151
|
Hamid J, Nelson D, Spaetgens R, Dubel SJ, Snutch TP, Zamponi GW. Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 1999; 274:6195-202. [PMID: 10037705 DOI: 10.1074/jbc.274.10.6195] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modulation of presynaptic calcium channel activity by second messengers provides a fine tuning mechanism for neurotransmitter release. In neurons, the activation of certain G protein-coupled receptors reduces N-type channel activity by approximately 60%. In contrast, activation of protein kinase C (PKC) results in an approximately 50% increase in N-type channel activity, and subsequent G protein inhibition is antagonized. Here, we describe the molecular determinants that control the dual effects of PKC-dependent phosphorylation. The double substitution of two adjacent PKC consensus sites in the calcium channel domain I-II linker (Thr422, Ser425) to alanines abolished both PKC-dependent up-regulation and the PKC-G protein cross-talk. The single substitution of Ser425 to glutamic acid abolished PKC up-regulation but had no effect on G protein modulation. Replacement of Thr422 with glutamic acid eliminated PKC-dependent up-regulation and mimicked the effects of PKC phosphorylation on G protein inhibition. Our data suggest that Thr422 mediates the antagonistic effect of PKC on G protein modulation, while phosphorylation of either Thr422 or Ser425 are sufficient to increase N-type channel activity. Thus, Thr422 serves as a molecular switch by which PKC is able to simultaneously trigger the up-regulation of channel activity and antagonize G protein inhibition.
Collapse
Affiliation(s)
- J Hamid
- Department of Pharmacology and Therapeutics, Neuroscience Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
152
|
Yawo H. Protein kinase C potentiates transmitter release from the chick ciliary presynaptic terminal by increasing the exocytotic fusion probability. J Physiol 1999; 515 ( Pt 1):169-80. [PMID: 9925887 PMCID: PMC2269124 DOI: 10.1111/j.1469-7793.1999.169ad.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The giant presynaptic terminal of chick ciliary ganglion was used to examine how protein kinase C (PKC) modulates neurotransmitter release. Cholinergic excitatory postsynaptic currents (EPSCs) were recorded under whole-cell voltage clamp. 2. Although the EPSC was potentiated by phorbol ester (phorbol 12-myristate 13-acetate, PMA; 0.1 microM) in a sustained manner, the nicotine-induced current was unaffected. PMA increased the quantal content to 2.4 +/- 0.4 (n = 9) of control without changing the quantal size. 3. The inactive isoform of PMA, 4alpha-PMA, showed no significant effect on EPSCs. The PMA-induced potentiation was antagonized by two PKC inhibitors with different modes of action, sphingosine (20 microM) and bisindolylmaleimide I (10 microM). 4. When stimulated by twin pulses of short interval, the second EPSC was on average larger than the first EPSC (paired-pulse facilitation; PPF). PMA significantly decreased the PPF ratio with a time course similar to that of the potentiation of the first EPSC. 5. PMA did not affect resting [Ca2+]i or the action potential-induced [Ca2+]i increment in the giant presynaptic terminals. 6. The effect of PMA was less at 10 mM [Ca2+]o than at 1 mM [Ca2+]o. 7. When a train of action potentials was generated with a short interval, the EPSC was eventually depressed and reached a steady-state level. The recovery process followed a simple exponential relation with a rate constant of 0.132 +/- 0.029 s-1. PMA did not affect the recovery rate constant of EPSCs from tetanic depression. In addition, PMA did not affect the steady-state EPSC which should be proportional to the refilling rate of the readily releasable pool of vesicles. 8. These results conflict with the hypothesis that PKC upregulates the size of the readily releasable pool or the number of release sites. PKC appears to upregulate the Ca2+ sensitivity of the process that controls the exocytotic fusion probability.
Collapse
Affiliation(s)
- H Yawo
- Neurophysiology Division, Department of Physiology and Pharmacology, Tohoku University School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
153
|
Potier B, Rovira C. Protein tyrosine kinase inhibitors reduce high-voltage activating calcium currents in CA1 pyramidal neurones from rat hippocampal slices. Brain Res 1999; 816:587-97. [PMID: 9878884 DOI: 10.1016/s0006-8993(98)01241-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the effects of protein tyrosine kinases (PTKs) inhibitors on high-threshold voltage activating (HVA) calcium currents in CA1 pyramidal neurones, whole-cell patch-clamp recorded from rat hippocampal slices. Genistein (100 microM) and tyrphostin B42 (100 microM), two PTKs inhibitors, reduced the steady-state barium current (IBa). On the other hand, daidzein and genistin (100 microM), two inactive analogues of genistein, had no effect on IBa amplitude. The inhibition induced by genistein was more pronounced at negative potentials. In order to characterize the calcium channels subtypes inhibited by PTKs inhibitors, we examined the effect of genistein in the presence of different calcium channel blockers. When L-type calcium channels were blocked by nifedipine, genistein induced a strong inhibition of the nifedipine-resistant IBa, suggesting an effect on non-L-type channels. Genistein did not antagonize the depressant effect of omega-Conotoxin-GVIA, a selective N-type calcium channel blocker, suggesting that N-type channels were not blocked by genistein. omega-Conotoxin-MVIIC (3-10 microM), a selective P/Q-type calcium channel blocker, greatly antagonized the depressant effect of genistein. Our results suggest that PTKs inhibitors reduce P-/Q-type, but not L- or N-types calcium currents in neurones of the CNS. The possible modulation of calcium channels by endogenous PTKs is discussed.
