151
|
Wu F, Kerčmar P, Zhang C, Stöckigt J. Sarpagan-Ajmalan-Type Indoles: Biosynthesis, Structural Biology, and Chemo-Enzymatic Significance. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2015; 76:1-61. [PMID: 26827882 DOI: 10.1016/bs.alkal.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The biosynthetic pathway of the monoterpenoid indole alkaloid ajmaline in the genus Rauvolfia, in particular Rauvolfia serpentina Benth. ex Kurz, is one of the few pathways that have been comprehensively uncovered. Every step in the progress of plant alkaloid biosynthesis research is due to the endeavors of several generations of scientists and the advancement of technologies. The tissue and cell suspension cultures developed in the 1970s by M.H. Zenk enabled the extraction of alkaloids and crude enzymes for use as experimental materials, thus establishing the foundation for further research on enzymatic reaction networks. In vivo NMR technology was first used in biosynthetic investigations in the 1990s following the invention of high-field cryo-NMR, which allowed the rapid and reliable detection of bioconversion processes within living plant cells. Shortly before, in 1988, a milestone was reached with the heterologous expression of the strictosidine synthase cDNA, which paved the way for the application of "reverse genetics" and "macromolecular crystallography." Both methods allowed the structural analysis of several Rauvolfia enzymes involved in ajmaline biosynthesis and expanded our knowledge of the enzyme mechanisms, substrate specificities, and structure-activity relationships. It also opened the door for rational enzyme engineering and metabolic steering. Today, the research focus of ajmaline biosynthesis is shifting from "delineation" to "utilization." The Pictet-Spenglerase strictosidine synthase, strictosidine glucosidase, together with raucaffricine glucosidase, as pioneers in this area, have become useful tools to generate "privileged structures" and "diversity oriented" syntheses, which may help to construct novel scaffolds and to set up libraries of sarpagan-ajmalan-type alkaloids in chemo-enzymatic approaches.
Collapse
Affiliation(s)
- Fangrui Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, Yunnan, P.R. China; Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | | | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, Yunnan, P.R. China
| | - Joachim Stöckigt
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, Yunnan, P.R. China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
152
|
Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 2015; 178:766-95. [DOI: 10.1007/s12010-015-1908-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|
153
|
An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans. FEBS Lett 2015; 589:3604-10. [PMID: 26476324 DOI: 10.1016/j.febslet.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022]
Abstract
The glycoside hydrolase family (GH) 130 is composed of inverting phosphorylases that catalyze reversible phosphorolysis of β-D-mannosides. Here we report a glycoside hydrolase as a new member of GH130. Dfer_3176 from Dyadobacter fermentans showed no synthetic activity using α-D-mannose 1-phosphate but it released α-D-mannose from β-1,2-mannooligosaccharides with an inversion of the anomeric configuration, indicating that Dfer_3176 is a β-1,2-mannosidase. Mutational analysis indicated that two glutamic acid residues are critical for the hydrolysis of β-1,2-mannotriose. The two residues are not conserved among GH130 phosphorylases and are predicted to assist the nucleophilic attack of a water molecule in the hydrolysis of the β-D-mannosidic bond.
Collapse
|
154
|
Koo YS, Lee HW, Jeon HY, Choi HJ, Choung WJ, Shim JH. Development and characterization of cyclodextrin glucanotransferase as a maltoheptaose-producing enzyme using site-directed mutagenesis. Protein Eng Des Sel 2015; 28:531-7. [DOI: 10.1093/protein/gzv044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 11/14/2022] Open
|
155
|
Shimoda K, Kubota N, Uesugi D, Hamada H, Tanigawa M, Hamada H. Synthesis and pharmacological evaluation of glycosides of resveratrol, pterostilbene, and piceatannol. Ann N Y Acad Sci 2015; 1348:141-9. [DOI: 10.1111/nyas.12836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kei Shimoda
- Department of Chemistry; Faculty of Medicine; Oita University; Oita Japan
| | - Naoji Kubota
- Department of Chemistry; Faculty of Medicine; Oita University; Oita Japan
| | - Daisuke Uesugi
- Department of Life Science; Faculty of Science; Okayama University of Science; Okayama Japan
| | | | - Masato Tanigawa
- Department of Physics; Faculty of Medicine; Oita University; Oita Japan
| | - Hiroki Hamada
- Department of Life Science; Faculty of Science; Okayama University of Science; Okayama Japan
| |
Collapse
|
156
|
Nakamura A, Ishida T, Kusaka K, Yamada T, Fushinobu S, Tanaka I, Kaneko S, Ohta K, Tanaka H, Inaka K, Higuchi Y, Niimura N, Samejima M, Igarashi K. "Newton's cradle" proton relay with amide-imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. SCIENCE ADVANCES 2015; 1:e1500263. [PMID: 26601228 PMCID: PMC4643802 DOI: 10.1126/sciadv.1500263] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the "Newton's cradle"-like proton relay pathway of the catalytic cycle. Amide-imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.
