151
|
Racine C, Denommé-Pichon AS, Engel C, Tran Mau-Them F, Bruel AL, Vitobello A, Safraou H, Sorlin A, Nambot S, Delanne J, Garde A, Colin E, Moutton S, Thevenon J, Jean-Marçais N, Willems M, Geneviève D, Pinson L, Perrin L, Laffargue F, Lespinasse J, Lacaze E, Molin A, Gerard M, Lambert L, Benigni C, Patat O, Bourgeois V, Poe C, Chevarin M, Couturier V, Garret P, Philippe C, Duffourd Y, Faivre L, Thauvin-Robinet C. Multiple molecular diagnoses in the field of intellectual disability and congenital anomalies: 3.5% of all positive cases. J Med Genet 2023; 61:36-46. [PMID: 37586840 DOI: 10.1136/jmg-2023-109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.
Collapse
Affiliation(s)
- Caroline Racine
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Camille Engel
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Frederic Tran Mau-Them
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Antonio Vitobello
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Hana Safraou
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Arthur Sorlin
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Sophie Nambot
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Julian Delanne
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Aurore Garde
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Estelle Colin
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Sébastien Moutton
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Nolwenn Jean-Marçais
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Marjolaine Willems
- Centre de Référence "Anomalies du Développement syndromes malformatifs" Occitanie, Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - David Geneviève
- Centre de Référence "Anomalies du Développement syndromes malformatifs" Occitanie, Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
- INSERM U1183, Université de Montpellier, Montpellier, France
| | - Lucile Pinson
- Centre de Référence "Anomalies du Développement syndromes malformatifs" Occitanie, Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Laurence Perrin
- Genetic Department, Robert-Debré Hospital Department of Genetics, Paris, France
| | - Fanny Laffargue
- Service de Génétique médicale, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - James Lespinasse
- Unité de Génétique médicale, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Elodie Lacaze
- Department of Medical Genetics, Hospital Group Le Havre, Le Havre, France
| | - Arnaud Molin
- Service de Génétique, University Hospital Centre Caen, Caen, France
| | - Marion Gerard
- Service de Génétique, University Hospital Centre Caen, Caen, France
| | | | | | - Olivier Patat
- Department of Medical Genetics, University Hospital Centre Toulouse, Toulouse, France
| | - Valentin Bourgeois
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Charlotte Poe
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Martin Chevarin
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Victor Couturier
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Philippine Garret
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Christophe Philippe
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Yannis Duffourd
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| |
Collapse
|
152
|
Kim J, Lee J, Jang DH. Combining chromosomal microarray and clinical exome sequencing for genetic diagnosis of intellectual disability. Sci Rep 2023; 13:22807. [PMID: 38129582 PMCID: PMC10739828 DOI: 10.1038/s41598-023-50285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the current widespread use of chromosomal microarray analysis (CMA) and exome/genome sequencing for the genetic diagnosis of unexplained intellectual disability (ID) in children, gaining improved diagnostic yields and defined guidelines remains a significant challenge. This is a cohort study of children with unexplained ID. We analyzed the diagnostic yield and its correlation to clinical phenotypes in children with ID who underwent concurrent CMA and clinical exome sequencing (CES). A total of 154 children were included (110 [71.4%] male; mean [SD] age, 51.9 [23.1] months). The overall diagnosis yield was 26.0-33.8%, with CMA contributing 12.3-14.3% and CES contributing 13.6-19.4%, showing no significant difference. The diagnostic rate was significantly higher when gross motor delay (odds ratio, 6.69; 95% CI, 3.20-14.00; P < 0.001), facial dysmorphism (odds ratio, 9.34; 95% CI 4.29-20.30; P < 0.001), congenital structural anomaly (odds ratio 3.62; 95% CI 1.63-8.04; P = 0.001), and microcephaly or macrocephaly (odds ratio 4.87; 95% CI 2.05-11.60; P < 0.001) were presented. Patients with only ID without any other concomitant phenotype (63/154, 40.9%) exhibited a 6.3-11.1% diagnostic rate.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Hyun Jang
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
153
|
Louw N, Carstens N, Lombard Z, for DDD-Africa as members of the H3Africa Consortium. Incorporating CNV analysis improves the yield of exome sequencing for rare monogenic disorders-an important consideration for resource-constrained settings. Front Genet 2023; 14:1277784. [PMID: 38155715 PMCID: PMC10753787 DOI: 10.3389/fgene.2023.1277784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Exome sequencing (ES) is a recommended first-tier diagnostic test for many rare monogenic diseases. It allows for the detection of both single-nucleotide variants (SNVs) and copy number variants (CNVs) in coding exonic regions of the genome in a single test, and this dual analysis is a valuable approach, especially in limited resource settings. Single-nucleotide variants are well studied; however, the incorporation of copy number variant analysis tools into variant calling pipelines has not been implemented yet as a routine diagnostic test, and chromosomal microarray is still more widely used to detect copy number variants. Research shows that combined single and copy number variant analysis can lead to a diagnostic yield of up to 58%, increasing the yield with as much as 18% from the single-nucleotide variant only pipeline. Importantly, this is achieved with the consideration of computational costs only, without incurring any additional sequencing costs. This mini review provides an overview of copy number variant analysis from exome data and what the current recommendations are for this type of analysis. We also present an overview on rare monogenic disease research standard practices in resource-limited settings. We present evidence that integrating copy number variant detection tools into a standard exome sequencing analysis pipeline improves diagnostic yield and should be considered a significantly beneficial addition, with relatively low-cost implications. Routine implementation in underrepresented populations and limited resource settings will promote generation and sharing of CNV datasets and provide momentum to build core centers for this niche within genomic medicine.
Collapse
Affiliation(s)
- Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
154
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
155
|
Bassett AS, Reuter MS, Malecki S, Silversides C, Oechslin E. Clinically Relevant Genetic Considerations for Patients With Tetralogy of Fallot. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:426-439. [PMID: 38161665 PMCID: PMC10755827 DOI: 10.1016/j.cjcpc.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Genetic changes affect embryogenesis, cardiac and extracardiac phenotype, development, later onset conditions, and both short- and long-term outcomes and comorbidities in the increasing population of individuals with tetralogy of Fallot (TOF). In this review, we focus on current knowledge about clinically relevant genetics for patients with TOF across the lifespan. The latest findings for TOF genetics that are pertinent to day-to-day practice and lifelong management are highlighted: morbidity/mortality, cardiac/extracardiac features, including neurodevelopmental expression, and recent changes to prenatal screening and diagnostics. Genome-wide microarray is the first-line clinical genetic test for TOF across the lifespan, detecting relevant structural changes including the most common for TOF, the 22q11.2 microdeletion. Accumulating evidence illustrates opportunities for advances in understanding and care that may arise from genetic diagnosis at any age. We also glimpse into the near future when the multigenic nature of TOF will be more fully revealed, further enhancing possibilities for preventive care. Precision medicine is nigh.