Collapse
Affiliation(s)
- B Potier
- INSERM U161, 2 rue d'Alésia, 75014, Paris, France
| | | |
Collapse
|
154
|
Cousin MA, McLaughlin M, Nicholls DG. Protein kinase C modulates field-evoked transmitter release from cultured rat cerebellar granule cells via a dendrotoxin-sensitive K+ channel. Eur J Neurosci 1999; 11:101-9. [PMID: 9987015 DOI: 10.1046/j.1460-9568.1999.00412.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of protein kinase C (PKC) in the control of neurotransmitter release from cultured rat cerebellar granule cells was investigated. Release of preloaded [3H]-D-aspartate which is incorporated into synaptic vesicles in this preparation was evoked by electrical field stimulation or elevated KCl. PKC activation by phorbol esters resulted in a large facilitation of field-evoked Ca(2+)-dependent [3H]-D-aspartate release and a lesser enhancement of KCl-stimulated release. Inhibition of PKC by Ro 31-8220 or staurosporine virtually abolished field-evoked release but had no effect on KCl-evoked release. Field-evoked, but not KCl-evoked, synaptic vesicle exocytosis monitored by the fluorescent vesicle probe FM2-10 was inhibited by staurosporine. PKC was not directly modulating neurite Ca2+ channels coupled to release, as Ro 31-8220 did not inhibit these channels. Activation or inhibition of PKC modulated field-evoked plasma membrane depolarization, but had no effect on KCl-evoked depolarization, consistent with a regulation of Na+ or K+ channels activated by field stimulation. No modulation of field-evoked neurite Na+ influx was seen using phorbol esters. Phorbol ester-induced facilitation of field-evoked [3H]-D-aspartate release and neurite Ca2+ entry was non-additive with that produced by the specific K+ channel antagonist dendrotoxin-1, suggesting that PKC modulates transmitter release from field-stimulated cerebellar granule cells by inhibiting a dendrotoxin-1-sensitive K+ channel.
Collapse
Affiliation(s)
- M A Cousin
- Department of Pharmacology and Neuroscience, Ninewells Medical School, University of Dundee, UK.
| | | | | |
Collapse
|
155
|
Stojilkovic SS. Calcium Signaling Systems. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
156
|
White BH, Nick TA, Carew TJ, Kaczmarek LK. Protein kinase C regulates a vesicular class of calcium channels in the bag cell neurons of aplysia. J Neurophysiol 1998; 80:2514-20. [PMID: 9819259 DOI: 10.1152/jn.1998.80.5.2514] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase C (PKC) acutely increases calcium currents in Aplysia bag cell neurons by recruiting calcium channels different from those constitutively active in the plasma membrane. To study the mechanism of PKC regulation we previously identified two calcium channel alpha1-subunits expressed in bag cell neurons. One of these, BC-alpha1A, is localized to vesicles concentrated primarily in somata and growth cones. We used antibodies to BC-alpha1A to analyze its expression in the bag cell neurons of juvenile Aplysia at a developmental stage at which PKC-sensitive calcium currents have previously been shown to be low. We find that vesicular BC-alpha1A staining is generally reduced in juvenile bag cell neurons but that its expression level can vary among juvenile animals. In 17 bag cell clusters examined, the percentage of neurons that displayed punctate alphaBC-alpha1A staining ranged from 0 to 85%. Sampling of calcium currents from cells of the same clusters by whole cell patch-clamp techniques revealed that the PKC-sensitive calcium current density is significantly correlated with the degree of vesicular staining. In contrast, no correlation of basal calcium current levels with aBC-alpha1A staining was found. These results strongly suggest that BC-alpha1A, a member of the ABE-subfamily of calcium channels, carries the PKC-sensitive calcium current in bag cell neurons. They are consistent with a model in which PKC recruits channels from the vesicular pool to the plasma membrane.
Collapse
Affiliation(s)
- B H White
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
157
|
Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 1998. [PMID: 9742163 DOI: 10.1523/jneurosci.18-19-07962.1998] [Citation(s) in RCA: 389] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new orexigenic peptide called hypocretin (orexin) has recently been described in neurons of the lateral hypothalamus and perifornical area. The medial and lateral hypothalamus have been loosely called satiety and feeding centers of the brain, respectively. Approximately one-third of all medial and lateral hypothalamic neurons tested, but not hippocampal neurons, show a striking nanomolar sensitivity to hypocretin. As studied with calcium digital imaging with fura-2, hypocretin raises cytoplasmic calcium via a mechanism based on G-protein enhancement of calcium influx through plasma membrane channels. The peptide has a potent effect at both presynaptic and postsynaptic receptors. Most synaptic activity in hypothalamic circuits is attributable to axonal release of GABA or glutamate. With whole-cell patch-clamp recording, we show that hypocretin, acting directly at axon terminals, can increase the release of each of these amino acid transmitters. Two hypocretin peptides, hypocretin-1 and hypocretin-2, are coded by a single gene; neurons that respond to one peptide also respond to the other. In addition to its effect on feeding, we find that this peptide also regulates the synaptic activity of physiologically identified neuroendocrine neurons studied in hypothalamic slices containing the arcuate nucleus, suggesting a second function of hypocretin in hormone regulation. The widespread distribution of hypocretin axons, coupled with the strong response to the peptide at both presynaptic and postsynaptic sites, suggests that the peptide probably modulates a variety of hypothalamic regulatory systems and could regulate the axonal input to these regions presynaptically.