Collapse
Affiliation(s)
- Akihiko Nakamura
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya Ishida
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106, Japan
| | - Taro Yamada
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ichiro Tanaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kazunori Ohta
- Japanese Experiment Module (JEM) Utilization Center, Japan Aerospace Exploration Agency, Ibaraki 305-8505, Japan
| | | | - Koji Inaka
- Maruwa Foods and Biosciences Inc., Nara 639-1123, Japan
| | - Yoshiki Higuchi
- Department of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Nobuo Niimura
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106, Japan
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Corresponding author. E-mail:
| |
Collapse
|
157
|
Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 2015; 71:297-338. [PMID: 25480507 DOI: 10.1016/b978-0-12-800128-8.00004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article covers recent developments in the design and application of activity-based probes (ABPs) for glycosidases, with emphasis on the different enzymes involved in metabolism of glucosylceramide in humans. Described are the various catalytic reaction mechanisms employed by inverting and retaining glycosidases. An understanding of catalysis at the molecular level has stimulated the design of different types of ABPs for glycosidases. Such compounds range from (1) transition-state mimics tagged with reactive moieties, which associate with the target active site—forming covalent bonds in a relatively nonspecific manner in or near the catalytic pocket—to (2) enzyme substrates that exploit the catalytic mechanism of retaining glycosidase targets to release a highly reactive species within the active site of the enzyme, to (3) probes based on mechanism-based, covalent, and irreversible glycosidase inhibitors. Some applications in biochemical and biological research of the activity-based glycosidase probes are discussed, including specific quantitative visualization of active enzyme molecules in vitro and in vivo, and as strategies for unambiguously identifying catalytic residues in glycosidases in vitro.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Tom Wennekes
- Department of Synthetic Organic Chemistry, Wageningen University, Wageningen, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
158
|
Williams LK, Zhang X, Caner S, Tysoe C, Nguyen NT, Wicki J, Williams DE, Coleman J, McNeill JH, Yuen V, Andersen RJ, Withers SG, Brayer GD. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nat Chem Biol 2015. [DOI: 10.1038/nchembio.1865] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
159
|
Vukić V, Hrnjez D, Milanović S, Iličić M, Kanurić K, Petri E. Comparative Molecular Modeling and Docking Analysis of β-galactosidase Enzymes from Commercially Important Starter Cultures Used in the Dairy Industry. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2015.1059766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
160
|
Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger. Appl Biochem Biotechnol 2015; 176:2314-27. [PMID: 26142900 DOI: 10.1007/s12010-015-1720-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.
Collapse
|
161
|
Burke HM, Gunnlaugsson T, Scanlan EM. Recent advances in the development of synthetic chemical probes for glycosidase enzymes. Chem Commun (Camb) 2015; 51:10576-88. [PMID: 26051717 DOI: 10.1039/c5cc02793d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of synthetic glycoconjugates as chemical probes for the detection of glycosidase enzymes has resulted in the development of a range of useful chemical tools with applications in glycobiology, biotechnology, medical and industrial research. Critical to the function of these probes is the preparation of substrates containing a glycosidic linkage that when activated by a specific enzyme or group of enzymes, irreversibly releases a reporter molecule that can be detected. Starting from the earliest examples of colourimetric probes, increasingly sensitive and sophisticated substrates have been reported. In this review we present an overview of the recent advances in this field, covering an array of strategies including chromogenic and fluorogenic substrates, lanthanide complexes, gels and nanoparticles. The applications of these substrates for the detection of various glycosidases and the scope and limitations for each approach are discussed.
Collapse
Affiliation(s)
- Helen M Burke
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | | | | |
Collapse
|
162
|
Köseoğlu VK, Heiss C, Azadi P, Topchiy E, Güvener ZT, Lehmann TE, Miller KW, Gomelsky M. Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation. Mol Microbiol 2015; 96:728-43. [PMID: 25662512 DOI: 10.1111/mmi.12966] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Elevated levels of the second messenger c-di-GMP activate biosynthesis of an unknown exopolysaccharide (EPS) in the food-borne pathogen Listeria monocytogenes. This EPS strongly protects cells against disinfectants and desiccation, indicating its potential significance for listerial persistence in the environment and for food safety. We analyzed the potential phylogenetic origin of this EPS, determined its complete structure, characterized genes involved in its biosynthesis and hydrolysis and identified diguanylate cyclases activating its synthesis. Phylogenetic analysis of EPS biosynthesis proteins suggests that they have evolved within monoderms. Scanning electron microscopy revealed that L. monocytogenes EPS is cell surface-bound. Secreted carbohydrates represent exclusively cell-wall debris. Based on carbohydrate composition, linkage and NMR analysis, the structure of the purified EPS is identified as a β-1,4-linked N-acetylmannosamine chain decorated with terminal α-1,6-linked galactose. All genes of the pssA-E operon are required for EPS production and so is a separately located pssZ gene. We show that PssZ has an EPS-specific glycosylhydrolase activity. Exogenously added PssZ prevents EPS-mediated cell aggregation and disperses preformed aggregates, whereas an E72Q mutant in the presumed catalytic residue is much less active. The diguanylate cyclases DgcA and DgcB, whose genes are located next to pssZ, are primarily responsible for c-di-GMP-dependent EPS production.