Collapse
Affiliation(s)
- Anne S. Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, and Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Miriam S. Reuter
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah Malecki
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Candice Silversides
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erwin Oechslin
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
156
|
Shin S, Lee J, Kim YG, Ha C, Park JH, Kim JW, Lee J, Jang JH. Genetic Diagnosis of Children With Neurodevelopmental Disorders Using Whole Genome Sequencing. Pediatr Neurol 2023; 149:44-52. [PMID: 37776660 DOI: 10.1016/j.pediatrneurol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) have diverse phenotypes. Their genetic diagnoses are often challenged by difficulties of targeting causative genes due to heterogeneous genetic etiologies. The objective of this study was to perform genetic diagnosis of children with NDDs using whole genome sequencing. METHODS This study included 78 pediatric patients with NDDs and their 152 family members for whole genome sequencing (WGS). All cases except one were families with at least two members. Seventy-five patients had previously undergone other genetic tests besides WGS. Detected variants were classified according to the guidelines of the American College of Medical Genetics and Genomics. RESULTS Among 78 probands, 26 patients were genetically diagnosed with NDDs through WGS, showing a diagnostic rate of 33.3%. Of them, 22 cases had de novo variants (DNVs) identified through trio analysis. Of these DNVs, half were novel variants. Three structural variants, including a multiexon deletion, a contiguous gene deletion involving 13 Mb, and a retrotransposon insertion, were revealed by WGS. All cases except one had defects in different genes, consistent with the phenotypically diverse nature of NDDs. In addition, three patients were inconclusive, two of them had one likely pathogenic variant in a gene associated with autosomal recessive disease and the other one had no clinical phenotypes associated with the detected DNV. CONCLUSIONS Our experience demonstrates the advantage of WGS in the diagnosis of NDDs, including detection of copy number variations and also the advantage of trio sequencing for interpretation of DNVs.
Collapse
Affiliation(s)
- Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhee Ha
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Ho Park
- Clinical Genomics Center, Samsung Medical Center, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
157
|
Cole JJ, Aravamuthan BR. Current Practices in the Evaluation of Global Developmental Delay/Intellectual Disability: A Nationwide Survey of Child Neurologists. Neurol Clin Pract 2023; 13:e200192. [PMID: 37795501 PMCID: PMC10547469 DOI: 10.1212/cpj.0000000000200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 10/06/2023]
Abstract
Background and Objectives Global developmental delay/intellectual disability (GDD/ID) are among the most common neurologic conditions evaluated by child neurologists in the United States. No recent neurology-specific guidelines for GDD/ID diagnostic evaluation exist, which could lead to practice variability. We assessed current practices in GDD/ID diagnostic evaluation among US child neurologists, including drivers of exome sequencing (ES). Methods A 19-item online anonymous survey was distributed between April 2021 and September 2021 to 953 eligible child neurologists by email and/or online platforms through the American Academy of Neurology and Child Neurology Society. Multinomial logistic regression was used to determine the predictors of sending ES as a part of GDD/ID diagnostic evaluation. Results Of 172 unique respondents, 69.2% reported almost always obtaining a chromosomal microarray while 10.5% reported almost always pursuing ES. However, 65.1% identified ES as a first-tier diagnostic test for GDD/ID. Clinical practice demographics independently associated with a higher likelihood of pursuit of ES were more years of experience (p = 0.002) and more people with GDD/ID in one's practice (p < 0.001). Inclusion of brain MRI, EEG, and metabolic laboratory values as part of GDD/ID diagnostic evaluation varied widely. Modalities to screen for treatable disorders (ES or metabolic laboratory values) were reported to be consistently used by only 24.8% of respondents. Respondents identified key barriers to the pursuit of ES including the need for genetics referral/genetic counseling and insurance coverage/out-of-pocket cost. Discussion Among US child neurologists, there is marked practice variability in GDD/ID diagnostic evaluation across multiple types of testing, raising concern for disparities in care. There is a widespread lack of screening for treatable causes of ID, which may lead to missed diagnoses and avoidable morbidity. Despite most respondents' support for ES as a first-tier diagnostic test for GDD/ID, only a small minority routinely pursue ES as a part of their evaluation. Provider-level factors (years of experience, percent of patients with GDD/ID) and system-level barriers (access to genetics expertise, lack of insurance coverage) were determinants of the frequency of use of ES. These findings suggest the need for updated consensus guidelines and advocacy/education to improve child neurologists' ability to pursue ES for GDD/ID.
Collapse
Affiliation(s)
- Jordan J Cole
- Department of Neurology, Washington University in St. Louis
| | | |
Collapse
|
158
|
Wheeler AC, Gantz MG, Cope H, Strong TV, Bohonowych JE, Moore A, Vogel-Farley V. Age of diagnosis for children with chromosome 15q syndromes. J Neurodev Disord 2023; 15:37. [PMID: 37936142 PMCID: PMC10629121 DOI: 10.1186/s11689-023-09504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE The objective of this study was to identify the age of diagnosis for children with one of three neurogenetic conditions resulting from changes in chromosome 15 (Angelman syndrome [AS], Prader-Willi syndrome [PWS], and duplication 15q syndrome [Dup15q]). METHODS Data about the diagnostic process for each condition were contributed by the advocacy organizations. Median and interquartile ranges were calculated for each condition by molecular subtype and year. Comparison tests were run to explore group differences. RESULTS The median age of diagnosis was 1.8 years for both AS and Dup15q. PWS was diagnosed significantly younger at a median age of 1 month. Deletion subtypes for both PWS and AS were diagnosed earlier than nondeletion subtypes, and children with isodicentric duplications in Dup15q were diagnosed earlier than those with interstitial duplications. CONCLUSION Understanding variability in the age of diagnosis for chromosome 15 disorders is an important step in reducing the diagnostic odyssey and improving access to interventions for these populations. Results from this study provide a baseline by which to evaluate efforts to reduce the age of diagnosis for individuals with these conditions.
Collapse
Affiliation(s)
- Anne C Wheeler
- Genomics, Ethics, and Translational Research Program, RTI International, 3040 W. Cornwallis Rd, Research Triangle Park, NC, 27709, USA.