Collapse
|
158
|
Sutton KG, Siok C, Stea A, Zamponi GW, Heck SD, Volkmann RA, Ahlijanian MK, Snutch TP. Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3. Mol Pharmacol 1998; 54:407-18. [PMID: 9687583 DOI: 10.1124/mol.54.2.407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptide toxins have proved to be useful agents, both in discriminating between different components of native calcium channel currents and in the molecular isolation and designation of their cloned channel counterparts. Here, we describe the isolation and characterization of the biochemical and physiological properties of a novel 74-amino acid peptide toxin (DW13.3) extracted from the venom of the spider Filistata hibernalis. The subtype specificity of DW13.3 was investigated using calcium channel currents recorded from two separate expression systems and several different cultured mammalian cell preparations. Overall, DW13.3 potently blocked all native calcium channel currents studied, with the exception of T-type currents recorded from GH3 cells. Examination of transiently expressed calcium channels in oocytes showed that DW13.3 had the highest affinity for alpha1A, followed by alpha1B > alpha1C > alpha1E. The affinity of DW13.3 for alpha1B N-type currents varied by 10-fold between expressed channels and native currents. Although block occurred in a similar 1:1 manner for all subtypes, DW13.3 produced a partial block of both alpha1A currents and P-type currents in cerebellar Purkinje cells. Selective occlusion of the P/Q-type channel ligand omega-conotoxin MVIIC (but not omega-agatoxin IVA) from its binding site in Purkinje neurons suggests that DW13.3 binds to a site close to the pore of the channel. The inhibition of different subtypes of calcium channels by DW13.3 reflects a common "macro" binding site present on all calcium channels except T-type.
Collapse
Affiliation(s)
- K G Sutton
- Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Shistik E, Ivanina T, Blumenstein Y, Dascal N. Crucial role of N terminus in function of cardiac L-type Ca2+ channel and its modulation by protein kinase C. J Biol Chem 1998; 273:17901-9. [PMID: 9651396 DOI: 10.1074/jbc.273.28.17901] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the cytosolic N terminus of the main subunit (alpha1C) of cardiac L-type voltage-dependent Ca2+ channel was studied in Xenopus oocyte expression system. Deletion of the initial 46 or 139 amino acids (a.a.) of rabbit heart alpha1C caused a 5-10-fold increase in the whole cell Ca2+ channel current carried by Ba2+ (IBa), as reported previously (Wei, X., Neely, A., Olcese, R., Lang, W., Stefani, E., and Birnbaumer, L. (1996) Recept. Channels 4, 205-215). The plasma membrane content of alpha1C protein, measured immunochemically, was not altered by the 46-a.a. deletion. Patch clamp recordings in the presence of a dihydropyridine agonist showed that this deletion causes a approximately 10-fold increase in single channel open probability without changing channel density. Thus, the initial segment of the N terminus affects channel gating rather than expression. The increase in IBa caused by coexpression of the auxiliary beta2A subunit was substantially stronger in channels with full-length alpha1C than in 46- or 139-a.a. truncated mutants, suggesting an interaction between beta2A and N terminus. However, only the I-II domain linker of alpha1C, but not to N or C termini, bound beta2A in vitro. The well documented increase of IBa caused by activation of protein kinase C (PKC) was fully eliminated by the 46-a.a. deletion. Thus, the N terminus of alpha1C plays a crucial role in channel gating and PKC modulation. We propose that PKC and beta subunit enhance the activity of the channel in part by relieving an inhibitory control exerted by the N terminus. Since PKC up-regulation of L-type Ca2+ channels has been reported in many species, we predict that isoforms of alpha1C subunits containing the initial N-terminal 46 a.a. similar to those of the rabbit heart alpha1C are widespread in cardiac and smooth muscle cells.
Collapse
Affiliation(s)
- E Shistik
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
160
|
Vance CL, Begg CM, Lee WL, Haase H, Copeland TD, McEnery MW. Differential expression and association of calcium channel alpha1B and beta subunits during rat brain ontogeny. J Biol Chem 1998; 273:14495-502. [PMID: 9603963 DOI: 10.1074/jbc.273.23.14495] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium functions as an essential second messenger during neuronal development and synapse acquisition. Voltage-dependent calcium channels (VDCC), which are critical to these processes, are heteromultimeric complexes composed of alpha1, alpha2/delta, and beta subunits. beta subunits function to direct the VDCC complex to the plasma membrane as well as regulate its channel properties. The importance of beta to neuronal functioning was recently underscored by the identification of a truncated beta4 isoform in the epileptic mouse lethargic (lh) (Burgess, D. L., Jones, J. M., Meisler, M. H., and Noebels, J. L. (1997) Cell 88, 385-392). The goal of our study was to investigate the role of individual beta isoforms (beta1b, beta2, beta3, and beta4) in the assembly of N-type VDCC during rat brain development. By using quantitative Western blot analysis with anti-alpha1B-directed antibodies and [125I-Tyr22]omega-conotoxin GVIA (125I-CTX) radioligand binding assays, we observed that only a small fraction of the total alpha1B protein present in embryonic and early postnatal brain expressed high affinity 125I-CTX-binding sites. These results suggested that subsequent maturation of alpha1B or its assembly with auxiliary subunits was required to exhibit high affinity 125I-CTX binding. The temporal pattern of expression of beta subunits and their assembly with alpha1B indicated a developmental pattern of expression of beta isoforms: beta1b increased 3-fold from P0 to adult, beta4 increased 10-fold, and both beta2 and beta3 expression remained unchanged. As the beta component of N-type VDCC changed during postnatal development, we were able to identify both immature and mature forms of N-type VDCC. At P2, the relative contribution of beta is beta1b > beta3 >> beta2, whereas at P14 and adult the distribution is beta3 > beta1b = beta4. Although we observed no beta4 associated with the alpha1B at P2, beta4 accounted for 14 and 25% of total alpha1B/beta subunit complexes in P14 and adult, respectively. Thus, of the beta isoforms analyzed, only the beta4 was assembled with the rat alpha1B to form N-type VDCC with a time course that paralleled its level of expression during rat brain development. These results suggest a role for the beta4 isoform in the assembly and maturation of the N-type VDCC.