Collapse
Affiliation(s)
- Volkan K Köseoğlu
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602, USA
| | - Elena Topchiy
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA
| | - Zehra T Güvener
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Teresa E Lehmann
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA
| | - Kurt W Miller
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
163
|
Xie M, Byers LD. Solvent and α-secondary kinetic isotope effects on β-glucosidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1776-81. [PMID: 25770682 DOI: 10.1016/j.bbapap.2015.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
β-Glucosidase from sweet almond is a retaining, family 1, glycohydrolase. It is known that glycosylation of the enzyme by aryl glucosides occurs with little, if any, acid catalysis. For this reaction both the solvent and α-secondary kinetic isotope effects are 1.0. However, for the deglucosylation reaction (e.g., kcat for 2,4-dinitrophenyl-β-D-glucopyranoside) there is a small solvent deuterium isotope effect of 1.50 (±0.06) and an α-secondary kinetic isotope effect of 1.12 (±0.03). For aryl glucosides, kcat/KM is very sensitive to the pKa of the phenol leaving group [βlg≈-1; Dale et al., Biochemistry25 (1986) 2522-2529]. With alkyl glucosides the βlg is smaller (between -0.2 and -0.3) but still negative. This, coupled with the small solvent isotope effect on the pH-independent second-order rate constant for the glucosylation of the enzyme with 2,2,2-trifluoroethyl-β-glucoside [D2O(kcat/KM)=1.23 (±0.04)] suggests that there is more glycone-aglycone bond fission than aglycone oxygen protonation in the transition state for alkyl glycoside hydrolysis. The kinetics constants for the partitioning (between water and various alcohols) of the glucosyl-enzyme intermediate, coupled with the rate constants for the forward (hydrolysis) reaction provide an estimate of the stability of the glucosyl-enzyme intermediate. This is a relatively stable species with an energy about 2 to 4 kcal/mol higher than that of the ES complex. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Larry D Byers
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
164
|
Bianchetti CM, Takasuka TE, Deutsch S, Udell HS, Yik EJ, Bergeman LF, Fox BG. Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem 2015; 290:11819-32. [PMID: 25752603 DOI: 10.1074/jbc.m114.623579] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.
Collapse
Affiliation(s)
- Christopher M Bianchetti
- From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901
| | - Taichi E Takasuka
- From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Sam Deutsch
- the Joint Genome Institute, Walnut Creek, California 94598, and
| | - Hannah S Udell
- From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Eric J Yik
- the Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92831
| | - Lai F Bergeman
- From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brian G Fox
- From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
165
|
Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood. Bioprocess Biosyst Eng 2015; 38:1335-46. [DOI: 10.1007/s00449-015-1375-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/08/2015] [Indexed: 10/24/2022]
|
166
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
167
|
Alcaide A, Trapero A, Pérez Y, Llebaria A. Galacto configured N-aminoaziridines: a new type of irreversible inhibitor of β-galactosidases. Org Biomol Chem 2015; 13:5690-7. [DOI: 10.1039/c5ob00532a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Aminoaziridines are potent irreversible inhibitors of galactosidases.
Collapse
Affiliation(s)
- Anna Alcaide
- Medicinal Chemistry Laboratory (MedChemLab)
- Departament de Química Biomèdica
- Institut de Química Avançada de Catalunya (IQAC–CSIC)
- Barcelona
- Spain
| | - Ana Trapero
- Medicinal Chemistry Laboratory (MedChemLab)
- Departament de Química Biomèdica
- Institut de Química Avançada de Catalunya (IQAC–CSIC)
- Barcelona
- Spain
| | - Yolanda Pérez
- NMR Unit
- Institut de Química Avançada de Catalunya (IQAC–CSIC)
- Barcelona
- Spain
| | - Amadeu Llebaria
- Medicinal Chemistry Laboratory (MedChemLab)
- Departament de Química Biomèdica
- Institut de Química Avançada de Catalunya (IQAC–CSIC)
- Barcelona
- Spain
| |
Collapse
|
168
|
Moorthy BS, Xie B, Moussa EM, Iyer LK, Chandrasekhar S, Panchal JP, Topp EM. Effect of Hydrolytic Degradation on the In Vivo Properties of Monoclonal Antibodies. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
169
|
Lansky S, Salama R, Solomon HV, Feinberg H, Belrhali H, Shoham Y, Shoham G. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6. ACTA ACUST UNITED AC 2014; 70:2994-3012. [PMID: 25372689 DOI: 10.1107/s139900471401863x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022]
Abstract
L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer made up of two `open-pincers' dimers, which clamp around each other to form a central cavity. The four active sites of the Abp tetramer are situated on the inner surface of this cavity, all opening into the central space of the cavity. The biological relevance of this tetrameric structure is supported by independent results obtained from size-exclusion chromatography (SEC), dynamic light-scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. These data and their comparison to the structural data of related GH27 enzymes are used for a more general discussion concerning structure-selectivity aspects in this glycoside hydrolase (GH) family.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hodaya V Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation and the Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
