151
|
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS One 2012; 7:e37231. [PMID: 22623999 PMCID: PMC3356407 DOI: 10.1371/journal.pone.0037231] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
Collapse
|
152
|
Chung YT, Matkowskyj KA, Li H, Bai H, Zhang W, Tsao MS, Liao J, Yang GY. Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod Pathol 2012; 25:758-66. [PMID: 22222635 PMCID: PMC3323665 DOI: 10.1038/modpathol.2011.191] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldo-keto reductase family 1B10 (AKR1B10) exhibits more restricted lipid substrate specificity (including farnesal, geranylgeranial, retinal and carbonyls), and metabolizing these lipid substrates has a crucial role in promoting carcinogenesis. Overexpression of AKR1B10 has been identified in smoking-related carcinomas such as lung cancer. As development of pancreatic cancer is firmly linked to smoking, the aim of the present study was to examine the expression and oncogenic role of AKR1B10 in pancreatic adenocarcinoma. AKR1B10 expression was analyzed in 50 paraffin-embedded clinical pancreatic cancer samples using immunohistochemistry. Oncogenic function of AKR1B10 was examined in pancreatic carcinoma cells in vitro using western blotting and siRNA approaches, mainly on cell apoptosis and protein prenylation including KRAS protein and its downstream signals. Immunohistochemistry analysis revealed that AKR1B10 overexpressed in 70% (35/50) of pancreatic adenocarcinomas and majority of pancreatic intraepithelial neoplasia, but not in adjacent morphologically normal pancreatic tissue. Compared with a normal pancreatic ductal epithelial cell (HPDE6E7), all of the six cultured pancreatic adenocarcinoma cell lines had an overexpression of AKR1B10 using immunoblotting, which correlated with increase of enzyme activity. siRNA-mediated silencing of AKR1B10 expression in pancreatic cancer cells resulted in (1) increased cell apoptosis, (2) increased non-farnesyled HDJ2 protein and (3) decreased membrane-bound prenylated KRAS protein and its downstream signaling molecules including phosphorylated ERK and MEK and membrane-bound E-cadherin. Our findings provide first time evidence that AKR1B10 is a unique enzyme involved in pancreatic carcinogenesis possibly via modulation of cell apoptosis and protein prenylation.
Collapse
Affiliation(s)
- Yeon Tae Chung
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Kristina A. Matkowskyj
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Haonan Li
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Han Bai
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Wanying Zhang
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Ming-Sound Tsao
- Ontario Cancer Institute, Princess Margaret Hospital; Toronto, Ontario, Canada
| | - Jie Liao
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Chicago, IL 60611, USA.,Corresponding Author: Guang-Yu Yang, MD, PhD, Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Ward 6-118, Chicago, IL 60611, Tel: (312) 503-0645, Fax: (312)503-0647,
| |
Collapse
|
153
|
Chang CL, Coudron TA, Goodman CL, Stanley DW. Larval dietary wheat germ oil influences age-specific protein expression in adults of the oriental fruit fly. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:690-698. [PMID: 22326456 DOI: 10.1016/j.jinsphys.2012.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Changes in essential dietary components alter global gene expression patterns in animals. We reported on a proteomics study designed to identify molecular markers of deficiencies in culture media developed for the oriental fruit fly, Bactrocera dorsalis. In that study, we found significant changes in expression of 70 proteins in adults of larvae reared on media lacking wheat germ oil (WGO), compared to media supplemented with WGO. Of these, a gene encoding an insect chitin-binding protein was expressed at about 120-fold higher levels in adult males reared on media supplemented with WGO. We inferred it may be feasible to develop the gene as a molecular marker of dietary lipid deficiency. The work was focused, however, on analysis of 11 day old adults. We have no information on expression of the chitin-binding protein, nor on any other proteins at other adult ages. In this paper we address the idea that the whole animal proteome changes dynamically with age. We reared separate groups of fruit fly larvae on media with and without WGO supplementation and analyzed protein expression in adult males and females age 0, 4, 8 and 12 days old using 2D electrophoresis. Gel densitometry revealed significant increases (by >2-fold) and decreases (by >50%) in expression levels of 29 proteins in females and 10 in males. We identified these proteins by mass spectrometry on MALDI TOF/TOF and bioinformatic analyses of the protein sequences. Two proteins, peroxiredoxin (26-fold increase) and vitellogenin 1 (15-fold increase) increased in expression in day 8 females. The key finding is that most changes in protein expression occurred in day 8 females. We infer that the fruit fly proteome changes with adult age. The natural changes in proteome with adult age is a crucial aspect of developing these and other proteins into molecular markers of lipid deficiency in fruit flies and possibly other insect species.
Collapse
Affiliation(s)
- C L Chang
- USDA, Agricultural Research Service, US Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA.
| | | | | | | |
Collapse
|
154
|
MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci U S A 2012; 109:7529-34. [PMID: 22529366 DOI: 10.1073/pnas.1200650109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, uterine quiescence is maintained by increased progesterone receptor (PR) activity, but labor is facilitated by a series of events that impair PR function. Previously, we discovered that miR-200 family members serve as progesterone (P(4))-modulated activators of contraction-associated genes in the pregnant uterus. In this study, we identified a unique role for miR-200a to enhance the local metabolism of P(4) in myometrium and, thus, decrease PR function during the progression toward labor. miR-200a exerts this action by direct repression of STAT5b, a transcriptional repressor of the P(4)-metabolizing enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). We observed that miR-200a expression increased and STAT5b expression coordinately decreased in myometrium of mice as they progressed to labor and in laboring myometrium from pregnant women. These changes were associated with a dramatic increase in expression and activity of 20α-HSD in laboring myometrium from mouse and human. Notably, overexpression of miR-200a in cultured human myometrial cells (hTERT-HM) suppressed STAT5b and increased 20α-HSD mRNA levels. In uterine tissues of ovariectomized mice injected with P(4), miR-200 expression was significantly decreased, STAT5b expression was up-regulated, and 20α-HSD mRNA was decreased, but in 15 d postcoitum pregnant mice injected with the PR antagonist RU486, preterm labor was associated with increased miR-200a, decreased STAT5b, and enhanced 20α-HSD expression. Taken together, these findings implicate miR-200a as an important regulator of increased local P(4) metabolism in the pregnant uterus near term and provide insight into the importance of miR-200s in the decline in PR function leading to labor.
Collapse
|
155
|
Ruiz FX, Porté S, Parés X, Farrés J. Biological role of aldo-keto reductases in retinoic Acid biosynthesis and signaling. Front Pharmacol 2012; 3:58. [PMID: 22529810 PMCID: PMC3328219 DOI: 10.3389/fphar.2012.00058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/19/2012] [Indexed: 12/12/2022] Open
Abstract
Several aldo-keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low K(m) and k(cat) values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- F Xavier Ruiz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona Barcelona, Spain
| | | | | | | |
Collapse
|
156
|
Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash JM, LaBarbera DV. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One 2012; 7:e31399. [PMID: 22485126 PMCID: PMC3317655 DOI: 10.1371/journal.pone.0031399] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/06/2012] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus is recognized as a leading cause of new cases of blindness. The prevalence of diabetic eye disease is expected to continue to increase worldwide as a result of the dramatic increase in the number of people with diabetes. At present, there is no medical treatment to delay or prevent the onset and progression of cataract or retinopathy, the most common causes of vision loss in diabetics. The plant Emblica officinalis (gooseberry) has been used for thousands of years as a traditional Indian Ayurvedic preparation for the treatment of diabetes in humans. Extracts from this plant have been shown to be efficacious against the progression of cataract in a diabetic rat model. Aldose reductase (ALR2) is implicated in the development of secondary complications of diabetes including cataract and, therefore, has been a major drug target for the development of therapies to treat diabetic disease. Herein, we present the bioassay-guided isolation and structure elucidation of 1-O-galloyl-β-D-glucose (β-glucogallin), a major component from the fruit of the gooseberry that displays selective as well as relatively potent inhibition (IC50 = 17 µM) of AKR1B1 in vitro. Molecular modeling demonstrates that this inhibitor is able to favorably bind in the active site. Further, we show that β-glucogallin effectively inhibits sorbitol accumulation by 73% at 30 µM under hyperglycemic conditions in an ex-vivo organ culture model of lenses excised from transgenic mice overexpressing human ALR2 in the lens. This study supports the continued development of natural products such as β-glucogallin as therapeutic leads in the development of novel therapies to treat diabetic complications such as cataract.