Collapse
Affiliation(s)
- C L Vance
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
We have found that phosphorylation of a G-protein-coupled receptor by protein kinase C (PKC) disrupts modulation of ion channels by the receptor. In AtT-20 cells transfected with rat cannabinoid receptor (CB1), the activation of an inwardly rectifying potassium current (Kir current) and depression of P/Q-type calcium channels by cannabinoids were prevented by stimulation of protein kinase C by 100 nM phorbol 12-myristate 13-acetate (PMA). In contrast, activation of Kir current by somatostatin was unaffected, and inhibition of calcium channels was only modestly attenuated. The possibility that PKC acted by phosphorylating CB1 receptors was confirmed by demonstrating that PKC phosphorylated a single serine (S317) of a fusion protein incorporating the third intracellular loop of CB1. Mutating this serine to alanine did not affect the ability of CB1 to modulate currents, but it eliminated disruption by PMA, demonstrating that PKC can disrupt ion channel modulation by receptor phosphorylation.
Collapse
|
162
|
Hermsmeyer K, Mishra S, Miyagawa K, Minshall R. Physiologic and pathophysiologic relevance of T-type calcium-ion channels: potential indications for T-type calcium antagonists. Clin Ther 1998; 19 Suppl A:18-26. [PMID: 9385502 DOI: 10.1016/s0149-2918(97)80034-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The family of voltage-gated calcium-ion (Ca2+) channels is critical in the role of transmembrane signaling of excitable cells throughout the body. Within the cardiovascular system, two types of Ca2+ channels have been identified: the L-type channel and the T-type channel. These two types of Ca2+ channels have distinct electrophysiologic identities, and although the roles of the T-type Ca2+ channels have not been firmly established, there are many reasons for believing that the roles of the T-type and L-type Ca2+ channels are distinct. T-type Ca2+ channels have the appropriate characteristics to generate pacemaker activity in the sinoatrial node. In vascular smooth muscle, they appear to be involved in maintenance of coronary and peripheral vasomotor tone and control of vascular growth and remodeling. Characterization of the T-type Ca2+ channels will be facilitated by the availability of mibefradil, a novel calcium antagonist that selectively blocks T-type Ca2+ channels. Mibefradil is associated with a reduction in heart rate but not with negative inotropic effects or neurohormonal stimulation. It is thought that the unique pharmacologic effects of mibefradil are related to blockade of T-type Ca2+ channels, and it is hypothesized that this action will have a positive impact on cardiovascular morbidity and mortality via cardioprotective and renoprotective effects. However, much work needs to be done to fully test this hypothesis.
Collapse
Affiliation(s)
- K Hermsmeyer
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, USA
| | | | | | | |
Collapse
|
163
|
Affiliation(s)
- A C Dolphin
- Department of Pharmacology, University College London, UK.
| |
Collapse
|
164
|
Blank T, Nijholt I, Teichert U, Kügler H, Behrsing H, Fienberg A, Greengard P, Spiess J. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci U S A 1997; 94:14859-64. [PMID: 9405704 PMCID: PMC25128 DOI: 10.1073/pnas.94.26.14859] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The signal transduction pathway underlying the cAMP-dependent modulation of rat striatal N-methyl-D-aspartate (NMDA) responses was investigated by using the two-electrode voltage-clamp technique. In oocytes injected with rat striatal poly(A)+ mRNA, activation of cAMP-dependent protein kinase (PKA) by forskolin potentiated NMDA responses. Inhibition of protein phosphatase 1 (PP1) and/or protein phosphatase 2A (PP2A) by the specific inhibitor calyculin A occluded the PKA-mediated potentiation of striatal NMDA responses, suggesting that the PKA effect was mediated by inhibition of a protein phosphatase. Coinjection of oocytes with striatal mRNA and antisense oligodeoxynucleotides directed against the protein phosphatase inhibitor DARPP-32 dramatically reduced the PKA enhancement of NMDA responses. NMDA responses recorded from oocytes injected with rat hippocampal poly(A)+ mRNA were not affected by stimulation of PKA. When oocytes were coinjected with rat hippocampal poly(A)+ mRNA plus complementary RNA coding for DARPP-32, NMDA responses were potentiated after stimulation of PKA. The results provide evidence that DARPP-32, which is enriched in the striatum, may participate in the signaling between the two major afferent striatal pathways, the glutamatergic and the dopaminergic projections, by the cAMP-dependent regulation of striatal NMDA currents.