170
|
Molecular modeling and MM-PBSA free energy analysis of endo-1,4-β-xylanase from Ruminococcus albus 8. Int J Mol Sci 2014; 15:17284-303. [PMID: 25264743 PMCID: PMC4227162 DOI: 10.3390/ijms151017284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022] Open
Abstract
Endo-1,4-β-xylanase (EC 3.2.1.8) is the enzyme from Ruminococcus albus 8 (R. albus 8) (Xyn10A), and catalyzes the degradation of arabinoxylan, which is a major cell wall non-starch polysaccharide of cereals. The crystallographic structure of Xyn10A is still unknown. For this reason, we report a computer-assisted homology study conducted to build its three-dimensional structure based on the known sequence of amino acids of this enzyme. In this study, the best similarity was found with the Clostridium thermocellum (C. thermocellum) N-terminal endo-1,4-β-D-xylanase 10 b. Following the 100 ns molecular dynamics (MD) simulation, a reliable model was obtained for further studies. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods were used for the substrate xylotetraose having the reactive sugar, which was bound in the -1 subsite of Xyn10A in the 4C1 (chair) and 2SO (skew boat) ground state conformations. According to the simulations and free energy analysis, Xyn10A binds the substrate with the -1 sugar in the 2SO conformation 39.27 kcal·mol(-1) tighter than the substrate with the sugar in the 4C1 conformation. According to the Xyn10A-2SO Xylotetraose (X4(sb) interaction energies, the most important subsite for the substrate binding is subsite -1. The results of this study indicate that the substrate is bound in a skew boat conformation with Xyn10A and the -1 sugar subsite proceeds from the 4C1 conformation through 2SO to the transition state. MM-PBSA free energy analysis indicates that Asn187 and Trp344 in subsite -1 may an important residue for substrate binding. Our findings provide fundamental knowledge that may contribute to further enhancement of enzyme performance through molecular engineering.
Collapse
|
171
|
Herlihey FA, Moynihan PJ, Clarke AJ. The essential protein for bacterial flagella formation FlgJ functions as a β-N-acetylglucosaminidase. J Biol Chem 2014; 289:31029-42. [PMID: 25248745 DOI: 10.1074/jbc.m114.603944] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellum is a major virulence factor of motile pathogenic bacteria. This structure requires more than 50 proteins for its biogenesis and function, one of which is FlgJ. Homologs of FlgJ produced by the β- and γ-proteobacteria, such as Salmonella enterica, Vibrio spp., and both Sphingomonas sp. and Pseudomonas spp. are bifunctional, possessing an N-terminal domain responsible for proper rod assembly and a C-terminal domain possessing peptidoglycan lytic activity. Despite the amount of research conducted on FlgJ from these and other bacteria over the past 15 years, no biochemical analysis had been conducted on any FlgJ and consequently confusion exists as to whether the enzyme is a peptidoglycan hydrolase or a lytic transglycosylase. In this study, we present the development of a novel assay for glycoside lytic enzymes and its use to provide the first enzymatic characterization of the lytic domain of FlgJ from S. enterica as the model enzyme. Surprisingly, FlgJ functions as neither a muramidase nor a lytic transglycosylases but rather as a β-N-acetylglucosaminidase. As such, FlgJ represents the first autolysin with this activity to be characterized from a Gram-negative bacterium. At its optimal pH of 4.0, the Michaelis-Menten parameters of K(m) and k(cat) for FlgJ from S. enterica were determined to be 0.64 ± 0.18 mg ml(-1) and 0.13 ± 0.016 s(-1), respectively, using purified PG as substrate. Its catalytic residues were identified as Glu(184) and Glu(223).
Collapse
Affiliation(s)
- Francesca A Herlihey
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Patrick J Moynihan
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Anthony J Clarke
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
172
|
Chandrasekar B, Colby T, Emran Khan Emon A, Jiang J, Hong TN, Villamor JG, Harzen A, Overkleeft HS, van der Hoorn RAL. Broad-range glycosidase activity profiling. Mol Cell Proteomics 2014; 13:2787-800. [PMID: 25056938 DOI: 10.1074/mcp.o114.041616] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plants produce hundreds of glycosidases. Despite their importance in cell wall (re)modeling, protein and lipid modification, and metabolite conversion, very little is known of this large class of glycolytic enzymes, partly because of their post-translational regulation and their elusive substrates. Here, we applied activity-based glycosidase profiling using cell-permeable small molecular probes that react covalently with the active site nucleophile of retaining glycosidases in an activity-dependent manner. Using mass spectrometry we detected the active state of dozens of myrosinases, glucosidases, xylosidases, and galactosidases representing seven different retaining glycosidase families. The method is simple and applicable for different organs and different plant species, in living cells and in subproteomes. We display the active state of previously uncharacterized glycosidases, one of which was encoded by a previously declared pseudogene. Interestingly, glycosidase activity profiling also revealed the active state of a diverse range of putative xylosidases, galactosidases, glucanases, and heparanase in the cell wall of Nicotiana benthamiana. Our data illustrate that this powerful approach displays a new and important layer of functional proteomic information on the active state of glycosidases.