Collapse
Affiliation(s)
- Muthenna Puppala
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Jessica Ponder
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Palla Suryanarayana
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | - J. Mark Petrash
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
157
|
Osorio-Yáñez C, García-Tavera JL, Pérez-Núñez MT, Poblete-Naredo I, Muñoz B, Barron-Vivanco BS, Rothenberg SJ, Zapata-Pérez O, Albores A. Benzo(a)pyrene induces hepatic AKR1A1 mRNA expression in tilapia fish (Oreochromis niloticus). Toxicol Mech Methods 2012; 22:438-44. [PMID: 22394341 DOI: 10.3109/15376516.2012.666684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AKR1A1 or aldehyde reductase is a member of the aldo-keto reductases superfamily that is evolutionarily conserved among species. AKR1A1 is one of the five AKRs (AKR1A1 and 1C1-1C4) implicated in the metabolic benzo(a)pyrene (BaP) activation to reactive BaP 7,8-dione. BaP is a polycyclic aromatic hydrocarbon (PAH) widely distributed in aquatic ecosystems and its metabolic activation is necessary to produce its toxic effects. Although the presence of AKR1A1 in fish has been reported, its tissue distribution in tilapia (Oreochromis niloticus) and AKR1A1 inducibility by BaP are not known yet. Moreover, cytochrome P4501A (CYP1A) mRNA expression in fish has been used as a PAH biomarker of effect. Therefore, BaP effects on AKR1A1 and CYP1A gene expressions in tilapia, a species of commercial interest, were investigated by real-time RT-PCR. A partial AKR1A1 cDNA was identified, sequenced and compared with AKR1A1 reported sequences in the GenBank DNA database. Constitutive AKR1A1 mRNA expression was detected mainly in liver, similarly to that of CYP1A. BaP exposure resulted in statistically significant AKR1A1 and CYP1A mRNA induction in liver (20- and 120-fold, respectively) at 24 h. On the other hand, ethoxyquin (EQ) was used as control inducer for AKR1A1 mRNA. Interestingly, EQ also induced CYP1A mRNA levels in tilapia liver. Our results suggest that teleost AKR1A1, in addition to CYP1A, are inducible by BaP. The mechanism of AKR1A1 induction by BaP and its role in fish susceptibility to BaP toxic effects remains to be elucidated.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, San Pedro Zacatenco, México City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Chen M, Drury JE, Christianson DW, Penning TM. Conversion of human steroid 5β-reductase (AKR1D1) into 3β-hydroxysteroid dehydrogenase by single point mutation E120H: example of perfect enzyme engineering. J Biol Chem 2012; 287:16609-22. [PMID: 22437839 DOI: 10.1074/jbc.m111.338780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ(4)-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His(120) (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ(4)-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ(4)-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.
Collapse
Affiliation(s)
- Mo Chen
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
159
|
Rižner TL. Enzymes of the AKR1B and AKR1C Subfamilies and Uterine Diseases. Front Pharmacol 2012; 3:34. [PMID: 22419909 PMCID: PMC3301985 DOI: 10.3389/fphar.2012.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/19/2012] [Indexed: 12/31/2022] Open
Abstract
Endometrial and cervical cancers, uterine myoma, and endometriosis are very common uterine diseases. Worldwide, more than 800,000 women are affected annually by gynecological cancers, as a result of which, more than 360,000 die. During their reproductive age, about 70% of women develop uterine myomas and 10-15% suffer from endometriosis. Uterine diseases are associated with aberrant inflammatory responses and concomitant increased production of prostaglandins (PG). They are also related to decreased differentiation, due to low levels of protective progesterone and retinoic acid, and to enhanced proliferation, due to high local concentrations of estrogens. The pathogenesis of these diseases can thus be attributed to disturbed PG, estrogen, and retinoid metabolism and actions. Five human members of the aldo-keto reductase 1B (AKR1B) and 1C (AKR1C) superfamilies, i.e., AKR1B1, AKR1B10, AKR1C1, AKR1C2, and AKR1C3, have roles in these processes and can thus be implicated in uterine diseases. AKR1B1 and AKR1C3 catalyze the formation of PGF2α, which stimulates cell proliferation. AKR1C3 converts PGD2 to 9α,11β-PGF2, and thus counteracts the formation of 15-deoxy-PGJ2, which can activate pro-apoptotic peroxisome-proliferator-activated receptor γ. AKR1B10 catalyzes the reduction of retinal to retinol, and thus lessens the formation of retinoic acid, with potential pro-differentiating actions. The AKR1C1-AKR1C3 enzymes also act as 17-keto- and 20-ketosteroid reductases to varying extents, and are implicated in increased estradiol and decreased progesterone levels. This review comprises an introduction to uterine diseases and AKR1B and AKR1C enzymes, followed by an overview of the current literature on the AKR1B and AKR1C expression in the uterus and in uterine diseases. The potential implications of the AKR1B and AKR1C enzymes in the pathophysiologies are then discussed, followed by conclusions and future perspectives.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
160
|
Chen WD, Zhang Y. Regulation of aldo-keto reductases in human diseases. Front Pharmacol 2012; 3:35. [PMID: 22408622 PMCID: PMC3297832 DOI: 10.3389/fphar.2012.00035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/20/2012] [Indexed: 01/20/2023] Open
Abstract
The aldo-keto reductases (AKRs) are a superfamily of NAD(P)H-linked oxidoreductases, which reduce aldehydes and ketones to their respective primary and secondary alcohols. AKR enzymes are increasingly being recognized to play an important role in the transformation and detoxification of aldehydes and ketones generated during drug detoxification and xenobiotic metabolism. Many transcription factors have been identified to regulate the expression of human AKR genes, which could have profound effects on the metabolism of endogenous mediators and detoxication of chemical carcinogens. This review summarizes the current knowledge on AKR regulation by transcription factors and other mediators in human diseases.
Collapse
Affiliation(s)
- Wei-Dong Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| | | |
Collapse
|
161
|
Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. J Lipid Res 2012; 53:215-26. [PMID: 22045929 PMCID: PMC3269164 DOI: 10.1194/jlr.r021436] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 10/31/2011] [Indexed: 12/22/2022] Open
Abstract
The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved.
Collapse
Affiliation(s)
- Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX
| | - John M. Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
162
|
Centrella M, McCarthy TL. Estrogen receptor dependent gene expression by osteoblasts - direct, indirect, circumspect, and speculative effects. Steroids 2012; 77:174-84. [PMID: 22093482 DOI: 10.1016/j.steroids.2011.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
Hormone activated estrogen receptors (ERs) have long been appreciated as potent mediators of gene expression in female reproductive tissues. These highly targeted responses likely evolved from more elemental roles in lower organisms, in agreement with their widespread effects in the cardiovascular, immunological, central nervous, and skeletal tissue systems. Still, despite intense investigation, the multiple and often perplexing roles of ERs retain significant attention. In the skeleton, this in part derives from apparently opposing effects by ER agonists on bone growth versus bone remodeling, and in younger versus older individuals. The complexity associated with ER activation can also derive from their interactions with other hormone and growth factor systems, and their direct and indirect effects on gene expression. We propose that part of this complexity results from essential interactions between ERs and other transcription factors, each with their own biochemical and molecular intricacies. Solving some of the many questions that persist may help to achieve better, or better directed, use of agents that can drive ER activation in focused and possibly tissue restricted ways.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8041, United States.
| | | |
Collapse
|
163
|
Abstract
Human AKR (aldo-keto reductase) 1C proteins (AKR1C1-AKR1C4) exhibit relevant activity with steroids, regulating hormone signalling at the pre-receptor level. In the present study, investigate the activity of the four human AKR1C enzymes with retinol and retinaldehyde. All of the enzymes except AKR1C2 showed retinaldehyde reductase activity with low Km values (~1 μM). The kcat values were also low (0.18-0.6 min-1), except for AKR1C3 reduction of 9-cis-retinaldehyde whose kcat was remarkably higher (13 min-1). Structural modelling of the AKR1C complexes with 9-cis-retinaldehyde indicated a distinct conformation of Trp227, caused by changes in residue 226 that may contribute to the activity differences observed. This was partially supported by the kinetics of the AKR1C3 R226P mutant. Retinol/retinaldehyde conversion, combined with the use of the inhibitor flufenamic acid, indicated a relevant role for endogenous AKR1Cs in retinaldehyde reduction in MCF-7 breast cancer cells. Overexpression of AKR1C proteins depleted RA (retinoic acid) transactivation in HeLa cells treated with retinol. Thus AKR1Cs may decrease RA levels in vivo. Finally, by using lithocholic acid as an AKR1C3 inhibitor and UVI2024 as an RA receptor antagonist, we provide evidence that the pro-proliferative action of AKR1C3 in HL-60 cells involves the RA signalling pathway and that this is in part due to the retinaldehyde reductase activity of AKR1C3.