| | - Marie G Gantz
- Genomics, Ethics, and Translational Research Program, RTI International, 3040 W. Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| | - Heidi Cope
- Genomics, Ethics, and Translational Research Program, RTI International, 3040 W. Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| | | | | | | | | |
Collapse
|
159
|
Zhou R, Jiao J, Wang Y, Meng L, Li Y, Xu Y, Hu P, Xu Z. Systematic analysis of copy number variants of uncertain significance partially overlapping with the haploinsufficient or triplosensitive genes in clinical testing. Ann Med 2023; 55:2276824. [PMID: 37917952 PMCID: PMC10623895 DOI: 10.1080/07853890.2023.2276824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Background: Copy number variants of uncertain significance (VUS) has brought much distress for patients and great counselling challenges for clinicians. Of these, a special type of VUS (HT-VUS), harbouring one or both breakpoints within the established haploinsufficient or triplosensitive genes, were considered to be more likely to cause clinical effects compared with other types of VUS.Methods: We retrospectively evaluated the properties and clinical significance of those HT-VUS samples in clinical testing for chromosome microarray analysis (CMA).Results: A total of 7150 samples were selected for HT-VUS screening, and 75 (1.05%) subjects with 75 HT-VUS were found. The majority of these HT-VUS were heterozygous duplications and chromosome X had the most HT-VUS. The prevalence of HT-VUS was 0.90% (28/3116) for prenatal low-risk samples, 1.18% (26/2196) for prenatal high-risk samples, 1.37% (10/728) for postnatal samples and 0.99% (11/1110) for early pregnancy loss samples. However, the incidence of HT-VUS was not statistically different between different groups.Conclusions: HT-VUS (deletions or duplications) involving introns and HT-VUS (duplications) including terminal coding exons (either the first or last exons) might be clinically neutral. Our study will be helpful for both interpretation and genetic counselling in the future.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiao Jiao
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiming Li
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
160
|
Liang B, Yang F, Huang H, Liu Z, Ji Q, Wang Y, Wu X, Lin Y, Xie L, Zhao W, Cao H, Xu L, Lin N. Prenatal diagnosis of fetal digestive system malformations and pregnancy outcomes at a tertiary referral center in Fujian, China: A retrospective study. Heliyon 2023; 9:e21546. [PMID: 38027951 PMCID: PMC10663823 DOI: 10.1016/j.heliyon.2023.e21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Fetal digestive system malformations (DSMs) are correlated with chromosomal anomalies. The prenatal diagnosis of DSMs allows for timely treatment and reduces perinatal morbidity and mortality. However, genetic screening for fetal DSMs is rarely reported. This study aimed to investigate genetic etiology and pregnancy outcomes in cases of fetal DSM by analyzing correlations between DSM types and chromosomal anomalies. This retrospective single-center study included 126 fetuses in whom DSMs were detected via prenatal ultrasonography. Genetic etiology was investigated using conventional karyotyping, chromosome microarray analysis (CMA), and whole-exome sequencing (WES). DSMs were categorized as simple DSM (Group A), DSM combined with abnormal ultrasound soft markers (Group B), and DSM combined with comorbidities of other systems (Group C). Abnormal karyotypes were detected in 11/126 (8.7 %) fetuses. Four more pathogenic copy number variants (CNVs) were detected using CMA, increasing the detection rate to 11.9 %. The detection rates significantly differed between the three DSM types (1.78 %, 8.11 %, and 33.33 % in Groups A, B, and C, respectively). The overall adverse pregnancy outcome rate was 33.9 %, and 11.5 %, 23.5 %, and 81.3 %, (P < 0.001), respectively, in Groups A, B, and C. Out of 83 live births, three neonates died, 26 underwent postnatal surgery with 24 favorable outcomes, and 54 did not undergo surgery and were basically normal. Two neonates who underwent WES were diagnosed with CHD7-associated Charge syndrome and JAG1-associated Alagille syndrome, respectively. Our findings demonstrate that fetal DSM is closely related to chromosome aneuploidies, CNVs, and point mutations. The prognoses of most fetuses with simple DSM and those with comorbid abnormal ultrasound soft markers were favorable in the absence of chromosomal anomalies and severe structural malformations, provided they underwent timely surgery as neonates. These findings provide guidance for the prenatal diagnosis and clinical management of fetal DSMs and the genetic counseling of parents.
Collapse
Affiliation(s)
- Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Fang Yang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Zhaozhen Liu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Qingqiang Ji
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Yan Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Yuan Lin
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Lanting Xie
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Hua Cao
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| |
Collapse
|
161
|
Wojcik MH, Wu AC. The Role of Genetic Testing for Short Stature Now and in the Future. JAMA Pediatr 2023; 177:1127-1128. [PMID: 37695592 DOI: 10.1001/jamapediatrics.2023.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Monica H Wojcik
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Divisions of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ann Chen Wu
- Division of Child Health Research and Policy, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
162
|
Tu Y, Fang C, Xu J, Zhou Y, Liang M, Yang Z. A de novo variant of BICRA results in Coffin-Siris syndrome 12. Mol Genet Genomic Med 2023; 11:e2250. [PMID: 37485815 PMCID: PMC10655513 DOI: 10.1002/mgg3.2250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND BICRA, a transcript regulator, was identified as the genetic factor of Coffin-Siris syndrome 12 (CSS12) recently, which was characterized by diverse neurodevelopmental delays. Up to now, limited studies of BICRA in neurodevelopmental delay have been reported. METHODS Clinical data such as EEGs, MRIs, routine blood, and physical examination were collected. Trio whole exome sequencing (WES) of the family was performed, and all variants with a minor allele frequency (<0.01) in exon and canonical splicing sites were selected for further pathogenic evaluation. Candidate variants were validated by Sanger sequencing. The BICRA-related literature was reviewed and the clinical characteristics were summarized. RESULTS We reported a CSS12 proband with a narrow and slightly clinical phenotype who only exhibited language developmental delay, hypotonia, and slight gastrointestinal features. WES revealed a de novo variant in exon 6 of BICRA [NM_015711.3: c.1666C>T, p.Gln556*]. This variant resulted in an early translation termination at 556th of BICRA, not collected in the public population database (gnomAD), and classified as pathogenic according to the ACMG guideline. CONCLUSION Our results expanded the pathogenic genetic and clinical spectrum of BICRA-related diseases.
Collapse
Affiliation(s)
- Youquan Tu
- Department of Pediatric NeurologyNingbo Women and Children's HospitalNingboChina
| | - Chunyan Fang
- Department of Pediatric NeurologyNingbo Women and Children's HospitalNingboChina
| | - Jian Xu
- Department of RadiologyNingbo Women and Children's HospitalNingboChina
| | - Yun Zhou
- Department of Pediatric NeurologyNingbo Women and Children's HospitalNingboChina
| | | | | |
Collapse
|
163
|
White S, Haas M, Laginha KJ, Laurendet K, Gaff C, Vears D, Newson AJ. What's in a name? Justifying terminology for genomic findings beyond the initial test indication: A scoping review. Genet Med 2023; 25:100936. [PMID: 37454281 DOI: 10.1016/j.gim.2023.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Genome sequencing can generate findings beyond the initial test indication that may be relevant to a patient or research participant's health. In the decade since the American College of Medical Genetics and Genomics published its recommendations for reporting these findings, consensus regarding terminology has remained elusive and a variety of terms are in use globally. We conducted a scoping review to explore terminology choice and the justifications underlying those choices. Documents were included if they contained a justification for their choice of term(s) related to findings beyond the initial genomic test indication. From 3571 unique documents, 52 were included, just over half of which pertained to the clinical context (n = 29, 56%). We identified four inter-related concepts used to defend or oppose terms: expectedness of the finding, effective communication, relatedness to the original test indication, and how genomic information was generated. A variety of justifications were used to oppose the term "incidental," whereas "secondary" had broader support as a term to describe findings deliberately sought. Terminology choice would benefit from further work to include the views of patients. We contend that clear definitions will improve ethical debate and support communication about genomic findings beyond the initial test indication.