Collapse
Affiliation(s)
- Balakumaran Chandrasekar
- From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Thomas Colby
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Asif Emran Khan Emon
- §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Jianbing Jiang
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tram Ngoc Hong
- From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Joji Grace Villamor
- §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Anne Harzen
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Renier A L van der Hoorn
- From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
173
|
Samanta M, Siva Rama Krishna V, Bandyopadhyay S. A photoresponsive glycosidase mimic. Chem Commun (Camb) 2014; 50:10577-9. [PMID: 24965562 DOI: 10.1039/c4cc03394a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azobenzene-3,3'-dicarboxylic acid exists in photoisomerizable (E) and (Z)-forms. Deprotonation of the carboxylic acid groups from the (E)-form occurs simultaneously, whereas in the (Z)-form it occurs in a stepwise fashion. The mono anionic form of the (Z)-isomer acts as a glycosidase mimic that proceeds through a general acid-general base catalytic mechanism. This is the first example of a photoresponsive glycosidase mimic.
Collapse
Affiliation(s)
- Mousumi Samanta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, WB 741246, India.
| | | | | |
Collapse
|
174
|
Differences in the Substrate Specificities and Active-Site Structures of Two α-L-Fucosidases (Glycoside Hydrolase Family 29) fromBacteroides thetaiotaomicron. Biosci Biotechnol Biochem 2014; 76:1022-4. [DOI: 10.1271/bbb.111004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
175
|
Dong J, Tamaru Y, Araki T. Molecular Cloning, Expression, and Characterization of a β-Agarase Gene,agaD, from a Marine Bacterium,Vibriosp. Strain PO-303. Biosci Biotechnol Biochem 2014; 71:38-46. [PMID: 17213669 DOI: 10.1271/bbb.60304] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beta-agarase-d gene (agaD) from a marine bacterium, Vibrio sp. strain PO-303, was cloned and expressed in Escherichia coli. The gene consists of 1,362 bp and encodes a protein of 453 amino acids with a predicted molecular weight of 50,824. The full length of agarase-d consists of a signal peptide, a glycoside hydrolase family 16 catalytic module (CM), and a carbohydrate binding module (CBM). The full length of agarase-d without the signal peptide (rAgaDDeltafull), the catalytic module (rAgaDCM), or the CBM (rAgaDCBM) was expressed in E. coli as recombinant proteins. rAgaDCM exhibited higher enzyme activity (63.6 units/mg) than rAgaDDeltafull (1.20 units/mg) against agarose. rAgaDCM hydrolyzed agar and porphyran to several oligosaccharides and acted on neoagarohexaose to produce neoagarotetraose and neoagarobiose, but did not act on neoagarotetraose. rAgaDCBM bound to agarose.
Collapse
Affiliation(s)
- Jinhua Dong
- Graduate School of Bioresources, Mie University, Japan
| | | | | |
Collapse
|
176
|
Sugimura M, Nishimoto M, Kitaoka M. Characterization of Glycosynthase Mutants Derived from Glycoside Hydrolase Family 10 Xylanases. Biosci Biotechnol Biochem 2014; 70:1210-7. [PMID: 16717424 DOI: 10.1271/bbb.70.1210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four xylanases belonging to glycoside hydrolase family 10-Thermotoga maritima XylB (TM), Clostridium stercorarium XynB (CS), Bacillus halodurans XynA (BH), and Cellulomonas fimi Cex (CF)-were converted to glycosynthases by substituting the nucleophilic glutamic acid residues with glycine, alanine, and serine. The glycine mutants exhibited the highest levels of glycosynthase activity with all four enzymes. All the glycine mutants formed polymeric beta-1,4-linked xylopyranose as a precipitate during reaction with alpha-xylobiosyl fluoride. Two glycine mutants (TM and CF) recognized X(2) as an effective acceptor molecule to prohibit the formation of the polymer, while the other two (CS and BH) did not. The difference in acceptor specificity is considered to reflect the difference in substrate affinity at their +2 subsites. The results agreed with the structural predictions of the subsite, where TM and CF exhibit high affinity at subsite 2, suggesting that the glycosynthase technique is useful for investigating the affinity of +subsites.