Collapse
|
164
|
|
165
|
Takashima Y, Hatanaka S, Mizohata E, Nagata N, Fukunishi Y, Matsumura H, Urade Y, Inoue T. Crystallization and preliminary X-ray diffraction analysis of mouse prostaglandin F2α synthase, AKR1B3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1630-2. [PMID: 22139184 PMCID: PMC3232157 DOI: 10.1107/s1744309111036165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/05/2011] [Indexed: 11/11/2022]
Abstract
Aldo-keto reductase 1B3 (AKR1B3) catalyzes the NADPH-dependent reduction of prostaglandin H(2) (PGH(2)), which is a common intermediate of various prostanoids, to form PGF(2α). AKR1B3 also reduces PGH(2) to PGD(2) in the absence of NADPH. AKR1B3 produced in Escherichia coli was crystallized in complex with NADPH by the sitting-drop vapour-diffusion method. The crystal was tetragonal, belonging to space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = b = 107.62, c = 120.76 Å. X-ray diffraction data were collected to 2.4 Å resolution at 100 K using a synchrotron-radiation source.
Collapse
Affiliation(s)
- Yasuhide Takashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seika Hatanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nanae Nagata
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshifumi Fukunishi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
166
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
167
|
Aldo-keto reductase family 1, member B10 is secreted through a lysosome-mediated non-classical pathway. Biochem J 2011; 438:71-80. [PMID: 21585341 DOI: 10.1042/bj20110111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AKR1B10 (aldo-keto reductase family 1, member B10) protein is primarily expressed in normal human small intestine and colon, but overexpressed in several types of human cancers and considered as a tumour marker. In the present study, we found that AKR1B10 protein is secreted from normal intestinal epithelium and cultured cancer cells, as detected by a newly developed sandwich ELISA and Western blotting. The secretion of AKR1B10 was not affected by the protein-synthesis inhibitor cycloheximide and the classical protein-secretion pathway inhibitor brefeldin A, but was stimulated by temperature, ATP, Ca(2+) and the Ca(2+) carrier ionomycin, lysosomotropic NH(4)Cl, the G-protein activator GTPγS and the G-protein coupling receptor N-formylmethionyl-leucyl-phenylalanine. The ADP-ribosylation factor inhibitor 2-(4-fluorobenzoylamino)-benzoic acid methyl ester and the phospholipase C inhibitor U73122 inhibited the secretion of AKR1B10. In cultured cells, AKR1B10 was present in lysosomes and was secreted with cathepsin D, a lysosomal marker. In the intestine, AKR1B10 was specifically expressed in mature epithelial cells and secreted into the lumen at 188.6-535.7 ng/ml of ileal fluids (mean=298.1 ng/ml, n=11). Taken together, our results demonstrate that AKR1B10 is a new secretory protein belonging to a lysosome-mediated non-classical protein-secretion pathway and is a potential serum marker.
Collapse
|
168
|
Ahmed MME, Wang T, Luo Y, Ye S, Wu Q, Guo Z, Roebuck BD, Sutter TR, Yang JY. Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity. Hepatology 2011; 54:1322-32. [PMID: 21688283 DOI: 10.1002/hep.24493] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 06/01/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED Aldo-keto reductase-7A (AKR7A) is an enzyme important for bioactivation and biodetoxification. Previous studies suggested that Akr7a might be transcriptionally regulated by oxidative stress-responsive transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a protein highly responsive to acetaminophen (APAP) or its intermediate metabolite, N-acetyl-p-benzoquinoneimine (NAPQI). This study was, therefore, carried out to investigate whether Akr7a is involved in the protection against APAP-induced oxidative stress and hepatotoxicity. We found that in response to APAP or NAPQI exposure, Akr7a3 mRNA and protein were significantly up-regulated in vitro in human HepG2 and LO2 cells. Similarly, strong induction was observed for Akr7a5 in mouse AML12 hepatocytes exposed to APAP. In vivo in wild-type rats, significant up-regulation of hepatic AKR7A1 protein was observed after administration of APAP. On the other hand, depletion of Nrf2 reduced the expression of Akr7a3, suggesting that Nrf2, indeed, contributes significantly to the induction of Akr7a. Moreover, loss of cell viability in Nrf2-depleted cells was significantly rescued by coexpression of AKR7A3. Furthermore, increased AKR7A3 in HepG2 cells was associated with the up-regulation of oxidative stress-related enzymes to enhance cellular antioxidant defense, which appeared to contribute significantly to protection against APAP-induced toxicity. In a line of transgenic rats overexpressing AKR7A1, increased AKR7A1 stimulated the expression of Nrf2 and other Nrf2-regulated genes, but did not better protect rats from APAP insults. In contrast, depletion of Akr7a5 in vitro in cultured AML12 cells or depletion of Akr7a1 in vivo in rat liver greatly increased APAP-induced hepatotoxicity. CONCLUSION AKR7A proteins are significantly up-regulated in response to APAP/NAPQI exposure to contribute significantly to protection against APAP-induced hepatotoxicity. AKR7A mediates this protection, in part, through enhancing hepatocellular antioxidant defense.
Collapse
Affiliation(s)
- Munzir M E Ahmed
- State Key Laboratory of Stress Cell Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Ter-Minassian M, Asomaning K, Zhao Y, Chen F, Su L, Carmella SG, Lin X, Hecht SS, Christiani DC. Genetic variability in the metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Int J Cancer 2011; 130:1338-46. [PMID: 21544809 DOI: 10.1002/ijc.26162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/20/2011] [Indexed: 01/26/2023]
Abstract
Urinary metabolites of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, termed total NNAL, have recently been shown to be good predictors of lung cancer risk, years before diagnosis. We sought to determine the contribution of several genetic polymorphisms to total NNAL output and inter-individual variability. The study subjects were derived from the Harvard/Massachusetts General Hospital Lung cancer case-control study. We analyzed 87 self-described smokers (35 lung cancer cases and 52 controls), with urine samples collected at time of diagnosis (1992-1996). We tested 82 tagging SNPs in 16 genes related to the metabolism of NNK to total NNAL. Using weighted case status least squares regression, we tested for the association of each SNP with square-root (sqrt) transformed total NNAL (pmol per mg creatinine), controlling for age, sex, sqrt packyears and sqrt nicotine (ng per mg creatinine). After a sqrt transformation, nicotine significantly predicted a 0.018 (0.014, 0.023) pmol/mg creatinine unit increase in total NNAL for every ng/mg creatinine increase in nicotine at p < 10E-16. Three HSD11B1 SNPs and AKR1C4 rs7083869 were significantly associated with decreasing total NNAL levels: HSD11B1 rs2235543 (p = 4.84E-08) and rs3753519 (p = 0.0017) passed multiple testing adjustment at FDR q = 1.13E-05 and 0.07 respectively, AKR1C4 rs7083869 (p = 0.019) did not, FDR q = 0.51. HSD11B1 and AKR1C4 enzymes are carbonyl reductases directly involved in the single step reduction of NNK to NNAL. The HSD11B1 SNPs may be correlated with the functional variant rs13306401 and the AKR1C4 SNP is correlated with the enzyme activity reducing variant rs17134592, L311V.
Collapse
Affiliation(s)
- Monica Ter-Minassian
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology (EOME) Program, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Oswald ES, Brown LM, Bulinski JC, Hung CT. Label-free protein profiling of adipose-derived human stem cells under hyperosmotic treatment. J Proteome Res 2011; 10:3050-9. [PMID: 21604804 DOI: 10.1021/pr200030v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our previous work suggested that treatment of cells with hyperosmotic media during 2D passaging primes cells for cartilage tissue engineering applications. Here, we used label-free proteomic profiling to evaluate the effects of control and hyperosmotic treatment environments on the phenotype of multipotent adipose-derived stem cells (ASCs) cultivated with a chondrogenic growth factor cocktail. Spectra were recorded in a data-independent fashion at alternate low (precursor) and high (product) fragmentation voltages (MS(E)). This method was supplemented with data mining of accurate mass and retention time matches in precursor ion spectra across the experiment. The results indicated a complex cellular response to osmotic treatment, with a number of proteins differentially expressed between control and treated cell groups. The roles of some of these proteins have been documented in the literature as characteristic of the physiological states studied, especially aldose reductase (osmotic stress). This protein acted as a positive control in this work, providing independent corroborative validation. Other proteins, including 5'-nucleotidase and transgelin, have been previously linked to cell differentiation state. This study demonstrates that label-free profiling can serve as a useful tool in characterizing cellular responses to chondrogenic treatment regimes, recommending its use in optimization of cell priming protocols for cartilage tissue engineering.