Collapse
Affiliation(s)
- Stephanie White
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Australian Genomics, Parkville, VIC, Australia; Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Matilda Haas
- Australian Genomics, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kitty-Jean Laginha
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Australian Genomics, Parkville, VIC, Australia
| | - Kirsten Laurendet
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Australian Genomics, Parkville, VIC, Australia
| | - Clara Gaff
- Australian Genomics, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Melbourne Genomics Health Alliance, Parkville, VIC, Australia
| | - Danya Vears
- Australian Genomics, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Ainsley J Newson
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Australian Genomics, Parkville, VIC, Australia.
| |
Collapse
|
164
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
165
|
Lildballe DL, Becher N, Vestergaard EM, Christensen R, Lou S, Sandager P, Pedersen LH, Gadsbøll K, Petersen OB, Vogel I. A decade of change - lessons learned from prenatal diagnostics in Central Denmark region in 2008-2018. Acta Obstet Gynecol Scand 2023; 102:1505-1510. [PMID: 37477337 PMCID: PMC10577626 DOI: 10.1111/aogs.14631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION In 2011, it was decided to implement chromosomal microarray in prenatal testing in the Central Denmark Region, mainly due to the expected higher diagnostic yield. Chromosomal microarray was introduced gradually for an increasing number of pregnancies and without a transition period where both karyotyping and chromosomal microarray were performed: first malformations (2011), then large nuchal translucency (2013), then high risk at combined first trimester risk screening (2016) and finally for all indications (2018). This retrospective study summarizes 11 years of using chromosomal microarray in invasive prenatal testing and presents the effect on diagnostic yield and turnaround time. Furthermore, the concerns when introducing chromosomal microarray are presented and discussed. MATERIAL AND METHODS Registry data from the Danish Fetal Medicine Database, the regional fetal medicine database, the Danish Cytogenetic Central Register and the local laboratory database at Department of Clinical Genetics were all combined, and a cohort of 147 158 singleton pregnancies with at least one ultrasound examination was established RESULTS: Of the 147 158 pregnancies, invasive sampling was performed (chorionic villi or amniocytes) in 8456, corresponding to an overall invasive rate of 5.8%. Between 2016 and 2018, 3.4% (95% confidence interval [CI] 2.8-4.2%; n = 86) of the invasive samples (n = 2533) had a disease causing copy number variant and 5.3% (95% CI 4.4-6.2%; n = 133) had trisomies and other aneuploidies. The turnaround time more than halved from 14 days to an average of 5.5 days for chorionic villus sampling. CONCLUSIONS Chromosomal microarray identified 5.3% trisomies and 3.4% copy number variants, thereby increased the diagnostic yield by more than 64% compared with karyotype only and it also more than halved the turnaround time. Some preliminary concerns proved real, eg prenatal counseling complexity, but these have been resolved over time in a clinical path with expert consultations.
Collapse
Affiliation(s)
- Dorte Launholt Lildballe
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Naja Becher
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | | | - Rikke Christensen
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Stina Lou
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Puk Sandager
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Obstetrics and GynecologyAarhus University HospitalAarhusDenmark
| | - Lars Henning Pedersen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Obstetrics and GynecologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Kasper Gadsbøll
- Center for Fetal Medicine, Pregnancy and Ultrasound, Department of ObstetricsCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Faculty of Health and Medical Science, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Olav Bjørn Petersen
- Center for Fetal Medicine, Pregnancy and Ultrasound, Department of ObstetricsCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Faculty of Health and Medical Science, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ida Vogel
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
- Department of Obstetrics and GynecologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
166
|
Delgado C, Ullery MA, Zeng G, Simpson EA, Tanner JP, Kirby RS, Duclos C, Lowry J, Salemi JL. Elevated risk for developmental disabilities in children with congenital heart defects. Birth Defects Res 2023; 115:1708-1722. [PMID: 37681320 DOI: 10.1002/bdr2.2246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND This study examined risk for developmental disabilities in preschool-aged children with a congenital heart defect (CHD) at the population level. METHODS Statewide birth, birth defects, and preschool developmental disability records were integrated. The final sample included 1,966,585 children (51.0% male). Children were grouped by type(s) of CHD: critical CHD, noncritical CHD, atrial septal defect, or no major birth defects (groups were mutually exclusive). RESULTS Children with a CHD (any type) were at increased risk for developmental disability (any type) (RR 2.08, 95% CI 2.03-2.14, P < .001). Children in the critical CHD, noncritical CHD, and atrial septal defect groups were at increased risk for developmental delay, intellectual disability, language impairment, other health impairment, and any disability. Children in the atrial septal defect group were at increased risk for autism spectrum disorder and speech impairment. For all CHD groups, risk was greatest for other health impairment and intellectual disability. CONCLUSIONS Increased risk for developmental disabilities was identified for children with less severe CHDs as well as for children with more severe (critical) CHDs. All children with CHDs should be closely monitored so that appropriate interventions can be initiated as early as possible to maximize learning outcomes.
Collapse
Affiliation(s)
- Christine Delgado
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Mary Anne Ullery
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Guangyu Zeng
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, China
| | | | - J P Tanner
- Chiles Center, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Russell S Kirby
- Chiles Center, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Chris Duclos
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, Florida, USA
| | - Joseph Lowry
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, Florida, USA
| | - Jason L Salemi
- Chiles Center, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
167
|
Wang L, Wang XD, Yang B, Wang XM, Peng YQ, Tan HJ, Xiao HM. Novel SETBP1 mutation in a chinese family with intellectual disability. BMC Med Genomics 2023; 16:233. [PMID: 37798664 PMCID: PMC10552191 DOI: 10.1186/s12920-023-01649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Intellectual disability (ID) is characterized by an IQ < 70, which implies below-average intellectual function and a lack of skills necessary for daily living. ID may occur due to multiple causes, such as metabolic, infectious, and chromosomal causes. ID affects approximately 1-3% of the population; however, the cause can be identified in only 25% of clinical patients. METHODS To find the cause of genetic ID in a family, we performed whole-exome sequencing and Sanger sequencing to confirm the presence of a SETBP1 variant and real-time quantitative polymerase chain reaction to detect SETBP1 expression in the proband and normal controls. RESULTS A novel variant, c.942_943insGT (p. Asp316TrpfsTer28), was found in SETBP1. Furthermore, we observed that SETBP1 expression in patients was only 20% that of normal controls (P < 0.05). CONCLUSION A heterozygous variant in SETBP1 associated with ID was found. This report provides further evidence for its genetic basis and support for clinical genetic diagnosis.
Collapse
Affiliation(s)
- Le Wang
- School of Basic Medical Science, Hunan University of Medicine, Huaihua, Hunan, China
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu-Dong Wang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Yang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xue-Meng Wang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yu-Qian Peng
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hang-Jing Tan
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
168
|
Lemire G, Sanchis-Juan A, Russell K, Baxter S, Chao KR, Singer-Berk M, Groopman E, Wong I, England E, Goodrich J, Pais L, Austin-Tse C, DiTroia S, O’Heir E, Ganesh VS, Wojcik MH, Evangelista E, Snow H, Osei-Owusu I, Fu J, Singh M, Mostovoy Y, Huang S, Garimella K, Kirkham SL, Neil JE, Shao DD, Walsh CA, Argili E, Le C, Sherr EH, Gleeson J, Shril S, Schneider R, Hildebrandt F, Sankaran VG, Madden JA, Genetti CA, Beggs AH, Agrawal PB, Bujakowska KM, Place E, Pierce EA, Donkervoort S, Bönnemann CG, Gallacher L, Stark Z, Tan T, White SM, Töpf A, Straub V, Fleming MD, Pollak MR, Õunap K, Pajusalu S, Donald KA, Bruwer Z, Ravenscroft G, Laing NG, MacArthur DG, Rehm HL, Talkowski ME, Brand H, O’Donnell-Luria A. Exome copy number variant detection, analysis and classification in a large cohort of families with undiagnosed rare genetic disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.05.23296595. [PMID: 37873196 PMCID: PMC10593084 DOI: 10.1101/2023.10.05.23296595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.