Collapse
|
177
|
Aminlari L, Hashemi MM, Aminlari M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. J Food Sci 2014; 79:R1077-90. [PMID: 24837015 DOI: 10.1111/1750-3841.12460] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/15/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. PRACTICAL APPLICATION The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
Collapse
Affiliation(s)
- Ladan Aminlari
- Dept. of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz Univ, Shiraz, Iran
| | | | | |
Collapse
|
178
|
Cruys-Bagger N, Badino SF, Tokin R, Gontsarik M, Fathalinejad S, Jensen K, Toscano MD, Sørensen TH, Borch K, Tatsumi H, Väljamäe P, Westh P. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme Microb Technol 2014; 58-59:68-74. [DOI: 10.1016/j.enzmictec.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
179
|
Verma AK, Goyal A. In silico structural characterization and molecular docking studies of first glucuronoxylan-xylanohydrolase (Xyn30A) from family 30 glycosyl hydrolase (GH30) from Clostridium thermocellum. Mol Biol 2014. [DOI: 10.1134/s0026893314020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
180
|
Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, Danson MJ. A novel β-xylosidase structure fromGeobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. ACTA ACUST UNITED AC 2014; 70:1366-74. [DOI: 10.1107/s1399004714002788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/06/2014] [Indexed: 11/10/2022]
Abstract
Geobacillus thermoglucosidasiusis a thermophilic bacterium that is able to ferment both C6 and C5 sugars to produce ethanol. During growth on hemicellulose biomass, an intracellular β-xylosidase catalyses the hydrolysis of xylo-oligosaccharides to the monosaccharide xylose, which can then enter the pathways of central metabolism. The gene encoding aG. thermoglucosidasiusβ-xylosidase belonging to CAZy glycoside hydrolase family GH52 has been cloned and expressed inEscherichia coli. The recombinant enzyme has been characterized and a high-resolution (1.7 Å) crystal structure has been determined, resulting in the first reported structure of a GH52 family member. A lower resolution (2.6 Å) structure of the enzyme–substrate complex shows the positioning of the xylobiose substrate to be consistent with the proposed retaining mechanism of the family; additionally, the deep cleft of the active-site pocket, plus the proximity of the neighbouring subunit, afford an explanation for the lack of catalytic activity towards the polymer xylan. Whilst the fold of theG. thermoglucosidasiusβ-xylosidase is completely different from xylosidases in other CAZy families, the enzyme surprisingly shares structural similarities with other glycoside hydrolases, despite having no more than 13% sequence identity.
Collapse
|
181
|
Zhang H, Zhang JL, Sun L, Niu XD, Wang S, Shan YM. Molecular dynamics simulation of the processive endocellulase Cel48F fromClostridium cellulolyticum: a novel “water-control mechanism” in enzymatic hydrolysis of cellulose. J Mol Recognit 2014; 27:438-47. [DOI: 10.1002/jmr.2364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/14/2014] [Accepted: 01/28/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry; Jilin University; Changchun 130023 China
| | - Ji-long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry; Jilin University; Changchun 130023 China
| | - Lu Sun
- Department of Pharmacy, China-Japan Union Hospital; Jilin University; Changchun 130033 China
| | - Xiao-di Niu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry; Jilin University; Changchun 130023 China
| | - Song Wang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry; Jilin University; Changchun 130023 China
| | - Ya-ming Shan
- College of Life Science; Jilin University; Changchun 130012 China
| |
Collapse
|
182
|
Syson K, Stevenson CEM, Rashid AM, Saalbach G, Tang M, Tuukkanen A, Svergun DI, Withers SG, Lawson DM, Bornemann S. Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry 2014; 53:2494-504. [PMID: 24689960 PMCID: PMC4048318 DOI: 10.1021/bi500183c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
GlgE (EC 2.4.99.16) is an α-maltose
1-phosphate:(1→4)-α-d-glucan 4-α-d-maltosyltransferase of the CAZy
glycoside hydrolase 13_3 family. It is the defining enzyme of a bacterial
α-glucan biosynthetic pathway and is a genetically validated
anti-tuberculosis target. It catalyzes the α-retaining transfer
of maltosyl units from α-maltose 1-phosphate to maltooligosaccharides
and is predicted to use a double-displacement mechanism. Evidence
of this mechanism was obtained using a combination of site-directed
mutagenesis of Streptomyces coelicolor GlgE isoform
I, substrate analogues, protein crystallography, and mass spectrometry.
The X-ray structures of α-maltose 1-phosphate bound to a D394A
mutein and a β-2-deoxy-2-fluoromaltosyl-enzyme intermediate
with a E423A mutein were determined. There are few examples of CAZy
glycoside hydrolase family 13 members that have had their glycosyl-enzyme
intermediate structures determined, and none before now have been
obtained with a 2-deoxy-2-fluoro substrate analogue. The covalent
modification of Asp394 was confirmed using mass spectrometry. A similar
modification of wild-type GlgE proteins from S. coelicolor and Mycobacterium tuberculosis was also observed.
Small-angle X-ray scattering of the M. tuberculosis enzyme revealed a homodimeric assembly similar to that of the S. coelicolor enzyme but with slightly differently oriented
monomers. The deeper understanding of the structure–function
relationships of S. coelicolor GlgE will aid the
development of inhibitors of the M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park , Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Mhlongo NN, Skelton AA, Kruger G, Soliman ME, Williams IH. A critical survey of average distances between catalytic carboxyl groups in glycoside hydrolases. Proteins 2014; 82:1747-55. [DOI: 10.1002/prot.24528] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/20/2013] [Accepted: 01/28/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Ndumiso N. Mhlongo
- Discipline of Pharmaceutical Sciences; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Adam A. Skelton
- Discipline of Pharmaceutical Sciences; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Gert Kruger
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Mahmoud E.S. Soliman
- Discipline of Pharmaceutical Sciences; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Ian H. Williams
- Department of Chemistry; University of Bath; Bath BA2 7AY United Kingdom
| |
Collapse
|
184
|
Synthesis of thymol glycosides under SCCO2 conditions using amyloglucosidase from Rhizopus mold. Journal of Food Science and Technology 2014; 50:803-8. [PMID: 24425985 DOI: 10.1007/s13197-011-0385-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/10/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Enzymatic synthesis of water soluble thymol glycosides were carried out using amyloglucosidase from Rhizopus mold under supercritical carbon dioxide (SCCO2) conditions of 120 bar pressure at 50 °C. Thymol 1 formed glycosides with D-galactose 2, D-mannose 3, D-fructose 4, D-ribose 5 and D-arabinose 6 in yields ranging from 20.6% to 54.2%. Spectral characterization studies revealed that the reaction occurred between the phenolic OH group of thymol and 1-O/2-O groups of D-fructose and C-1 group of D-galactose, D-mannose, D-ribose and D-arabinose resulting in monoglycosylated/arylated derivatives.