Collapse
Affiliation(s)
- Elizabeth S Oswald
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
171
|
Ebert B, Kisiela M, Wsól V, Maser E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29. Chem Biol Interact 2011; 191:239-49. [DOI: 10.1016/j.cbi.2010.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 01/20/2023]
|
172
|
El-Kabbani O, Dhagat U, Hara A. Inhibitors of human 20α-hydroxysteroid dehydrogenase (AKR1C1). J Steroid Biochem Mol Biol 2011; 125:105-11. [PMID: 21050889 DOI: 10.1016/j.jsbmb.2010.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/11/2010] [Accepted: 10/23/2010] [Indexed: 12/13/2022]
Abstract
Human 20α-hydroxysteroid dehydrogenase (AKR1C1), a member of the aldo-keto reductase (AKR) superfamily, is one of four isoforms (with >84% amino acid sequence identity) existing in human tissues. AKR1C1 most efficiently reduces biologically active progesterone and 5α-pregnan-3α-ol-20-one into their corresponding 20α-hydroxysteroids among the isoforms. The enzyme also accepts endogenous and xenobiotic non-steroidal carbonyl compounds as the substrates. In addition to the up-regulation of the AKR1C1 gene in cancer cells, the enzyme's over-expression in the cells of lung, ovary, uterine cervix, skin and colon carcinomas was reported to be associated with resistance against several anticancer agents. Thus, AKR1C1 may be a marker of the above cancers and a target of poor prognosis in cancer therapy. The recently determined X-ray crystal structures of AKR1C1/NADP(+)/20α-hydroxyprogesterone and AKR1C1/NADP(+)/3,5-dichlorosalicylic acid ternary complexes have provided a strong foundation for structure-based design methods to improve inhibitor selectivity and potency. In this review we provide an overview of the different types of AKR1C1 inhibitors and an update on the design of potent and selective inhibitors based on the crystal structure of the enzyme-inhibitor complex. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Ossama El-Kabbani
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
173
|
Chen M, Drury JE, Penning TM. Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1). Steroids 2011; 76:484-90. [PMID: 21255593 PMCID: PMC3056882 DOI: 10.1016/j.steroids.2011.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/29/2010] [Accepted: 01/13/2011] [Indexed: 12/31/2022]
Abstract
Human steroid 5β-reductase (aldo-keto reductase 1D1) catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of Δ(4)-ketosteroids to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. The biochemical properties of the enzyme have not been thoroughly studied and conflicting data have been reported, partially due to the lack of highly homogeneous protein. In the present study, we systematically determined the substrate specificity of homogeneous human recombinant AKR1D1 using C18, C19, C21, and C27 Δ(4)-ketosteroids and assessed the pH-rate dependence of the enzyme. Our results show that AKR1D1 proficiently reduced all the steroids tested at physiological pH, indicating AKR1D1 is the only enzyme necessary for all the 5β-steroid metabolites present in humans. Substrate inhibition was observed with C18 to C21 steroids provided that the C11 position was unsubstituted. This structure activity relationship can be explained by the existence of a small alternative substrate binding pocket revealed by the AKR1D1 crystal structure. Non-steroidal anti-inflammatory drugs which are potent inhibitors of the related AKR1C enzymes do not inhibit AKR1D1. By contrast chenodeoxycholate and ursodeoxycholate were found to be potent non-competitive inhibitors suggesting that bile-acids may regulate their own synthesis at the level of AKR1D1 inhibition.
Collapse
Affiliation(s)
- Mo Chen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104-6084, USA
| | | | | |
Collapse
|
174
|
Sakamoto A, Sugamoto Y. Identification of a novel aldose reductase-like gene upregulated in the failing heart of cardiomyopathic hamster. Mol Cell Biochem 2011; 353:275-81. [DOI: 10.1007/s11010-011-0796-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/17/2011] [Indexed: 11/30/2022]
|
175
|
Joshi A, Rajput S, Wang C, Ma J, Cao D. Murine aldo-keto reductase family 1 subfamily B: identification of AKR1B8 as an ortholog of human AKR1B10. Biol Chem 2011; 391:1371-8. [PMID: 21087085 DOI: 10.1515/bc.2010.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aldo-keto reductase family 1 member B10 (AKR1B10), over-expressed in multiple human cancers, might be implicated in cancer development and progression via detoxifying cytotoxic carbonyls and regulating fatty acid synthesis. In the present study, we investigated the ortholog of AKR1B10 in mice, an ideal modeling organism greatly contributing to human disease investigations. In the mouse, there are three aldo-keto reductase family 1 subfamily B (AKR1B) members, i.e., AKR1B3, AKR1B7, and AKR1B8. Among them, AKR1B8 has the highest similarity to human AKR1B10 in terms of amino acid sequence, computer-modeled structures, substrate spectra and specificity, and tissue distribution. More importantly, similar to human AKR1B10, mouse AKR1B8 associates with murine acetyl-CoA carboxylase-α and mediates fatty acid synthesis in colon cancer cells. Taken together, our data suggest that murine AKR1B8 is the ortholog of human AKR1B10.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
176
|
Nagata N, Kusakari Y, Fukunishi Y, Inoue T, Urade Y. Catalytic mechanism of the primary human prostaglandin F2α synthase, aldo-keto reductase 1B1--prostaglandin D2 synthase activity in the absence of NADP(H). FEBS J 2011; 278:1288-98. [PMID: 21306562 DOI: 10.1111/j.1742-4658.2011.08049.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aldo-keto reductase 1B1 and 1B3 (AKR1B1 and AKR1B3) are the primary human and mouse prostaglandin F(2α) (PGF(2α)) synthases, respectively, which catalyze the NADPH-dependent reduction of PGH(2), a common intermediate of various prostanoids, to form PGF(2α). In this study, we found that AKR1B1 and AKR1B3, but not AKR1B7 and AKR1C3, also catalyzed the isomerization of PGH(2) to PGD(2) in the absence of NADPH or NADP(+). Both PGD(2) and PGF(2α) synthase activities of AKR1B1 and AKR1B3 completely disappeared in the presence of NADP(+) or after heat treatment of these enzymes at 100 °C for 5 min. The K(m), V(max), pK and optimum pH values of the PGD(2) synthase activities of AKR1B1 and AKR1B3 were 23 and 18 μM, 151 and 57 nmol·min(-1)·(mg protein)(-1), 7.9 and 7.6, and pH 8.5 for both AKRs, respectively, and those of PGF(2α) synthase activity were 29 and 33 μM, 169 and 240 nmol·min(-1)·(mg protein)(-1), 6.2 and 5.4, and pH 5.5 and pH 5.0, respectively, in the presence of 0.5 mm NADPH. Site-directed mutagenesis of the catalytic tetrad of AKR1B1, composed of Tyr, Lys, His and Asp, revealed that the triad of Asp43, Lys77 and His110, but not Tyr48, acts as a proton donor in most AKR activities, and is crucial for PGD(2) and PGF(2α) synthase activities. These results, together with molecular docking simulation of PGH(2) to the crystallographic structure of AKR1B1, indicate that His110 acts as a base in concert with Asp43 and Lys77 and as an acid to generate PGD(2) and PGF(2α) in the absence of NADPH or NADP(+) and in the presence of NADPH, respectively.
Collapse
Affiliation(s)
- Nanae Nagata
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
177
|
The effect of hepatocyte growth factor on gene transcription during intestinal adaptation. J Pediatr Surg 2011; 46:357-65. [PMID: 21292088 DOI: 10.1016/j.jpedsurg.2010.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 12/11/2022]
Abstract
PURPOSE Previously, we investigated the physiologic effects of hepatocyte growth factor (HGF) on intestinal adaptation using a massive small bowel resection (MSBR) rat model. To correlate these altered physiologic changes with gene alterations, we used microarray technology at 7, 14, and 21 days after MSBR. METHODS Forty-five adult female rats were divided into 3 groups and underwent 70% MSBR, MSBR + HGF (intravenous 150 μg/kg per day), or sham operation (control). Five animals per group were killed at each time point. Ileal mucosa was harvested and RNA extracted. Rat Gene Chips and Expression Console software (Affymetrix, Santa Clara, CA) were used. Statistical analysis was done by analysis of variance using Partek Genomics Suite (Partek, Inc, St Louis, MO). Results were significant if fold change was more than 2 or less than -2, with P < .05. RESULTS Compared with the control group, MSBR group had significant increases in up-regulated and down-regulated genes. The MSBR-HGF group had further increases in up-regulated and down-regulated genes compared with the MSBR group. At 7 days, 6 cellular hypertrophy families had 30 genes up-regulated, and HGF up-regulated an additional 14 genes. At 21 days, 5 hyperplasia gene families had 32 up-regulated genes. Hepatocyte growth factor up-regulated an additional 16 genes. CONCLUSIONS Microarray analysis of intestinal adaptation identified an early emphasis on hypertrophy and later emphasis on hyperplasia. This is the first demonstration that the effect of HGF on intestinal adaptation is recruitment of more genes rather than an increase in the fold change of already up-regulated genes.