Collapse
Affiliation(s)
- Gabrielle Lemire
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- These authors contributed equally
| | - Alba Sanchis-Juan
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- These authors contributed equally
| | - Kathryn Russell
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha Baxter
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine R. Chao
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moriel Singer-Berk
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Groopman
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Eleina England
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Goodrich
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lynn Pais
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christina Austin-Tse
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie DiTroia
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily O’Heir
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijay S. Ganesh
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Monica H. Wojcik
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily Evangelista
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hana Snow
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ikeoluwa Osei-Owusu
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mugdha Singh
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yulia Mostovoy
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steve Huang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kiran Garimella
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha L. Kirkham
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Diane D. Shao
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Christopher A. Walsh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Emanuela Argili
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Carolyn Le
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Shirlee Shril
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Ronen Schneider
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Vijay G. Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jill A. Madden
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Casie A. Genetti
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Alan H. Beggs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Pankaj B. Agrawal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Kinga M. Bujakowska
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Emily Place
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Eric A. Pierce
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lyndon Gallacher
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Tiong Tan
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Susan M. White
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark D. Fleming
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Martin R. Pollak
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- University of Cape Town, Cape Town, South Africa
| | - Zandre Bruwer
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- University of Cape Town, Cape Town, South Africa
| | - Gianina Ravenscroft
- University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Australia
| | - Nigel G. Laing
- University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Australia
| | - Daniel G. MacArthur
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute, Sydney, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Heidi L. Rehm
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael E. Talkowski
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Harrison Brand
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Senior authors
| | - Anne O’Donnell-Luria
- Broad Institute Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Senior authors
| |
Collapse
|
169
|
Liu Z, Huang YF. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555384. [PMID: 37693607 PMCID: PMC10491176 DOI: 10.1101/2023.08.29.555384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficiency at the gene level, limiting their power to pinpoint deleterious deletions associated with genetic disorders. Here we introduce DosaCNV, a deep multiple-instance learning framework that, for the first time, models deletion pathogenicity jointly with gene haploinsufficiency. By integrating over 30 gene-level features potentially predictive of haploinsufficiency, DosaCNV shows unmatched performance in prioritizing pathogenic deletions associated with a broad spectrum of genetic disorders. Furthermore, DosaCNV outperforms existing methods in predicting gene haploinsufficiency even though it is not trained on known haploinsufficient genes. Finally, DosaCNV leverages a state-of-the-art technique to quantify the contributions of individual gene-level features to haploinsufficiency, allowing for human-understandable explanations of model predictions. Altogether, DosaCNV is a powerful computational tool for both fundamental and translational research.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
170
|
Forrest MP, Penzes P. Mechanisms of copy number variants in neuropsychiatric disorders: From genes to therapeutics. Curr Opin Neurobiol 2023; 82:102750. [PMID: 37515924 PMCID: PMC10529795 DOI: 10.1016/j.conb.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
Copy number variants (CNVs) are genomic imbalances strongly linked to the aetiology of neuropsychiatric disorders such as schizophrenia and autism. By virtue of their large size, CNVs often contain many genes, providing a multi-genic view of disease processes that can be dissected in model systems. Thus, CNV research provides an important stepping stone towards understanding polygenic disease mechanisms, positioned between monogenic and polygenic risk models. In this review, we will outline hypothetical models for gene interactions occurring within CNVs and discuss different approaches used to study rodent and stem cell disease models. We highlight recent work showing that genetic and pharmacological strategies can be used to rescue important aspects of CNV-mediated pathophysiology, which often converges onto synaptic pathways. We propose that using a rescue approach in complete CNV models provides a new path forward for precise mechanistic understanding of complex disorders and a tangible route towards therapeutic development.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
171
|
Trizuljak J, Duben J, Blaháková I, Vrzalová Z, Kozubík KS, Štika J, Radová L, Bergerová V, Mejstříková S, Hořínová V, Jančálek R, Pospíšilová Š, Doubek M. Extensive, 3.8 Mb-Sized Deletion of 22q12 in a Patient with Bilateral Schwannoma, Intellectual Disability, Sensorineural Hearing Loss, and Epilepsy. Mol Syndromol 2023; 14:439-448. [PMID: 37908896 PMCID: PMC10613852 DOI: 10.1159/000528744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 11/02/2023] Open
Abstract
Introduction In contrast with the well-known and described deletion of the 22q11 chromosome region responsible for DiGeorge syndrome, 22q12 deletions are much rarer. Only a few dozen cases have been reported so far. This region contains genes responsible for cell cycle control, chromatin modification, transmembrane signaling, cell adhesion, and neural development, as well as several cancer predisposition genes. Case Presentation We present a patient with cleft palate, sensorineural hearing loss, vestibular dysfunction, epilepsy, mild to moderate intellectual disability, divergent strabism, pes equinovarus, platyspondylia, and bilateral schwannoma. Using Microarray-based Comparative Genomic Hybridization (aCGH), we identified the de novo 3.8 Mb interstitial deletion at 22q12.1→22q12.3. We confirmed deletion of the critical NF2 region by MLPA analysis. Discussion Large 22q12 deletion in the proband encases the critical NF2 region, responsible for development of bilateral schwannoma. We compared the phenotype of the patient with previously reported cases. Interestingly, our patient developed cleft palate even without deletion of the MN1 gene, deemed responsible in previous studies. We also strongly suspect the DEPDC5 gene deletion to be responsible for seizures, consistent with previously reported cases.
Collapse
Affiliation(s)
- Jakub Trizuljak
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Duben
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Ivona Blaháková
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Vrzalová
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kateřina Staňo Kozubík
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Štika
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Veronika Bergerová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Soňa Mejstříková
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Hořínová
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Outpatient Ward for Genetics, Hospital Jihlava, Jihlava, Czech Republic
| | - Radim Jančálek
- Department of Neurosurgery, St. Anne University Hospital, Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
172
|
Tinker RJ, Bastarache L, Ezell K, Kobren SN, Esteves C, Rosenfeld JA, Macnamara EF, Hamid R, Cogan JD, Rinker D, Mukharjee S, Glass I, Dipple K, Phillips JA, Undiagnosed Diseases Network. The contribution of mosaicism to genetic diseases and de novo pathogenic variants. Am J Med Genet A 2023; 191:2482-2492. [PMID: 37246601 PMCID: PMC11167532 DOI: 10.1002/ajmg.a.63309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
The contribution of mosaicism to diagnosed genetic disease and presumed de novo variants (DNV) is under investigated. We determined the contribution of mosaic genetic disease (MGD) and diagnosed parental mosaicism (PM) in parents of offspring with reported DNV (in the same variant) in the (1) Undiagnosed Diseases Network (UDN) (N = 1946) and (2) in 12,472 individuals electronic health records (EHR) who underwent genetic testing at an academic medical center. In the UDN, we found 4.51% of diagnosed probands had MGD, and 2.86% of parents of those with DNV exhibited PM. In the EHR, we found 6.03% and 2.99% and (of diagnosed probands) had MGD detected on chromosomal microarray and exome/genome sequencing, respectively. We found 2.34% (of those with a presumed pathogenic DNV) had a parent with PM for the variant. We detected mosaicism (regardless of pathogenicity) in 4.49% of genetic tests performed. We found a broad phenotypic spectrum of MGD with previously unknown phenotypic phenomena. MGD is highly heterogeneous and provides a significant contribution to genetic diseases. Further work is required to improve the diagnosis of MGD and investigate how PM contributes to DNV risk.