Collapse
Affiliation(s)
- T Blank
- Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 1997. [PMID: 9278528 DOI: 10.1523/jneurosci.17-18-06929.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic protein interaction (synprint) site on the N-type calcium channel alpha1B subunit binds to the soluble N-ethylmaleimide-sensitive attachment factor receptor (SNARE) proteins syntaxin and synaptosomal protein of 25 kDa (SNAP-25), and this association may be required for efficient fast synaptic transmission. Protein kinase C (PKC) and calcium and calmodulin-dependent protein kinase type II (CaM KII) phosphorylated a recombinant his-tagged synprint site polypeptide rapidly to a stoichiometry of 3-4 mol of phosphate/mol, whereas cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) phosphorylated the synprint peptide more slowly to a stoichiometry of <1 mol/mol. Two-dimensional phosphopeptide mapping revealed similar patterns of phosphorylation of synprint polypeptides and native rat brain N-type calcium channel alpha1B subunits by PKC and Cam KII. Phosphorylation of the synprint peptide with PKC or CaM KII, but not PKA or PKG, strongly inhibited binding of recombinant syntaxin or SNAP-25, even at a level of free calcium (15 microM) that stimulates maximal binding. In contrast, phosphorylation of syntaxin and SNAP-25 with PKC and CaM KII did not affect interactions with the synprint site. Binding assays with polypeptides representing the N- and C-terminal halves of the synprint site indicate that the PKC- and CaM KII-mediated inhibition of binding involves multiple, disperse phosphorylation sites. PKC or CaM KII phosphorylation of the synprint peptide also inhibited its interactions with native rat brain SNARE complexes containing syntaxin and SNAP-25. These results suggest that phosphorylation of the synprint site by PKC or CaM KII may serve as a biochemical switch for interactions between N-type calcium channels and SNARE protein complexes.
Collapse
|
166
|
Vázquez E, Sánchez-Prieto J. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Eur J Neurosci 1997; 9:2009-18. [PMID: 9421162 DOI: 10.1111/j.1460-9568.1997.tb01369.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied which type/s of Ca2+-channel/s support glutamate exocytosis and its modulation by presynaptic receptors in cerebrocortical nerve terminals. Depolarization of nerve terminals with 30 mM KCl induced a Ca2+-dependent release of 3.64 +/- 0.25 nmol/mg of protein. The addition of either 2 microM omega-conotoxin-GVIA or 200 nM omega-agatoxin-IVA reduced the KCl-evoked release by 47.7 +/- 3.5% and 70.4 +/- 8.9% respectively, and by 85.7 +/- 4.1% when both toxins were co-applied. The activation of adenosine A1 receptors with N6-cyclohexyladenosine or the activation of metabotropic glutamate receptors with L(+)-2-amino-4-phosphonobutyrate inhibited the KCl-evoked release by 41.0 +/- 5.9 and 54.3 +/- 10% respectively. The extent of these inhibitions was not altered by the prior addition of 2 microM omega-conotoxin-GVIA but they were significantly enhanced when omega-agatoxin-IVA was added together with the adenosine A1 receptor agonist or the metabotropic glutamate receptor agonist, suggesting that omega-conotoxin-GVIA-sensitive and not omega-agatoxin-IVA-sensitive Ca2+-channels are involved in the action of these inhibitory receptors. By contrast, the facilitation of glutamate release that follows the activation of the protein kinase C, either with phorbol esters or with the stimulation of phospholipase C-linked metabotropic receptors, was expressed by both omega-conotoxin-GVIA-sensitive and omega-agatoxin-sensitive Ca2+-channels. It is concluded that different Ca2+-channels support the modulation of glutamate release by presynaptic receptors.
Collapse
Affiliation(s)
- E Vázquez
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
167
|
Xiong W, Nakatani K, Ye B, Yau K. Protein kinase C activity and light sensitivity of single amphibian rods. J Gen Physiol 1997; 110:441-52. [PMID: 9379174 PMCID: PMC2229376 DOI: 10.1085/jgp.110.4.441] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1997] [Accepted: 07/23/1997] [Indexed: 02/05/2023] Open
Abstract
Biochemical experiments by others have indicated that protein kinase C activity is present in the rod outer segment, with potential or demonstrated targets including rhodopsin, transducin, cGMP-phosphodiesterase (PDE), guanylate cyclase, and arrestin, all of which are components of the phototransduction cascade. In particular, PKC phosphorylations of rhodopsin and the inhibitory subunit of PDE (PDE ) have been studied in some detail, and suggested to have roles in downregulating the sensitivity of rod photoreceptors to light during illumination. We have examined this question under physiological conditions by recording from a single, dissociated salamander rod with a suction pipette while exposing its outer segment to the PKC activators phorbol-12-myristate,13-acetate (PMA) or phorbol-12,13-dibutyrate (PDBu), or to the PKC-inhibitor GF109203X. No significant effect of any of these agents on rod sensitivity was detected, whether in the absence or presence of a background light, or after a low bleach. These results suggest that PKC probably does not produce any acute downregulation of rod sensitivity as a mechanism of light adaptation, at least for isolated amphibian rods.