Collapse
|
178
|
Salabei JK, Li XP, Petrash JM, Bhatnagar A, Barski OA. Functional expression of novel human and murine AKR1B genes. Chem Biol Interact 2011; 191:177-84. [PMID: 21276782 DOI: 10.1016/j.cbi.2011.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 02/05/2023]
Abstract
The Aldo Keto Reductases (AKRs) are a superfamily of enzymes that catalyze the reduction of biogenic and xenobiotic aldehydes and ketones. AKR1B family has 2 known members in humans and 3 in rodents. Two novel gene loci, hereafter referred to as AKR1B15 in human and Akr1b16 in mouse have been predicted to exist within the AKR1B clusters. AKR1B15 displays 91% and 67% sequence identity with human genes AKR1B10 and AKR1B1, respectively while Akr1b16 shares 82-84% identity with murine Akr1b8 and Akr1b7. We tested the hypothesis that AKR1B15 and Akr1b16 genes are expressed as functional proteins in human and murine tissues, respectively. Using whole tissue mRNA, we were able to clone the full-length open reading frames for AKR1B15 from human eye and testes, and Akr1b16 from murine spleen, demonstrating that these genes are transcriptionally active. The corresponding cDNAs were cloned into pET28a and pIRES-hrGFP-1α vectors for bacterial and mammalian expression, respectively. Both genes were expressed as 36kDa proteins found in the insoluble fraction of bacterial cell lysate. These proteins, expressed in bacteria showed no enzymatic activity. However, lysates from COS-7 cells transfected with AKR1B15 showed a 4.8-fold (with p-nitrobenzaldehyde) and 3.3-fold (with dl-glyceraldehyde) increase in enzyme activity compared with untransfected COS-7 cells. The Akr1b16 transcript was shown to be ubiquitously expressed in murine tissues. Highest levels of transcript were found in heart, spleen, and lung. From these observations we conclude that the predicted AKR1B15 and 1b16 genes are expressed in several murine and human tissues. Further studies are required to elucidate their physiological roles.
Collapse
Affiliation(s)
- Joshua K Salabei
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202, United States
| | | | | | | | | |
Collapse
|
179
|
Bhat SH, Gelhaus SL, Mesaros C, Vachani A, Blair IA. A new liquid chromatography/mass spectrometry method for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:115-121. [PMID: 21154658 PMCID: PMC3348551 DOI: 10.1002/rcm.4824] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic nitrosamine produced upon curing tobacco. It is present in tobacco smoke and undergoes metabolism to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in the lungs. NNAL undergoes further uridine diphosphate glucuronosyltransferase (UGT)-mediated metabolism to give N- and O-glucuronide metabolites, which together with free (non-conjugated) NNAL are then excreted in the urine. The ability to conduct validated analyses of free and conjugated NNAL in human urine is important in order to assess inter-individual differences in lung cancer risk from exposure to cigarette smoke. The use of stable isotope dilution (SID) methodology in combination with liquid chromatography/multiple reaction monitoring/mass spectrometry (LC/MRM-MS) provides the highest bioanalytical specificity possible for such analyses. We describe a novel derivatization procedure, which results in the formation of a pre-ionized N-propyl-NNAL derivative. The increased LC/MS sensitivity arising from this derivative then makes it possible to analyze free NNAL in only 0.25 mL urine. This substantial reduction in urine volume when compared with other methods that have been developed will help preserve the limited amounts of stored urine samples that are available from on-going longitudinal biomarker studies. The new high sensitivity SID LC/MRM-MS assay was employed to determine free and conjugated NNAL concentrations in urine samples from 60 individual disease-free smokers. Effects of inter-individual differences in urinary creatinine clearance on NNAL concentrations were then assessed and three metabolizer phenotypes were identified in the 60 subjects from the ratio of urinary NNAL glucuronides/free NNAL. Poor metabolizers (PMs, 14 subjects) with a ratio of NNAL glucuronides/free NNAL <2 (mean = 1.3), intermediate metabolizers (IMs, 36 subjects) with a ratio between 2 and 5 (mean = 3.4), and extensive metabolizers (EMs, 10 subjects) with a ratio >5 (mean = 11.1).
Collapse
Affiliation(s)
- Showket H. Bhat
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Stacy L. Gelhaus
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Clementina Mesaros
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Ian A. Blair
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| |
Collapse
|
180
|
Sahoo K, Dozmorov MG, Anant S, Awasthi V. The curcuminoid CLEFMA selectively induces cell death in H441 lung adenocarcinoma cells via oxidative stress. Invest New Drugs 2010; 30:558-67. [PMID: 21181232 DOI: 10.1007/s10637-010-9610-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
CLEFMA or 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] is a curcuminoid being developed as an anticancer drug. We recently reported that it potently inhibits proliferation of various cancer cells. In this project, we investigated the effect of CLEFMA on gene expression profile in H441 lung adenocarcinoma cells, and studied its mechanism of action. In microarray data, we observed a deregulation of genes involved in redox and glutamate metabolism. Based on the affected ontologies, we hypothesized that antiproliferative activity of CLEFMA could be a result of the induction of reactive oxygen species (ROS). We tested this hypothesis by determining the levels of glutathione (GSH) and ROS in H441 cells treated with CLEFMA. We observed a rapid depletion of intracellular GSH/GSSG ratio. Using a cell-permeable fluorogenic substrate, we found that CLEFMA significantly induced ROS in a time- and dose-dependent manner (p < 0.05). Flow-cytometry with a mitochondria-selective fluorescent reporter of ROS indicated that the CLEFMA-induced ROS was of mitochondrial origin. In contrast to the cancer cells, the normal lung fibroblasts (CCL-151) did not show any increase in ROS and were resistant to CLEFMA-induced cell death. Furthermore, the addition of antioxidants, such as catalase, superoxide dismutase and N-acetylcysteine, rescued cancer cells from CLEFMA-induced cell death. Gene expression pathway analysis suggested that a transcription factor regulator Nrf2 is a pivotal molecule in the CLEFMA-induced deregulation of redox pathways. The immunoblotting of Nrf2 showed that CLEFMA treatment resulted in phosphorylation and nuclear translocation of Nrf2 in a time-dependent fashion. Based on these results, we conclude that induction of ROS is critical for the antiproliferative activity of CLEFMA and the Nrf2-mediated oxidative stress response fails to salvage H441 cells.
Collapse
Affiliation(s)
- Kaustuv Sahoo
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma, OK 73117, USA
| | | | | | | |
Collapse
|
181
|
Mörbt N, Tomm J, Feltens R, Mögel I, Kalkhof S, Murugesan K, Wirth H, Vogt C, Binder H, Lehmann I, von Bergen M. Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at nonacute toxic concentrations. J Proteome Res 2010; 10:363-78. [PMID: 21171652 DOI: 10.1021/pr1005718] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In industrialized countries, people spend more time indoors and are therefore increasingly exposed to volatile organic compounds that are emitted at working places and from consumer products, paintings, and furniture, with chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) being representatives of the halogenated arenes. To unravel the molecular effects of low concentrations typical for indoor and occupational exposure, we exposed human lung epithelial cells to CB and DCB and analyzed the effects on the proteome level by 2-D DIGE, where 860 protein spots were detected. A set of 25 and 30 proteins were found to be significantly altered due to exposure to environmentally relevant concentrations of 10(-2) g/m(3) of CB or 10(-3) g/m(3) of DCB (2.2 and 0.17 ppm), respectively. The most enriched pathways were cell death signaling, oxidative stress response, protein quality control, and metabolism. The involvement of oxidative stress was validated by ROS measurement. Among the regulated proteins, 28, for example, voltage-dependent anion-selective channel protein 2, PDCD6IP protein, heat shock protein beta-1, proliferating cell nuclear antigen, nucleophosmin, seryl-tRNA synthetase, prohibitin, and protein arginine N-methyltransferase 1, could be correlated with the molecular pathway of cell death signaling. Caspase 3 activation by cleavage was confirmed for both CB and DCB by immunoblotting. Treatment with CB or DCB also caused differential protein phosphorylation, for example, at the proteins HNRNP C1/C2, serine-threonine receptor associated protein, and transaldolase 1. Compared to previous results, where cells were exposed to styrene, for the chlorinated aromatic substances besides oxidative stress, apoptosis was found as the predominant cellular response mechanism.