Collapse
Affiliation(s)
- Rory J. Tinker
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimberly Ezell
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jill A. Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen F. Macnamara
- Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rizwan Hamid
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joy D. Cogan
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Souhrid Mukharjee
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ian Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Katrina Dipple
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - John A. Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
173
|
Mouraux C, Depierreux F. Late Diagnosis of 18p Syndrome with Movement Disorders by Whole Exome Sequencing Read-Depth Based Algorithm. Mov Disord Clin Pract 2023; 10:1557-1558. [PMID: 37868911 PMCID: PMC10585971 DOI: 10.1002/mdc3.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/15/2023] [Accepted: 08/06/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- Charlotte Mouraux
- Department of NeurologyCentre Hospitalier Universitaire, CHULiègeBelgium
| | - Frédérique Depierreux
- Department of NeurologyCentre Hospitalier Universitaire, CHULiègeBelgium
- GIGA–CRC in vivo imaging, University of LiègeLiègeBelgium
| |
Collapse
|
174
|
Qian Y, Sun Y, Guo X, Song L, Sun Y, Gao X, Liu B, Xu Y, Chen N, Chen M, Luo Y, Qiao Z, Fan L, Man J, Zhang K, Wang X, Rong T, Wang Z, Liu F, Zhao J, Wei X, Chen M, Peng Z, Peng H, Sun J, Dong M. Validation and depth evaluation of low-pass genome sequencing in prenatal diagnosis using 387 amniotic fluid samples. J Med Genet 2023; 60:933-938. [PMID: 37012053 DOI: 10.1136/jmg-2022-109112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Low-pass genome sequencing (LP GS) is an alternative to chromosomal microarray analysis (CMA). However, validations of LP GS as a prenatal diagnostic test for amniotic fluid are rare. Moreover, sequencing depth of LP GS in prenatal diagnosis has not been evaluated. OBJECTIVE The diagnostic performance of LP GS was compared with CMA using 375 amniotic fluid samples. Then, sequencing depth was evaluated by downsampling. RESULTS CMA and LP GS had the same diagnostic yield (8.3%, 31/375). LP GS showed all copy number variations (CNVs) detected by CMA and six additional variant of uncertain significance CNVs (>100 kb) in samples with negative CMA results; CNV size influenced LP GS detection sensitivity. CNV detection was greatly influenced by sequencing depth when the CNV size was small or the CNV was located in the azoospermia factor c (AZFc) region of the Y chromosome. Large CNVs were less affected by sequencing depth and more stably detected. There were 155 CNVs detected by LP GS with at least a 50% reciprocal overlap with CNVs detected by CMA. With 25 M uniquely aligned high-quality reads (UAHRs), the detection sensitivity for the 155 CNVs was 99.14%. LP GS using samples with 25 M UAHRs showed the same performance as LP GS using total UAHRs. Considering the detection sensitivity, cost and interpretation workload, 25 M UAHRs are optimal for detecting most aneuploidies and microdeletions/microduplications. CONCLUSION LP GS is a promising, robust alternative to CMA in clinical settings. A total of 25 M UAHRs are sufficient for detecting aneuploidies and most microdeletions/microduplications.
Collapse
Affiliation(s)
- Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xueqin Guo
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Lijie Song
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yixi Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyang Gao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bei Liu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Na Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqin Luo
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhihong Qiao
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Linlin Fan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Jianfen Man
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Kang Zhang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Xiaoli Wang
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Tingting Rong
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhonghua Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Fengxia Liu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Jing Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaoming Wei
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Minfeng Chen
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huanhuan Peng
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
- BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
175
|
Kubota N, Takeda R, Kobayashi J, Hidaka E, Nishi E, Takano K, Wakui K. Reanalysis of Chromosomal Microarray Data Using a Smaller Copy Number Variant Call Threshold Identifies Four Cases with Heterozygous Multiexon Deletions of ARID1B, EHMT1, and FOXP1 Genes. Mol Syndromol 2023; 14:394-404. [PMID: 37901861 PMCID: PMC10601822 DOI: 10.1159/000530252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/16/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chromosomal microarray (CMA) is a highly accurate and established method for detecting copy number variations (CNVs) in clinical genetic testing. CNVs are important etiological factors for disorders such as intellectual disability, developmental delay, and multiple congenital anomalies. Recently developed analytical methods have facilitated the identification of smaller CNVs. Therefore, reanalyzing CMA data using a smaller CNV calling threshold may yield useful information. However, this method was left to the discretion of each institution. Methods We reanalyzed the CMA data of 131 patients using a smaller CNV call threshold: 50 kb 50 probes for gain and 25 kb 25 probes for loss. We interpreted the reanalyzed CNVs based on the most recently available information. In the reanalysis, we filtered the data using the Clinical Genome Resource dosage sensitivity gene list as an index to quickly and efficiently check morbid genes. Results The number of copy number loss was approximately 20 times greater, and copy number gain was approximately three times greater compared to those in the previous analysis. We detected new likely pathogenic CNVs in four participants: a 236.5 kb loss within ARID1B, a 50.6 kb loss including EHMT1, a 46.5 kb loss including EHMT1, and an 89.1 kb loss within the FOXP1 gene. Conclusion The method employed in this study is simple and effective for CMA data reanalysis using a smaller CNV call threshold. Thus, this method is efficient for both ongoing and repeated analyses. This study may stimulate further discussion of reanalysis methodology in clinical laboratories.
Collapse
Affiliation(s)
- Noriko Kubota
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| | - Ryojun Takeda
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
- Division of Medical Genetics, Nagano Children’s Hospital, Azumino, Japan
| | - Jun Kobayashi
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| | - Eiko Hidaka
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| | - Eriko Nishi
- Division of Medical Genetics, Nagano Children’s Hospital, Azumino, Japan
| | - Kyoko Takano
- Division of Medical Genetics, Nagano Children’s Hospital, Azumino, Japan
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Keiko Wakui
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
176
|
Salah S, Jaber H, Frumkin A, Harel T. Homozygous 22q11.2 distal type II microdeletion is associated with syndromic neurodevelopmental delay. Am J Med Genet A 2023; 191:2623-2630. [PMID: 37365930 DOI: 10.1002/ajmg.a.63326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Genomic disorders result from heterozygous copy number variants (CNVs). Homozygous deletions spanning numerous genes are rare, despite the potential contribution of consanguinity to such instances. CNVs in the 22q11.2 region are mediated by nonallelic homologous recombination between pairs of low copy repeats (LCRs), from amongst eight LCRs designated A-H. Heterozygous distal type II deletions (LCR-E to LCR-F) have incomplete penetrance and variable expressivity, and can lead to neurodevelopmental issues, minor craniofacial anomalies, and congenital abnormalities. We report siblings with global developmental delay, hypotonia, minor craniofacial anomalies, ocular abnormalities, and minor skeletal issues, in whom chromosomal microarray identified a homozygous distal type II deletion. The deletion was brought to homozygosity as a result of a consanguineous marriage between two heterozygous carriers of the deletion. The phenotype of the children was strikingly more severe and complex than that of the parents. This report suggests that the distal type II deletion harbors a dosage-sensitive gene or regulatory element, which leads to a more severe phenotype when deleted on both chromosomes.