Collapse
|
185
|
Siguier B, Haon M, Nahoum V, Marcellin M, Burlet-Schiltz O, Coutinho PM, Henrissat B, Mourey L, O'Donohue MJ, Berrin JG, Tranier S, Dumon C. First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. J Biol Chem 2014; 289:5261-73. [PMID: 24394409 DOI: 10.1074/jbc.m113.528133] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
α-L-arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of α-L-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 α-L-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the α-L-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed β-propeller fold that confirms their predicted classification into clan GH-F together with GH43 α-L-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family.
Collapse
Affiliation(s)
- Béatrice Siguier
- From the Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE. Bioorg Med Chem 2014; 22:1404-11. [PMID: 24461562 DOI: 10.1016/j.bmc.2013.12.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 01/06/2023]
Abstract
The emergence of extensively drug-resistant tuberculosis (XDR-TB) necessitates the need to identify new anti-tuberculosis drug targets as well as to better understand essential biosynthetic pathways. GlgE is a Mycobacterium tuberculosis (Mtb) encoded maltosyltransferase involved in α-glucan biosynthesis. Deletion of GlgE in Mtb results in the accumulation of M1P within cells leading to rapid death of the organism. To inhibit GlgE a maltose-C-phosphonate (MCP) 13 was designed to act as an isosteric non-hydrolysable mimic of M1P. MCP 13, the only known inhibitor of Mtb GlgE, was successfully synthesized using a Wittig olefination as a key step in transforming maltose to the desired product. MCP 13 inhibited Mtb GlgE with an IC₅₀=230 ± 24 μM determined using a coupled enzyme assay which measures orthophosphate release. The requirement of M1P for the assay necessitated the development of an expedited synthetic route to M1P from an intermediate used in the MCP 13 synthesis. In conclusion, we designed a substrate analogue of M1P that is the first to exhibit Mtb GlgE inhibition.
Collapse
|
187
|
Su H, Dong L, Liu Y. A QM/MM study of the catalytic mechanism of α-1,4-glucan lyase from the red seaweed Gracilariopsis lemaneiformis. RSC Adv 2014. [DOI: 10.1039/c4ra09758k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
188
|
Yu H, Griffiths TM. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34. Phys Chem Chem Phys 2014; 16:5785-92. [DOI: 10.1039/c4cp00351a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
189
|
Wan Q, Zhang Q, Hamilton-Brehm S, Weiss K, Mustyakimov M, Coates L, Langan P, Graham D, Kovalevsky A. X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. ACTA ACUST UNITED AC 2013; 70:11-23. [PMID: 24419374 DOI: 10.1107/s1399004713023626] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Xylanases catalyze the hydrolysis of plant hemicellulose xylan into oligosaccharides by cleaving the main-chain glycosidic linkages connecting xylose subunits. To study ligand binding and to understand how the pH constrains the activity of the enzyme, variants of the Trichoderma reesei xylanase were designed to either abolish its activity (E177Q) or to change its pH optimum (N44H). An E177Q-xylohexaose complex structure was obtained at 1.15 Å resolution which represents a pseudo-Michaelis complex and confirmed the conformational movement of the thumb region owing to ligand binding. Co-crystallization of N44H with xylohexaose resulted in a hydrolyzed xylotriose bound in the active site. Co-crystallization of the wild-type enzyme with xylopentaose trapped an aglycone xylotriose and a transglycosylated glycone product. Replacing amino acids near Glu177 decreased the xylanase activity but increased the relative activity at alkaline pH. The substrate distortion in the E177Q-xylohexaose structure expands the possible conformational itinerary of this xylose ring during the enzyme-catalyzed xylan-hydrolysis reaction.