Collapse
Affiliation(s)
- Nora Mörbt
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Martin HJ, Ziemba M, Kisiela M, Botella JA, Schneuwly S, Maser E. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase. Chem Biol Interact 2010; 191:48-54. [PMID: 21167142 DOI: 10.1016/j.cbi.2010.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022]
Abstract
Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE.
Collapse
Affiliation(s)
- Hans-Jörg Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
183
|
Bains OS, Grigliatti TA, Reid RE, Riggs KW. Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. J Pharmacol Exp Ther 2010; 335:533-45. [PMID: 20837989 DOI: 10.1124/jpet.110.173179] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Doxorubicin (DOX) and daunorubicin (DAUN) are effective anticancer drugs; however, considerable interpatient variability exists in their pharmacokinetics. This may be caused by altered metabolism by nonsynonymous single-nucleotide polymorphisms (ns-SNPs) in genes encoding aldo-keto reductases (AKRs) and carbonyl reductases. This study examined the effect of 27 ns-SNPs, in eight human genes, on the in vitro metabolism of both drugs to their major metabolites, doxorubicinol and daunorubicinol. Kinetic assays measured metabolite levels by high-performance liquid chromatography separation with fluorescence detection using purified, histidine-tagged, human wild-type, and variant enzymes. Maximal rate of activity (V(max)), substrate affinity (K(m)), turnover rate (k(cat)), and catalytic efficiency (k(cat)/K(m)) were determined. With DAUN as substrate, variants for three genes exhibited significant differences in these parameters compared with their wild-type counterparts: the A106T, R170C, and P180S variants significantly reduced metabolism compared with the AKR1C3 wild-type (V(max), 23-47% decrease; k(cat), 22-47%; k(cat)/K(m), 38-44%); the L311V variant of AKR1C4 significantly decreased V(max) (47% lower) and k(cat) and k(cat)/K(m) (both 43% lower); and the A142T variant of AKR7A2 significantly affected all kinetic parameters (V(max) and k(cat), 61% decrease; K(m), 156% increase; k(cat)/K(m), 85% decrease). With DOX, the R170C and P180S variants of AKR1C3 showed significantly reduced V(max) (41-44% decrease), k(cat) (39-45%), and k(cat)/K(m) (52-69%), whereas the A142T variant significantly altered all kinetic parameters for AKR7A2 (V(max), 41% decrease; k(cat), 44% decrease; K(m), 47% increase; k(cat)/K(m), 60% decrease). These findings suggest that ns-SNPs in human AKR1C3, AKR1C4, and AKR7A2 significantly decrease the in vitro metabolism of DOX and DAUN.
Collapse
Affiliation(s)
- Onkar S Bains
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
184
|
Wang R, Wang G, Ricard MJ, Ferris B, Strulovici-Barel Y, Salit J, Hackett NR, Gudas LJ, Crystal RG. Smoking-induced upregulation of AKR1B10 expression in the airway epithelium of healthy individuals. Chest 2010; 138:1402-10. [PMID: 20705797 DOI: 10.1378/chest.09-2634] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The aldo-keto reductase (AKR) gene superfamily codes for monomeric, soluble reduced nicotinamide adenine dinucleotide phosphate-dependent oxidoreductases that mediate elimination reactions. AKR1B10, an AKR that eliminates retinals, has been observed as upregulated in squamous metaplasia and non-small cell lung cancer and has been suggested as a diagnostic marker specific to tobacco-related carcinogenesis. We hypothesized that upregulation of AKR1B10 expression may be initiated in healthy smokers prior to the development of evidence of lung cancer. METHODS Expression of AKR1B10 was assessed at the mRNA level using microarrays with TaqMan confirmation in the large airway epithelium (21 healthy nonsmokers, 31 healthy smokers) and small airway epithelium (51 healthy nonsmokers, 58 healthy smokers) obtained by fiberoptic bronchoscopy and brushing. RESULTS Compared with healthy nonsmokers, AKR1B10 mRNA levels were significantly upregulated in both large and small airway epithelia of healthy smokers. Consistent with the mRNA data, AKR1B10 protein was significantly upregulated in the airway epithelium of healthy smokers as assessed by Western blot analysis and immunohistochemistry, with AKR1B10 expressed in both differentiated and basal cells. Finally, cigarette smoke extract mediated upregulation of AKR1B10 in airway epithelial cells in vitro, and transfection of AKR1B10 into airway epithelial cells enhanced the conversion of retinal to retinol. CONCLUSIONS Smoking per se mediates upregulation of AKR1B10 expression in the airway epithelia of healthy smokers with no evidence of lung cancer. In the context of these observations and the link of AKR1B10 to the metabolism of retinals and to lung cancer, the smoking-induced upregulation of AKR1B10 may be an early process in the multiple events leading to lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Olivero-Verbel J, Cabarcas-Montalvo M, Ortega-Zúñiga C. Theoretical targets for TCDD: a bioinformatics approach. CHEMOSPHERE 2010; 80:1160-1166. [PMID: 20605043 DOI: 10.1016/j.chemosphere.2010.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 05/19/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
Dioxins are a group of highly toxic molecules that exert their toxicity through the activation of the aryl hydrocarbon receptor (AhR). The most important agonist of the AhR, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic compound. Although most of the effects related to TCDD exposure have been linked to the activation of AhR, the objective of this work was to use a bioinformatics approach to identify possible new targets for TCDD. The Target Fishing Docking (TarFisDock) Server was used to find target proteins for TCDD. This virtual screening allowed the identification of binding sites with high affinity for TCDD in diverse proteins, such as metallopeptidases 8 and 3, oxidosqualene cyclase, and myeloperoxidase. Some of these proteins are well known for their biochemical role in some pathological effects of dioxin exposure, including endometriosis, diabetes, inflammation and liver damage. These results suggest that TCDD could also be interacting with cellular targets though AhR-independent pathways.
Collapse
Affiliation(s)
- Jesús Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| | | | | |
Collapse
|
186
|
Knudsen KE, Penning TM. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol Metab 2010; 21:315-24. [PMID: 20138542 PMCID: PMC2862880 DOI: 10.1016/j.tem.2010.01.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/22/2009] [Accepted: 01/06/2010] [Indexed: 01/26/2023]
Abstract
Prostate cancer remains a leading cause of cancer death, as there are no durable means to treat advanced disease. Treatment of non-organ-confined prostate cancer hinges on its androgen dependence. First-line therapeutic strategies suppress androgen receptor (AR) activity, via androgen ablation and direct AR antagonists, whereas initially effective, incurable, 'castration-resistant' tumors arise as a result of resurgent AR activity. Alterations of AR and/or associated regulatory networks are known to restore receptor activity and support resultant therapy-resistant tumor progression. However, recent evidence also reveals an unexpected contribution of the AR ligand, indicating that alterations in pathways controlling androgen synthesis support castration-resistant AR activity. In this report, the mechanisms underlying the lethal pairing of AR deregulation and aberrant androgen synthesis in prostate cancer progression will be discussed.
Collapse
Affiliation(s)
- Karen E Knudsen
- Kimmel Cancer Center, Department of Cancer Biology and Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
187
|
Kropotova ES, Tychko RA, Zinov’eva OL, Zyryanova AF, Khankin SL, Cherkes VL, Aliev VA, Beresten SF, Oparina NY, Mashkova TD. Downregulation of AKR1B10 expression in colorectal cancer. Mol Biol 2010. [DOI: 10.1134/s0026893310020056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
188
|
Schulze JJ, Rane A, Ekström L. Genetic variation in androgen disposition: implications in clinical medicine including testosterone abuse. Expert Opin Drug Metab Toxicol 2010; 5:731-44. [PMID: 19442030 DOI: 10.1517/17425250902976862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Testosterone replacement therapy in hypogonadal men has been used for > 60 years. The use of testosterone substitution is continuously growing and is given to aging men to improve the quality of life. Because testosterone use is associated with muscle strength enhancing effects, it has become a popular drug to abuse. Doping with anabolic steroids, such as testosterone, is a severe challenge to the vision, moral and ethics in sports and has also become a significant and increasing problem in society. OBJECTIVE The primary aim of this review is to summarize and discuss the contribution of genetic components to inter-individual variation in androgen disposition. CONCLUSION Genetic variation has a large impact on androgen disposition. This variation is of the utmost importance for the interpretation of doping test results and may modulate the effects of testosterone replacement therapy and testosterone doping.