Collapse
Affiliation(s)
- Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Hiba Jaber
- Pediatric Neurology Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Ayala Frumkin
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
177
|
Wu D, Wu Y, Lan Y, Lan S, Zhong Z, Li D, Zheng Z, Wang H, Ma L. Chromosomal Aberrations in Pediatric Patients With Moderate/Severe Developmental Delay/Intellectual Disability With Abundant Phenotypic Heterogeneities: A Single-Center Study. Pediatr Neurol 2023; 147:72-81. [PMID: 37566956 DOI: 10.1016/j.pediatrneurol.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND This study aimed to examine the clinical usefulness of chromosome microarray (CMA) for selective implementation in patients with unexplained moderate or severe developmental delay/intellectual disability (DD/ID) and/or combined with different dysphonic features in the Han Chinese population. METHODS We retrospectively analyzed data on 122 pediatric patients with unexplained isolated moderate/severe DD/ID with or without autism spectrum disorders, epilepsy, dystonia, and congenital abnormalities from a single-center neurorehabilitation clinic in southern China. RESULTS A total of 46 probands (37.7%) had abnormal CMA results among the 122 study patients. With the exclusion of aneuploidies, uniparental disomies, and multiple homozygotes, 37 patients harbored 39 pathogenic copy number variations (pCNVs) (median [interquartile range] size: 3.57 [1.6 to 7.1] Mb; 33 deletions and 6 duplications), enriched in chromosomes 5, 7, 15, 17, and 22, with a markedly high prevalence of Angelman/Prader-Willi syndrome (24.3% [nine of 37]). Three rare deletions in the regions 5q33.2q34, 17p13.2, and 13q33.2 were reported, with specific delineation of clinical phenotypes. The frequencies of pCNVs were 18%, 33.3%, 38.89%, 41.67%, and 100% for patients with 1, 2, 3, 4, and 5 study phenotypes, respectively; patients with more concomitant abnormalities in the heart, brain, craniofacial region, and/or other organs had a higher CMA diagnostic yield and pCNV prevalence (P < 0.05). CONCLUSIONS Clinical application of CMA as a first-tier test among patients with moderate/severe DD/ID combined with congenital structural anomalies improved diagnostic yields and the quality of clinical management in this series of patients.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia; Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaocong Lan
- Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong, China; Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong, China; Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children's Hospital of Guangzhou Medical University), Guangzhou, Guangdong, China.
| |
Collapse
|
178
|
Barseghyan H, Pang AWC, Clifford B, Serrano MA, Chaubey A, Hastie AR. Comparative Benchmarking of Optical Genome Mapping and Chromosomal Microarray Reveals High Technological Concordance in CNV Identification and Additional Structural Variant Refinement. Genes (Basel) 2023; 14:1868. [PMID: 37895217 PMCID: PMC10667989 DOI: 10.3390/genes14101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions. This study compares OGM to CMA for clinically reported genomic variants, some of these samples also have structural characterization by fluorescence in situ hybridization (FISH). OGM was performed on IRB approved, de-identified specimens from 55 individuals with genomic abnormalities previously identified by CMA (61 clinically reported abnormalities). SVs identified by OGM were filtered by a control database to remove polymorphic variants and against an established gene list to prioritize clinically relevant findings before comparing with CMA and FISH results. OGM results showed 100% concordance with CMA findings for pathogenic variants and 98% concordant for all pathogenic/likely pathogenic/variants of uncertain significance (VUS), while also providing additional insight into the genomic structure of abnormalities that CMA was unable to provide. OGM demonstrates equivalent performance to CMA for CNV and AOH detection, enhanced by its ability to determine the structure of the genome. This work adds to an increasing body of evidence on the analytical validity and ability to detect clinically relevant abnormalities identified by CMA. Moreover, OGM identifies translocations, structures of duplications and complex CNVs intractable by CMA, yielding additional clinical utility.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA
- Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | - Benjamin Clifford
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | | | - Alka Chaubey
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | - Alex R. Hastie
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| |
Collapse
|
179
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
180
|
Landis BJ, Helvaty LR, Geddes GC, Lin JI, Yatsenko SA, Lo CW, Border WL, Wechsler SB, Murali CN, Azamian MS, Lalani SR, Hinton RB, Garg V, McBride KL, Hodge JC, Ware SM. A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e029340. [PMID: 37681527 PMCID: PMC10547279 DOI: 10.1161/jaha.123.029340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/24/2023] [Indexed: 09/09/2023]
Abstract
Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well-recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal-related pathways were over-represented in single-gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions Intensive cardiac phenotyping in multisite registry data identifies genotype-phenotype associations in CHD patients with abnormal CMA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chaya N. Murali
- Baylor College of MedicineHoustonTX
- Texas Children’s HospitalHoustonTX
| | | | - Seema R. Lalani
- Baylor College of MedicineHoustonTX
- Texas Children’s HospitalHoustonTX
| | | | - Vidu Garg
- Nationwide Children’s HospitalThe Ohio State UniversityColumbusOH
| | - Kim L. McBride
- Nationwide Children’s HospitalThe Ohio State UniversityColumbusOH
- University of CalgaryCalgaryCanada
| | | | | |
Collapse
|
181
|
Li C, Chen L, Pan G, Zhang W, Li SC. Deciphering complex breakage-fusion-bridge genome rearrangements with Ambigram. Nat Commun 2023; 14:5528. [PMID: 37684230 PMCID: PMC10491683 DOI: 10.1038/s41467-023-41259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Breakage-fusion-bridge (BFB) is a complex rearrangement that leads to tumor malignancy. Existing models for detecting BFBs rely on the ideal BFB hypothesis, ruling out the possibility of BFBs entangled with other structural variations, that is, complex BFBs. We propose an algorithm Ambigram to identify complex BFB and reconstruct the rearranged structure of the local genome during the cancer subclone evolution process. Ambigram handles data from short, linked, long, and single-cell sequences, and optical mapping technologies. Ambigram successfully deciphers the gold- or silver-standard complex BFBs against the state-of-the-art in multiple cancers. Ambigram dissects the intratumor heterogeneity of complex BFB events with single-cell reads from melanoma and gastric cancer. Furthermore, applying Ambigram to liver and cervical cancer data suggests that the BFB mechanism may mediate oncovirus integrations. BFB also exists in noncancer genomics. Investigating the complete human genome reference with Ambigram suggests that the BFB mechanism may be involved in two genome reorganizations of Homo Sapiens during evolution. Moreover, Ambigram discovers the signals of recurrent foldback inversions and complex BFBs in whole genome data from the 1000 genome project, and congenital heart diseases, respectively.