Collapse
Affiliation(s)
- W Xiong
- Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
168
|
Wang D, Gelband CH, Sumners C, Posner P. Mechanisms underlying the chronotropic effect of angiotensin II on cultured neurons from rat hypothalamus and brain stem. J Neurophysiol 1997; 78:1013-20. [PMID: 9307131 DOI: 10.1152/jn.1997.78.2.1013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chronotropic effect of angiotensin II (Ang II) was studied in cultured neurons from rat hypothalamus and brain stem with the use of the patch-clamp technique. Ang II (100 nM) increased the neuronal spontaneous firing rate from 0.8 +/- 0.3 (SE) Hz in control to 1.3 +/- 0.4 Hz (n = 7, P < 0.05). The amplitude of threshold stimulation was decreased by Ang II (100 nM) from 82 +/- 4 pA to 62 +/- 5 pA (n = 4, P < 0.05). These actions of Ang II were reversed by the angiotensin type 1 (AT1) receptor antagonist losartan (1 microM). In the presence of tetrodotoxin, Ang II (100 nM) significantly increased the frequency and the amplitude of the Cd2+-sensitive subthreshold activity of the cultured neurons. Ang II also stimulated the subthreshold early afterdepolarizations (EADs) to become fully developed action potentials. Similar to the action of Ang II, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) increased the firing rate from 0.76 +/- 0.3 Hz to 2.3 +/- 0.5 Hz (n = 6, P < 0.05) and increased the neuronal subthreshold activity. After neurons were intracellularly dialyzed with PKC inhibitory peptide (PKCIP, 5 microM), PMA alone, Ang II alone, or PMA plus Ang II no longer increased the action potential firing initiated from the resting membrane potential level. However, superfusion of PMA plus Ang II or Ang II alone increased the number of EADs that reached threshold and produced action potentials even in the presence of PKCIP (5 microM, n = 4). The actions of Ang II could also be mimicked by depolarizing pulse and K+ channel blockers (tetraethylammonium chloride or 4-aminopyridine). These results indicate that Ang II by activation of AT1 receptors increases neuronal excitability and firing frequency, and that this may involve both PKC dependent and -independent mechanisms.
Collapse
Affiliation(s)
- D Wang
- Department of Physiology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | | | |
Collapse
|
169
|
Shekter LR, Taussig R, Gillard SE, Miller RJ. Regulation of human neuronal calcium channels by G protein betagamma subunits expressed in human embryonic kidney 293 cells. Mol Pharmacol 1997; 52:282-91. [PMID: 9271351 DOI: 10.1124/mol.52.2.282] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined the ability of different G protein subunits to inhibit the activity of human alpha1B and alpha1E Ca2+ channels stably expressed in human embryonic kidney (HEK) 293 cells together with beta1B and alpha2Bdelta Ca2+ channel subunits. Under normal conditions, Ca2+ currents in alpha1B-expressing cells showed little facilitation after a depolarizing prepulse. However, when we overexpressed the beta2gamma2 subunits of heterotrimeric G proteins, the time course of activation of the Ca2+ currents was considerably slowed and a depolarizing prepulse produced a large facilitation of the current as well as an acceleration in its time course of activation. Similar effects were not observed when cells were transfected with constitutively active mutants of the G protein alpha subunits alpha s, alpha i1, and alpha o or with the G protein beta2 and gamma2 subunits alone. Studies carried out in cells expressing alpha1E currents showed that overexpression of beta2gamma2 subunits produced pre-pulse facilitation, although this was of lesser magnitude than that observed with Ca2+ currents in alpha1B-expressing cells. The subunits beta2 and gamma2 alone produced no effects, nor did constitutively active alpha s, alpha i1, and alpha o subunits. Phorbol esters enhanced alpha1E Ca2+ currents but had no effect on alpha1B currents, suggesting that protein kinase C activation was not responsible for the observed effects. When alpha1E Ca2+ currents were expressed without their beta subunits, they exhibited prepulse facilitation. These results demonstrate that alpha1E Ca2+ currents are less susceptible to direct modulation by G proteins than alpha1B currents and illustrate the antagonistic interactions between Ca2+ channel beta subunits and G proteins.
Collapse
Affiliation(s)
- L R Shekter
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
170
|
Iwahori Y, Saito H, Torii K, Nishiyama N. Activin exerts a neurotrophic effect on cultured hippocampal neurons. Brain Res 1997; 760:52-8. [PMID: 9237517 DOI: 10.1016/s0006-8993(97)00275-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activin is a member of the transforming growth factor (TGF)-beta superfamily, which comprises a growing list of multifunctional proteins that serve as regulators of cell proliferation and differentiation. Recently, activin was shown to regulate the neurotransmitter phenotype in peripheral neurons. It is also a potent survival factor for neurogenic clonal cell lines, retinal neurons and midbrain dopaminergic neurons. We have studied the effect of activin on hippocampal cells which show abundant expression of activin receptors or binding sites. Exposure of primary cultures of rat hippocampal neurons to activin supported neuronal survival. This neurotrophic action of activin was blocked by treatment with the tyrosine kinase inhibitor genistein or the protein kinase C inhibitor calphostin C. However, the Ca2+/calmodulin kinase inhibitor KN-62 had no effect. Nicardipine, a blocker of the L-type Ca2+ channel, also inhibited the neurotrophic effect of activin. Furthermore, activin potentiated the depolarization-induced elevation in intracellular Ca2+ concentration ([Ca2+]i). The neurotrophic effect and the potentiation of depolarization-induced increase of [Ca2+]i caused by activin were completely abolished by the protein synthesis inhibitor cycloheximide. These results suggest that activin supports neuronal survival by increasing the expression of voltage-dependent Ca2+ channel through the action of a tyrosine kinase and of protein kinase C, but not of Ca2+/calmodulin kinase.