Collapse
Affiliation(s)
- Jenny J Schulze
- Karolinska Institutet, Division of Clinical Pharmacology, Stockholm, Sweden
| | | | | |
Collapse
|
189
|
Boyle JO, Gümüş ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, Yantiss RK, Hughes DB, Du B, Judson BL, Subbaramaiah K, Dannenberg AJ. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila) 2010; 3:266-78. [PMID: 20179299 PMCID: PMC2833216 DOI: 10.1158/1940-6207.capr-09-0192] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States, including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU133 Plus 2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers versus never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling, and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon-induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared with the bronchial mucosa. The observed changes in gene expression were compared with known chemical signatures using the Connectivity Map database and suggested that geldanamycin, a heat shock protein 90 inhibitor, might be an antimimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials, and illustrate the potential of computational biology to identify chemopreventive agents.
Collapse
Affiliation(s)
- Jay O. Boyle
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Zeynep H. Gümüş
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY
| | - Ashutosh Kacker
- Department of Otorhinolaryngology, Weill Medical College of Cornell University, New York, NY
| | - Vishal L. Choksi
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jennifer M. Bocker
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Xi Kathy Zhou
- Department of Public Health, Weill Medical College of Cornell University, New York, NY
| | - Rhonda K. Yantiss
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY
| | - Duncan B. Hughes
- Department of Surgery, Weill Medical College of Cornell University, New York, NY
| | - Baoheng Du
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Benjamin L. Judson
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
190
|
Guest editor's introduction. Special issue on oxidative enzymes. Arch Biochem Biophys 2010; 493:1-2. [PMID: 20103389 DOI: 10.1016/j.abb.2009.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 11/22/2022]
|
191
|
Crystal structure and comparative functional analyses of a Mycobacterium aldo-keto reductase. J Mol Biol 2010; 398:26-39. [PMID: 20188740 DOI: 10.1016/j.jmb.2010.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 11/20/2022]
Abstract
Aldo-keto reductases (AKRs) are a large superfamily of NADPH-dependent enzymes that catalyze the reduction of aldehydes, aldoses, dicarbonyls, steroids, and monosaccharides. While their precise physiological role is generally unknown, AKRs are nevertheless involved in the detoxification of a broad range of toxic metabolites. Mycobacteria contain a number of AKRs, the majority of which are uncharacterised. Here, we report the 1.9 and 1.6 A resolution structures of the apoenzyme and NADPH-bound forms, respectively, of an AKR (MSMEG_2407) from Mycobacterium smegmatis, a close homologue of the M. tuberculosis enzyme Rv2971, whose function is essential to this bacterium. MSMEG_2407 adopted the triosephosphate isomerase (alpha/beta)(8)-barrel fold exhibited by other AKRs. MSMEG_2407 (AKR5H1) bound NADPH via an induced-fit mechanism, in which the NADPH was ligated in an extended fashion. Polar-mediated interactions dominated the interactions with the cofactor, which is atypical of the mode of NADPH binding within the AKR family. Moreover, the nicotinamide ring of NADPH was disordered, and this was attributed to the lack of an "AKR-conserved" bulky residue within the nicotinamide-binding cavity of MSMEG_2407. Enzymatic characterisation of MSMEG_2407 and Rv2971 identified dicarbonyls as a preferred substrate family for hydrolysis, and the frontline antituberculosis drug isoniazid (INH) was shown to inhibit the enzyme activity of both recombinant MSMEG_2407 and Rv2971. However, differences between the affinities of MSMEG_2407 and Rv2971 for dicarbonyls and INH were observed, and this was attributable to amino acid substitutions within the cofactor- and substrate-binding sites. The structures of MSMEG_2407 and the accompanying biochemical characterisation of MSMEG_2407 and Rv2971 provide insight into the structure and function of AKRs from mycobacteria.
Collapse
|
192
|
Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P, Doñate F, Wilson WR, Patterson AV. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 2010; 70:1573-84. [PMID: 20145130 DOI: 10.1158/0008-5472.can-09-3237] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PR-104, currently in phase II clinical trials, is a phosphate ester pre-prodrug which is converted in vivo to its cognate alcohol, PR-104A, a prodrug designed to exploit tumor hypoxia. Bioactivation occurs via one-electron reduction to DNA crosslinking metabolites in the absence of oxygen. However, certain tumor cell lines activate PR-104A in the presence of oxygen, suggesting the existence of an aerobic nitroreductase. Microarray analysis identified a cluster of five aldo-keto reductase (AKR) family members whose expressions correlated with aerobic metabolism of PR-104A. Plasmid-based expression of candidate genes identified aldo-keto reductase 1C3 as a novel nitroreductase. AKR1C3 protein was detected by Western blot in 7 of 23 cell lines and correlated with oxic PR-104A metabolism, an activity which could be partially suppressed by Nrf2 RNAi knockdown (or induced by Keap1 RNAi), indicating regulation by the ARE pathway. AKR1C3 was unable to sensitize cells to 10 other bioreductive prodrugs and was associated with single-agent PR-104 activity across a panel of 9 human tumor xenograft models. Overexpression in two AKR1C3-negative tumor xenograft models strongly enhanced PR-104 antitumor activity. A population level survey of AKR1C3 expression in 2,490 individual cases across 19 cancer types using tissue microarrays revealed marked upregulation of AKR1C3 in a subset including hepatocellular, bladder, renal, gastric, and non-small cell lung carcinoma. A survey of normal tissue AKR1C3 expression suggests the potential for tumor-selective PR-104A activation by this mechanism. These findings have significant implications for the clinical development of PR-104.
Collapse
Affiliation(s)
- Christopher P Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Fujimori K, Ueno T, Nagata N, Kashiwagi K, Aritake K, Amano F, Urade Y. Suppression of adipocyte differentiation by aldo-keto reductase 1B3 acting as prostaglandin F2alpha synthase. J Biol Chem 2010; 285:8880-6. [PMID: 20093363 DOI: 10.1074/jbc.m109.077164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin (PG) F(2alpha) suppresses adipocyte differentiation by inhibiting the function of peroxisome proliferator-activated receptor gamma. However, PGF(2alpha) synthase (PGFS) in adipocytes remains to be identified. Here, we studied the expression of members of the aldo-keto reductase (AKR) 1B family acting as PGFS during adipogenesis of mouse 3T3-L1 cells. AKR1B3 mRNA was expressed in preadipocytes, and its level increased about 4-fold at day 1 after initiation of adipocyte differentiation, and then quickly decreased the following day to a level lower than that in the preadipocytes. In contrast, the mRNA levels of Akr1b8 and 1b10 were clearly lower than that level of Akr1b3 in preadipocytes and remained unchanged during adipogenesis. The transient increase in Akr1b3 during adipogenesis was also observed by Western blot analysis. The mRNA for the FP receptor, which is selective for PGF(2alpha), was also expressed in preadipocytes. Its level increased about 2-fold within 1 h after the initiation of adipocyte differentiation and was maintained at almost the same level throughout adipocyte differentiation. The small interfering RNA for Akr1b3, but not for Akr1b8 or 1b10, suppressed PGF(2alpha) production and enhanced the expression of adipogenic genes such as peroxisome proliferator-activated receptor gamma, fatty acid-binding protein 4 (aP2), and stearoyl-CoA desaturase. Moreover, an FP receptor agonist, Fluprostenol, suppressed the expression of those adipogenic genes in 3T3-L1 cells; whereas an FP receptor antagonist, AL-8810, efficiently inhibited the suppression of adipogenesis caused by the endogenous PGF(2alpha). These results indicate that AKR1B3 acts as the PGFS in adipocytes and that AKR1B3-produced PGF(2alpha) suppressed adipocyte differentiation by acting through FP receptors.