Collapse
Affiliation(s)
- Qun Wan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Qiu Zhang
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Scott Hamilton-Brehm
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Kevin Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Marat Mustyakimov
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - David Graham
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| |
Collapse
|
190
|
Fleming KL, Pfaendtner J. Characterizing the Catalyzed Hydrolysis of β-1,4 Glycosidic Bonds Using Density Functional Theory. J Phys Chem A 2013; 117:14200-8. [DOI: 10.1021/jp4081178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelly L. Fleming
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
191
|
Alahuhta M, Adney WS, Himmel ME, Lunin VV. Structure of Acidothermus cellulolyticus family 74 glycoside hydrolase at 1.82 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1335-8. [PMID: 24316824 PMCID: PMC3855714 DOI: 10.1107/s1744309113030005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 11/11/2022]
Abstract
Here, a 1.82 Å resolution X-ray structure of a glycoside hydrolase family 74 (GH74) enzyme from Acidothermus cellulolyticus is reported. The resulting structure was refined to an R factor of 0.150 and an Rfree of 0.196. Structural analysis shows that five related structures have been reported with a secondary-structure similarity of between 75 and 89%. The five similar structures were all either Clostridium thermocellum or Geotrichum sp. M128 GH74 xyloglucanases. Structural analysis indicates that the A. cellulolyticus GH74 enzyme is an endoxyloglucanase, as it lacks a characteristic loop that blocks one end of the active site in exoxyloglucanases. Superimposition with the C. thermocellum GH74 shows that Asp451 and Asp38 are the catalytic residues.
Collapse
Affiliation(s)
- Markus Alahuhta
- BioSciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - William S. Adney
- BioSciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Michael E. Himmel
- BioSciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Vladimir V. Lunin
- BioSciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| |
Collapse
|
192
|
Zhang J, Cui JH, Yin T, Sun L, Li G. Activated effect of lignin on α-amylase. Food Chem 2013; 141:2229-37. [DOI: 10.1016/j.foodchem.2013.05.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/11/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
193
|
Ravanal MC, Alegría-Arcos M, Gonzalez-Nilo FD, Eyzaguirre J. Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference. Arch Biochem Biophys 2013; 540:117-24. [DOI: 10.1016/j.abb.2013.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
|
194
|
Identification of critical amino acid residues for chloride binding of Bacillus licheniformis trehalose-6-phosphate hydrolase. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0290-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
195
|
Liu SW, Li YK. Expression, Purification and Characterization of Human α-l-Fucosidase. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
196
|
Wan CF, Chen CT, Li YK, Huang L. Expression, Purification and Characterization of a Bifunctional α-L-Arabinofuranosidase/β-D-Xylosidase fromTrichoderma KoningiiG-39. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200700018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
197
|
Fungal Beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013; 3:612-31. [PMID: 24970184 PMCID: PMC4030957 DOI: 10.3390/biom3030612] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022] Open
Abstract
Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.
Collapse
|
198
|
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3519-50. [PMID: 23956409 DOI: 10.1093/jxb/ert201] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant cell-wall matrix is equipped with more than 20 glycosylhydrolase activities, including both glycosidases and glycanases (exo- and endo-hydrolases, respectively), which between them are in principle capable of hydrolysing most of the major glycosidic bonds in wall polysaccharides. Some of these enzymes also participate in the 'cutting and pasting' (transglycosylation) of sugar residues-enzyme activities known as transglycosidases and transglycanases. Their action and biological functions differ from those of the UDP-dependent glycosyltransferases (polysaccharide synthases) that catalyse irreversible glycosyl transfer. Based on the nature of the substrates, two types of reaction can be distinguished: homo-transglycosylation (occurring between chemically similar polymers) and hetero-transglycosylation (between chemically different polymers). This review focuses on plant cell-wall-localized glycosylhydrolases and the transglycosylase activities exhibited by some of these enzymes and considers the physiological need for wall polysaccharide modification in vivo. It describes the mechanism of transglycosylase action and the classification and phylogenetic variation of the enzymes. It discusses the modulation of their expression in plants at the transcriptional and translational levels, and methods for their detection. It also critically evaluates the evidence that the enzyme proteins under consideration exhibit their predicted activity in vitro and their predicted action in vivo. Finally, this review suggests that wall-localized glycosylhydrolases with transglycosidase and transglycanase abilities are widespread in plants and play important roles in the mechanism and control of plant cell expansion, differentiation, maturation, and wall repair.
Collapse
Affiliation(s)
- Lenka Franková
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
199
|
Teze D, Hendrickx J, Dion M, Tellier C, Woods VL, Tran V, Sanejouand YH. Conserved Water Molecules in Family 1 Glycosidases: A DXMS and Molecular Dynamics Study. Biochemistry 2013; 52:5900-10. [DOI: 10.1021/bi400260b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David Teze
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Johann Hendrickx
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Michel Dion
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Charles Tellier
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Virgil L. Woods
- Department of Medicine, University of California−San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0652, United States
| | - Vinh Tran
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | | |
Collapse
|
200
|
Shaikh FA, Lammerts van Bueren A, Davies GJ, Withers SG. Identifying the Catalytic Acid/Base in GH29 α-l-Fucosidase Subfamilies. Biochemistry 2013; 52:5857-64. [DOI: 10.1021/bi400183q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- F. Aidha Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
BC, Canada V6T 1Z1
| | - Alicia Lammerts van Bueren
- York
Structural Biology Laboratory,
Department of Chemistry, University of York, Wentworth Way, York, U.K
| | - Gideon J. Davies
- York
Structural Biology Laboratory,
Department of Chemistry, University of York, Wentworth Way, York, U.K
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
BC, Canada V6T 1Z1
| |
Collapse
|