinical and basic research.
Collapse
Affiliation(s)
- María F Galindo
- Unidad de Neuropsicofarmacología Translacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | | | | | | | | |
Collapse
|
195
|
Prins LH, Petzer JP, Malan SF. Synthesis and in vitro evaluation of pteridine analogues as monoamine oxidase B and nitric oxide synthase inhibitors. Bioorg Med Chem 2009; 17:7523-30. [DOI: 10.1016/j.bmc.2009.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/26/2022]
|
196
|
Zitova A, Hynes J, Kollar J, Borisov SM, Klimant I, Papkovsky DB. Analysis of activity and inhibition of oxygen-dependent enzymes by optical respirometry on the LightCycler system. Anal Biochem 2009; 397:144-51. [PMID: 19849999 DOI: 10.1016/j.ab.2009.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/06/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
There is currently a need for a method capable of measuring the activity and inhibition of biologically relevant oxygenases in a format that enables the convenient, fast, and cost-efficient generation of dose-response information. Here we describe a low-volume luminescence-based assay for the measurement of such oxygen-dependent enzymes. The assay employs a photoluminescent oxygen-sensitive probe and glass capillary microcuvettes measured on the Roche LightCycler detection platform. Three discrete types of oxygen probe were evaluated for this application: (i) solid-state coatings, (ii) soluble macromolecular MitoXpress probe, both phosphorescent porphyrin-based, and (iii) a luminescent Ir(III)-based nanoparticle probe. Measurement parameters were optimised and subsequently applied to the analysis of three biologically relevant oxygenases, namely cytochrome P450 (CYP), monoamine oxygenase (MAO), and cyclooxygenase (COX). CYP enzymes are central players in drug detoxification while specific inhibitors of MAO and COX are important for therapeutic intervention and treatment of neurological and inflammatory diseases, respectively. To determine assay utility, oxygen consumption catalysed by all three enzyme types was measured and the effect of specific inhibitors determined. The panel included the MAO-A/B inhibitors clorgyline, toloxatone, deprenyl, and the COX-1/2 inhibitors niflumic acid, nimesulide, SC-560, ketoprofen, and phenylbutazone. IC(50) values were then compared with literature values. The measurement methodology described allows the low-volume analysis of biologically relevant oxygenases and displays the requisite sensitivity and throughput to facilitate routine analysis. It is also applicable to other O(2)-dependent enzymes and enzymatic systems.
Collapse
Affiliation(s)
- Alice Zitova
- Department of Biochemistry, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
197
|
Cerioni G, Maccioni E, Cardia MC, Vigo S, Mocci F. Characterization of 2,5-diaryl-1,3,4-oxadiazolines by multinuclear magnetic resonance and density functional theory calculations. Investigation on a case of very remote Hammett correlation. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:727-733. [PMID: 19479946 DOI: 10.1002/mrc.2453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two series of 2,5-diaryl-1,3,4-oxadiazolines have been studied by multinuclear magnetic resonance and density functional theory calculations. A full NMR spectroscopic characterization has been performed and excellent remote Hammett correlations (sigma(p) or sigma(p)+) have been found for para substitution in the two aryl rings through at least 11 bonds, notwithstanding the presence in the path of atoms that should act as insulators and a lack of correlation for some of the intermediate atoms. The computational investigation on the electronic delocalization, performed with the ACID (anisotropy of the induced current density) method, reveals indeed that electrons are delocalized in almost the entire molecule despite the presence of the insulators.
Collapse
Affiliation(s)
- Giovanni Cerioni
- Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario, S.S. 554, Bivio per Sestu, I-09042 Monserrato (CA), Italy.
| | | | | | | | | |
Collapse
|
198
|
Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol Res 2009; 59:306-11. [DOI: 10.1016/j.phrs.2009.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 11/19/2022]
|
199
|
van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:397-401. [PMID: 19168123 DOI: 10.1016/j.jep.2009.01.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/17/2008] [Accepted: 01/03/2009] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY Rhodiola rosea L. (Crassulaceae) is traditionally used in Eastern Europe and Asia to stimulate the nervous system, enhance physical and mental performance, treat fatigue, psychological stress and depression. In order to investigate the influence of Rhodiola rosea L. roots on mood disorders, three extracts were tested against monoamine oxidases (MAOs A and B) in a microtitre plate bioassay. MATERIALS AND METHODS Methanol and water extracts gave the highest inhibitory activity against MAOs. Twelve compounds were then isolated by bioassay-guided fractionation using chromatographic methods. The structures were determined by 1H, 13C NMR and HR-MS. RESULTS The methanol and water extracts exhibited respectively inhibitions of 92.5% and 84.3% on MAO A and 81.8% and 88.9% on MAO B, at a concentration of 100 microg/ml. The most active compound (rosiridin) presented an inhibition over 80% on MAO B at a concentration of 10(-5) M (pIC50=5.38+/-0.05). CONCLUSIONS The present investigation demonstrates that Rhodiola rosea L. roots have potent anti-depressant activity by inhibiting MAO A and may also find application in the control of senile dementia by their inhibition of MAO B.
Collapse
Affiliation(s)
- Daphne van Diermen
- Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
200
|
Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox Res 2009; 15:284-90. [PMID: 19384601 DOI: 10.1007/s12640-009-9030-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 10/20/2022]
Abstract
Stress can affect the brain and lead to depression; however, the molecular pathogenesis is unclear. An association between stress and stress-induced hypersecretion of glucocorticoids occurs during stress. Dexamethasone (a synthetic glucocorticoid steroid) has been reported to induce apoptosis and increase the activity of monoamine oxidase (MAO) (Youdim et al. 1989). MAO is an enzyme for the degradation of aminergic neurotransmitters; dopamine, noradrenaline and serotonin and dietary amines and MAO inhibitors are classical antidepressant drugs. In this study, we have compared the ability of rasagiline (Azilect) and its main metabolite, R-aminoindan with selegiline (Deprenyl) in prevention of dexamethasone-induced brain cell death employing human neuroblastoma SH-SY5Y cells and glioblastoma 1242-MG cells. Dexamethasone reduced cell viability as measured by MTT test, but rasagiline, selegiline, and 1-R-aminoindan could significantly prevent dexamethasone-induced brain cell death. Among three drugs, rasagiline had the highest neuroprotective effect. Furthermore, the inhibitory effects of these drugs on MAO B catalytic activity and on apoptotic DNA damage (TUNEL staining) were examined. Rasagiline exhibited highest inhibition on MAO B enzymatic activity and prevention on DNA damage as compared to selegiline and 1-R-aminoindan. In summary, the greater neuroprotective effect of rasagiline may be associated with the combination of the parent drug and its metabolite 1-R-aminoindan.
Collapse
|