Collapse
Affiliation(s)
- Y Iwahori
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
171
|
Llinás R, Moreno H, Sugimori M, Mohammadi M, Schlessinger J. Differential pre- and postsynaptic modulation of chemical transmission in the squid giant synapse by tyrosine phosphorylation. Proc Natl Acad Sci U S A 1997; 94:1990-4. [PMID: 9050892 PMCID: PMC20030 DOI: 10.1073/pnas.94.5.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To assess the role of tyrosine phosphorylation/dephosphorylation balance in synaptic transmission, a set of studies was implemented at the squid giant synapse. Presynaptic induction of tyrosine phosphorylation, following administration of the tyrosine phosphatase inhibitor pervanadate, produced a sizable increase in presynaptic calcium current and a concomitant and paradoxical decrement of the postsynaptic potential amplitude. Presynaptic microinjection of an active protein tyrosine kinase dramatically increased calcium currents and incremented postsynaptic potential amplitude. By contrast, the same procedure at the postsynaptic terminal reduced the size of the postsynaptic potential. This differential effect may be prodromic to long-term plasticity, as postsynaptic sensitivity is momentarily deemphasized, whereas presynaptic second messenger cascades triggered by increased calcium currents are accentuated.
Collapse
Affiliation(s)
- R Llinás
- Department of Physiology and Neuroscience, New York University Medical Center, NY 10016, USA
| | | | | | | | | |
Collapse
|
172
|
Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 1997; 385:442-6. [PMID: 9009192 DOI: 10.1038/385442a0] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The modulation of voltage-dependent Ca2+ channels at presynaptic nerve terminals is an important factor in the control of neurotransmitter release and synaptic efficacy. Some terminals contain multiple Ca2(+)-channel subtypes (N and P/Q), which are differentially regulated by G-protein activation and by protein kinase C (PKC)-dependent phosphorylation. Regulation of channel activity by crosstalk between second messenger pathways has been reported although the molecular mechanisms underlying crosstalk have not been described. Here we show that crosstalk occurs at the level of the presynaptic Ca2(+)-channel complex. The alpha1 subunit domain I-II linker, which connects the first and second transmembrane domains, contributes to the PKC-dependent upregulation of channel activity, while G-protein-dependent inhibition occurs through binding of Gbetagamma to two sites in the I-II linker. Crosstalk results from the PKC-dependent phosphorylation of one of the Gbetagamma binding sites which antagonizes Gbetagamma-induced inhibition. The results provide a mechanism for the highly regulated and dynamic control of neurotransmitter release that depends on the integration of multiple presynaptic signals.
Collapse
Affiliation(s)
- G W Zamponi
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
173
|
Lin Z, Haus S, Edgerton J, Lipscombe D. Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 1997; 18:153-66. [PMID: 9010213 DOI: 10.1016/s0896-6273(01)80054-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The N channel is critical for regulating release of neurotransmitter at many synapses, and even subtle differences in its activity would be expected to influence the efficacy of synaptic transmission. Although several splice variants of the N channel are expressed in the mammalian nervous system, their biological importance is presently unclear. Here, we show that variants of the alpha1B subunit of the N channel are expressed in sympathetic ganglia and that alternative splicing within IIIS3-S4 and IVS3-S4 generate kinetically distinct channels. We further show a striking difference between the expression pattern of the S3-S4 variants in brain and peripheral ganglia and conclude that the brain-dominant form of the N channel gates 2-to-4-fold more rapidly than that predominant in ganglia.
Collapse
Affiliation(s)
- Z Lin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
174
|
|
175
|
The alpha 1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. J Neurosci 1996. [PMID: 8756429 DOI: 10.1523/jneurosci.16-16-04983.1996] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physiological and pharmacological properties of the alpha 1E calcium (Ca) channel subtype do not exactly match any of the established categories described for native neuronal Ca currents. Many of the key diagnostic features used to assign cloned Ca channels to their native counterparts, however, are dependent on a number of factors, including cellular environment, beta subunit coexpression, and modulation by second messengers and G-proteins. Here, by examining the intrinsic pore characteristics of a family of transiently expressed neuronal Ca channels, we demonstrate that the permeation properties of alpha 1E closely resemble those described for a subset of low-threshold Ca channels. The alpha 1A (P-/Q-type), alpha 1B (N-type), and alpha 1C (L-type) high-threshold Ca channels all exhibit larger whole-cell currents with barium (Ba) as the charge carrier as compared with Ca or strontium (Sr). In contrast, macroscopic alpha 1E currents are largest in Sr, followed by Ca and then Ba. The unique permeation properties of alpha 1E are maintained at the single-channel level, are independent of the nature of the expression system, and are not affected by coexpression of alpha 2 and beta subunits. Overall, the permeation characteristics of alpha 1E are distinct from those described for R-type currents and share some similarities with native low-threshold Ca channels.