Collapse
Affiliation(s)
- Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | |
Collapse
|
194
|
Stegeman JJ, Goldstone JV, Hahn ME. Perspectives on zebrafish as a model in environmental toxicology. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)02910-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
195
|
Veliça P, Davies NJ, Rocha PP, Schrewe H, Ride JP, Bunce CM. Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers. Mol Cancer 2009; 8:121. [PMID: 20003443 PMCID: PMC2805611 DOI: 10.1186/1476-4598-8-121] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/14/2009] [Indexed: 11/12/2022] Open
Abstract
Background Over recent years, enzymes of the aldo-keto reductase (AKR) 1C subfamily have been implicated in the progression of prostate, breast, endometrial and leukemic cancers. This is due to the ability of AKR1C enzymes to modify androgens, estrogens, progesterone and prostaglandins (PGs) in a tissue-specific manner, regulating the activity of nuclear receptors and other downstream effects. Evidence supporting a role for AKR1C enzymes in cancer derives mostly from studies with isolated primary cells from patients or immortalized cell lines. Mice are ideal organisms for in vivo studies, using knock-out or over-expression strains. However, the functional conservation of AKR1C enzymes between human and mice has yet to be described. Results In this study, we have characterized and compared the four human (AKR1C1,-1C2, -1C3 and -1C4) and the eight murine (AKR1C6, -1C12, -1C13, -1C14, -1C18, -1C19, -1C20 and -1C21) isoforms in their phylogeny, substrate preference and tissue distribution. We have found divergent evolution between human and murine AKR1C enzymes that was reflected by differing substrate preference. Murine enzymes did not perform the 11β-ketoreduction of prostaglandin (PG) D2, an activity specific to human AKR1C3 and important in promoting leukemic cell survival. Instead, murine AKR1C6 was able to perform the 9-ketoreduction of PGE2, an activity absent amongst human isoforms. Nevertheless, reduction of the key steroids androstenedione, 5α-dihydrotestosterone, progesterone and estrone was found in murine isoforms. However, unlike humans, no AKR1C isoforms were detected in murine prostate, testes, uterus and haemopoietic progenitors. Conclusions This study exposes significant lack of phylogenetic and functional homology between human and murine AKR1C enzymes. Therefore, we conclude that mice are not suitable to model the role of AKR1C in human cancers and leukemia.
Collapse
Affiliation(s)
- Pedro Veliça
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
196
|
Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR. A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 2009; 65:791-801. [DOI: 10.1007/s00280-009-1188-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/12/2009] [Indexed: 11/28/2022]
|
197
|
Hreljac I, Filipic M. Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism. Mutat Res 2009; 671:84-92. [PMID: 19800895 DOI: 10.1016/j.mrfmmm.2009.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 09/19/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Organophosphorus compounds (OPs) are widely used as pesticides. They act primarily as neurotoxins, but there is increasing evidence for secondary mechanisms of their toxicity. We have shown that the model OPs, methyl parathion (PT) and methyl paraoxon (PO), are genotoxic. Benzo(a)pyrene (BaP) is a widespread environmental genotoxin found in cigarette smoke, polluted air and grilled food. As people are constantly exposed to low concentrations of BaP and also to OPs, the aim of this study was to determine possible synergistic effects of PT and PO on BaP-induced genotoxicity. In the bacterial reverse mutation assay, PT and PO increased the number of BaP-induced mutations. The comet assay with human hepatoma HepG2 cells showed that BaP-induced DNA strand breaks were increased by PT but slightly decreased by PO. Using the acellular comet assay with UVC-induced DNA strand breaks, we observed a decrease in DNA migration, indicating that OPs cause cross-linking, thus interfering with comet assay results. In HepG2 cells the two OPs induced micronuclei formation at very low doses (0.01 microg/ml) and together with BaP, a more than additive increase of micronuclei was observed, confirming their co-genotoxic effect. We demonstrated for the first time that PT and PO modulate the metabolic activation of BaP. Addition of PT or PO increased aldo-keto reductase (AKR1C1/2) levels in the presence of BaP, while cytochrome 1A (CYP1A) mRNA expression and activity were decreased. Further, specific inhibition of CYP1A had no effect on BaP or OP+BaP-induced micronuclei, whereas inhibition of AKR1C dramatically decreased the number of micronuclei induced by BaP or OP+BaP. Based on these results we propose that co-genotoxicity results from OPs mediated modulation of BaP metabolism, favouring the induction of AKR1C enzymes known to catalyse the formation of DNA reactive BaP o-quinones and the production of reactive oxygen species.
Collapse
Affiliation(s)
- Irena Hreljac
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia
| | | |
Collapse
|
198
|
Induction of 1C aldoketoreductases and other drug dose-dependent genes upon acquisition of anthracycline resistance. Pharmacogenet Genomics 2009; 19:477-88. [PMID: 19440163 DOI: 10.1097/fpc.0b013e32832c484b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Recent studies suggest that tumor cells overexpressing aldoketoreductases (AKRs) exhibit increased resistance to DNA damaging agents such as anthracyclines. AKRs may induce resistance to the anthracycline doxorubicin by catalyzing its conversion to the less toxic 13-hydroxy metabolite doxorubicinol. However, it has not been established whether during selection for anthracycline resistance, AKR overexpression in tumor cells can be correlated with the onset or magnitude of drug resistance and with appreciable conversion of anthracyclines to 13-hydroxy metabolites. METHODS AND FINDINGS Through microarray and quantitative polymerase chain reaction studies involving rigid selection criteria and both correlative discriminate statistics and time-course models, we have identified several genes whose expression can be correlated with the onset and/or magnitude of anthracycline resistance, including AKR1C2 and AKR1C3. Also associated with the onset or magnitude of anthracycline resistance were genes involved in drug transport (ABCB1, ABCC1), cell signaling and transcription (RDC1, CXCR4), cell proliferation or apoptosis (BMP7, CAV1), protection from reactive oxygen species (AKR1C2, AKR1C3, FTL, FTH, TXNRD1, MT2A), and structural or immune system proteins (IFI30, STMN1). As expected, doxorubicin-resistant and epirubicin-resistant cells exhibited higher levels of doxorubicinol than wild-type cells, although at insufficient levels to account for significant drug resistance. Nevertheless, an inhibitor of Akr1c2 (5beta-cholanic acid) almost completely restored sensitivity to doxorubicin in ABCB1-deficient doxorubicin-resistant cells, while having no effect on ABCB1-expressing epirubicin-resistant cells. CONCLUSION Taken together, we show for the first time that a variety of genes (particularly redox genes such as AKR1C2 and AKR1C3) can be temporally and causally correlated with the acquisition of anthracycline resistance in breast tumor cells.
Collapse
|
199
|
Liu MJ, Takahashi Y, Wada T, He J, Gao J, Tian Y, Li S, Xie W. The aldo-keto reductase Akr1b7 gene is a common transcriptional target of xenobiotic receptors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol 2009; 76:604-11. [PMID: 19542321 PMCID: PMC2730391 DOI: 10.1124/mol.109.057455] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/19/2009] [Indexed: 01/26/2023] Open
Abstract
Aldo-keto reductase (AKR) family 1, member 7 (AKR1B7), a member of the AKR superfamily, has been suggested to play an important role in the detoxification of lipid peroxidation by-products. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenosensors postulated to alleviate xeno- and endobiotic chemical insults. In this study, we show that the mouse Akr1b7 is a shared transcriptional target of PXR and CAR in the liver and intestine. Treatment of wild-type mice with the PXR agonist pregnenolone-16alpha-carbonitrile (PCN) activated Akr1b7 gene expression, whereas the effect was abrogated in PXR(-/-) mice. Similarly, the activation of Akr1b7 gene expression by the CAR agonist 1,4-bis[2-(3,5-dichlorpyridyloxyl)]-benzene, seen in wild-type mice, was abolished in CAR(-/-) mice. The promoter of Akr1b7 gene was activated by PXR and CAR, and this activation was achieved through the binding of PXR-retinoid X receptor (RXR) or CAR-RXR heterodimers to direct repeat-4 type nuclear receptor-binding sites found in the Akr1b7 gene promoter. At the functional level, treatment with PCN in wild-type mice, but not PXR(-/-) mice, led to a decreased intestinal accumulation of malondialdehyde, a biomarker of lipid peroxidation. The regulation of Akr1b7 by PXR was independent of the liver X receptor (LXR), another nuclear receptor known to regulate this AKR isoform. Because a major function of Akr1b7 is to detoxify lipid peroxidation, the PXR-, CAR-, and LXR-controlled regulatory network of Akr1b7 may have contributed to alleviate toxicity associated with lipid peroxidation.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Gruber F, Mayer H, Lengauer B, Mlitz V, Sanders JM, Kadl A, Bilban M, Martin R, Wagner O, Kensler TW, Yamamoto M, Leitinger N, Tschachler E. NF‐E2‐related factor 2 regulates the stress response to UVA‐1‐oxidized phospholipids in skin cells. FASEB J 2009; 24:39-48. [DOI: 10.1096/fj.09-133520] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Florian Gruber
- Department of DermatologyMedical University of ViennaViennaAustria
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Herbert Mayer
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Barbara Lengauer
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Veronika Mlitz
- Department of DermatologyMedical University of ViennaViennaAustria
| | - John M. Sanders
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexandra Kadl
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Martin Bilban
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Rainer Martin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Oswald Wagner
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Thomas W. Kensler
- Department of Environmental Health SciencesJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | | - Norbert Leitinger
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Erwin Tschachler
- Department of DermatologyMedical University of ViennaViennaAustria
- Centre de Recherches et d'Investigations Epidermiques et SensoriellesNeuillyFrance
| |
Collapse
|