Collapse
|
176
|
Lin Z, Harris C, Lipscombe D. The molecular identity of Ca channel alpha 1-subunits expressed in rat sympathetic neurons. J Mol Neurosci 1996; 7:257-67. [PMID: 8968947 DOI: 10.1007/bf02737063] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Much of our understanding of the mechanisms of the gating, modulation, and function of neuronal Ca channels has its origins in investigations of sympathetic neurons. In this article, we use molecular analyses to identify the three Ca channel alpha 1-subunits that are the likely counterparts to the pharmacologically defined: omega-Conotoxin GVIA-sensitive N-type; dihydropyridine-sensitive L-type, and omega-Conotoxin GVIA-insensitive, dihydropyridine-insensitive Ca channel currents observed in sympathetic neurons. With a combination of degenerate and exact primers, small regions of Ca channel alpha 1-subunit sequences were amplified by the polymerase chain reaction (PCR). Although all five Ca channel alpha 1-subunit genes were expressed in rat sympathetic ganglia, alpha 1B-, alpha 1D-, and alpha 1E-derived cDNAs were the dominant species. No novel Ca channel alpha 1-sequences were identified in the regions selected for amplification, and we conclude that alpha 1B, alpha 1D, and alpha 1E likely encode, respectively, N-type, L-type, and non-N/non-L-type channel currents of rat sympathetic neurons. In addition, we show that Ca channel beta 2-, beta 3-, and beta 4-subunit sequences are strongly represented in sympathetic ganglia. The results of this study also suggest that alpha 1D, and not alpha 1C, regulates Ca influx through dihydropyridine-sensitive Ca channel currents.
Collapse
Affiliation(s)
- Z Lin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
177
|
Naciff JM, Behbehani MM, Kaetzel MA, Dedman JR. Annexin VI modulates Ca2+ and K+ conductances of spinal cord and dorsal root ganglion neurons. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C2004-15. [PMID: 8997203 DOI: 10.1152/ajpcell.1996.271.6.c2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Annexin VI is a member of a Ca(2+)-dependent phospholipid-binding protein family that participates in the transduction of the intracellular Ca2+ signal. We have identified annexin VI as one of the major annexins expressed differentially by sensory neurons of dorsal root ganglia (DRG) and by neurons of spinal cord (SC) of the rat and the mouse. This annexin shows a preferential localization at the plasma membrane of the soma and cellular processes, particularly in motoneurons of the SC. This finding suggests an active role of annexin VI in the Ca(2+)-dependent regulation of plasma membrane functions. To test this possibility, the neuronal function of annexin VI was evaluated by whole cell electrophysiology of mouse embryo SC and DRG neurons. An antibody was developed that has the property of neutralizing annexin VI-phospholipid interactions. The intracellular perfusion of individual neurons in culture, either from SC or DRG, with monospecific affinity-purified anti-annexin VI antibodies resulted in an increase in the magnitude of the K+ current and in an increase in the Ca2+ current in sensory neurons. Our results suggest that the endogenous annexin VI regulates the Ca2+ conductance, which indirectly modifies Ca(2+)-dependent ionic conductances in SC and DRG neurons.
Collapse
Affiliation(s)
- J M Naciff
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Ohio 45267-0576, USA
| | | | | | | |
Collapse
|
178
|
Liévano A, Santi CM, Serrano CJ, Treviño CL, Bellvé AR, Hernández-Cruz A, Darszon A. T-type Ca2+ channels and alpha1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 1996; 388:150-4. [PMID: 8690075 DOI: 10.1016/0014-5793(96)00515-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is pharmacological evidence that Ca2+ channels play an essential role in triggering the mammalian sperm acrosome reaction, an exocytotic process required for sperm to fertilize the egg. Spermatozoa are small terminally differentiated cells that are difficult to study by conventional electrophysiological techniques. To identify the members of the voltage-dependent Ca2+ channel family possibly present in sperm, we have looked for the expression of the alpha 1A, alpha 1B, alpha 1C, alpha 1D and alpha 1E genes in mouse testis and in purified spermatogenic cell populations with RT-PCR. Our results indicate that all 5 genes are expressed in mouse testis, and in contrast only alpha 1E, and to a minor extent alpha 1A, are expressed in spermatogenic cells. In agreement with these findings, only T-type Ca2+ channels sensitive to the dihydropyridine nifedipine were observed in patch-clamp recordings of pachytene spermatocytes. These results suggest that low-threshold Ca2+ channels are the dihydropyridine-sensitive channels involved in the sperm acrosome reaction.
Collapse
Affiliation(s)
- A Liévano
- Depto. Genética y Fisiologia Molecular, Instituto de Biotecnologia-UNAM, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
179
|
Bourinet E, Soong TW, Stea A, Snutch TP. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci U S A 1996; 93:1486-91. [PMID: 8643659 PMCID: PMC39966 DOI: 10.1073/pnas.93.4.1486] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Guanosine Diphosphate/analogs & derivatives
- Guanosine Diphosphate/pharmacology
- Neurons/metabolism
- Oocytes
- Patch-Clamp Techniques
- Pertussis Toxin
- Rats
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thionucleotides/pharmacology
- Virulence Factors, Bordetella/pharmacology
- Xenopus laevis
Collapse
Affiliation(s)
- E Bourinet
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|