Collapse
Affiliation(s)
- Chaohui Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Guangze Pan
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Wenqian Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
182
|
Lowther C, Valkanas E, Giordano JL, Wang HZ, Currall BB, O'Keefe K, Pierce-Hoffman E, Kurtas NE, Whelan CW, Hao SP, Weisburd B, Jalili V, Fu J, Wong I, Collins RL, Zhao X, Austin-Tse CA, Evangelista E, Lemire G, Aggarwal VS, Lucente D, Gauthier LD, Tolonen C, Sahakian N, Stevens C, An JY, Dong S, Norton ME, MacKenzie TC, Devlin B, Gilmore K, Powell BC, Brandt A, Vetrini F, DiVito M, Sanders SJ, MacArthur DG, Hodge JC, O'Donnell-Luria A, Rehm HL, Vora NL, Levy B, Brand H, Wapner RJ, Talkowski ME. Systematic evaluation of genome sequencing for the diagnostic assessment of autism spectrum disorder and fetal structural anomalies. Am J Hum Genet 2023; 110:1454-1469. [PMID: 37595579 PMCID: PMC10502737 DOI: 10.1016/j.ajhg.2023.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.
Collapse
Affiliation(s)
- Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elise Valkanas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Jessica L Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harold Z Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin B Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma Pierce-Hoffman
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nehir E Kurtas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher W Whelan
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vahid Jalili
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christina A Austin-Tse
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Emily Evangelista
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Gauthier
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Tolonen
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nareh Sahakian
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christine Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mary E Norton
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelly Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia Brandt
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle DiVito
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel G MacArthur
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Centre for Population Genomics, Garvan Institute of Medical Research, and University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne O'Donnell-Luria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
183
|
Stoll C, Alembick Y, Roth MP. Associated anomalies in Pierre Robin sequence. Am J Med Genet A 2023; 191:2312-2323. [PMID: 37477275 DOI: 10.1002/ajmg.a.63344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Pierre Robin sequence (PRS) is frequently co-occurring with other non-PRS congenital anomalies. The types and the prevalence of anomalies co-occurring with PRS vary in the reported studies. The aims of this report was to study the types and the prevalence of the anomalies co-occurring with PRS in a well-studied population northeastern France. The types and the prevalence of anomalies co-occurring in cases with PRS were ascertained in all terminations of pregnancy, stillbirths and live births in 387,067 births occurring consecutively during the period 1979-2007 in the area covered by our registry of congenital anomalies which is population-based, 89 cases of PRS were registered during the study period with a prevalence of 2.29 per 10,000 births, 69.7% of the cases had associated non-PRS anomalies. Chromosomal abnormalities were present in 10 (11.2%) cases including three 22 q11.2 deletion. Non-chromosomal recognizable conditions were diagnosed in 27 cases (30.3%) including 10 Stickler syndrome, 8 Treacher Collins syndrome, 3 cases with short stature and 6 other syndromes. Multiple congenital anomalies (MCA) were present in 25 cases (28.1%). The most frequent MCA were in the ear, face and neck (35 out of 98 anomalies, 35.7%), cardiovascular (18 anomalies, 18.4%), musculoskeletal (11 anomalies, 11.2%), central nervous (7 anomalies, 7.1%), urinary (6 anomalies, 6.1%), and eye (6 anomalies, 6.1%) system. The high prevalence of associated anomalies justifies a thorough screening for other congenital anomalies in cases with PRS.
Collapse
Affiliation(s)
- Claude Stoll
- Laboratoire de Génétique Médicale, Faculté de Médecine, Strasbourg, France
| | - Y Alembick
- Laboratoire de Génétique Médicale, Faculté de Médecine, Strasbourg, France
| | - M P Roth
- Laboratoire de Génétique Médicale, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
184
|
Blake B, Brady LI, Rouse NA, Nagy P, Tarnopolsky MA. The Efficacy of Whole Genome Sequencing and RNA-Seq in the Diagnosis of Whole Exome Sequencing Negative Patients with Complex Neurological Phenotypes. J Pediatr Genet 2023; 12:206-212. [PMID: 37575640 PMCID: PMC10421693 DOI: 10.1055/s-0041-1736610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
Whole-genome sequencing (WGS) is being increasingly utilized for the diagnosis of neurological disease by sequencing both the exome and the remaining 98 to 99% of the genetic code. In addition to more complete coverage, WGS can detect structural variants (SVs) and intronic variants (SNVs) that cannot be identified by whole exome sequencing (WES) or chromosome microarray (CMA). Other multi-omics tools, such as RNA sequencing (RNA-Seq), can be used in conjunction with WGS to functionally validate certain variants by detecting changes in gene expression and splicing. The objective of this retrospective study was to measure the diagnostic yield of duo/trio-based WGS and RNA-Seq in a cohort of 22 patients (20 families) with pediatric onset neurological phenotypes and negative or inconclusive WES results in lieu of reanalysis. WGS with RNA-Seq resulted in a definite diagnosis of an additional 25% of cases. Sixty percent of these solved cases arose from the identification of variants that were missed by WES. Variants that could not be unequivocally proven to be causative of the patients' condition were identified in an additional 5% of cases.
Collapse
Affiliation(s)
- Bianca Blake
- Department of Pediatrics, John R. Oishei Children's Hospital, New York, United States
| | - Lauren I. Brady
- Department of Pediatrics, McMaster University Medical Centre, Ontario, Canada
| | | | - Peter Nagy
- Praxis Genomics, Atlanta, Georgia, United States
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre, Ontario, Canada
| |
Collapse
|
185
|
Vaseghi H, Akrami SM, Rashidi‐Nezhad A. The challenges in the interpretation of genetic variants detected by genomics techniques in patients with congenital anomalies. J Clin Lab Anal 2023; 37:e24967. [PMID: 37823350 PMCID: PMC10623530 DOI: 10.1002/jcla.24967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Despite the efforts that have been made to standardize the interpretation of variants, in some cases, their pathogenicity remains vague and confusing, and sometimes their interpretation does not help clinicians to establish clinical correlation using genetic test results. This study aims to shed more lights on these challenging variants. METHODS In a clinical setting, the variants found from 81 array CGH and 79 whole exome sequencing (WES) in patients with congenital anomalies were interpreted based on American College of Medical Genetics and Genomics guidelines. RESULTS In this study, the interpretation of the disease-causing variants and the variants with uncertain clinical significance detected by WES was far more challenging than the variants detected by array CGH. The presence of unreported clinical symptoms, incomplete penetrance, variable expressivity, parents' reluctance to analyze segregation in the family, and the limitations of prenatal tests, were among the challenging factors in the interpretation of variants in this study. CONCLUSION A careful study of the pedigree and disease mode of inheritance, as well as a careful clinical examination of the carrier parents in diseases with autosomal dominant inheritance, are among the primary strategies for determining the clinical significance of the variants. Continued efforts to mitigate these challenges are needed to improve the interpretation of variants.
Collapse
Affiliation(s)
- Hajar Vaseghi
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Ali Rashidi‐Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
186
|
Babadi M, Fu JM, Lee SK, Smirnov AN, Gauthier LD, Walker M, Benjamin DI, Zhao X, Karczewski KJ, Wong I, Collins RL, Sanchis-Juan A, Brand H, Banks E, Talkowski ME. GATK-gCNV enables the discovery of rare copy number variants from exome sequencing data. Nat Genet 2023; 55:1589-1597. [PMID: 37604963 PMCID: PMC10904014 DOI: 10.1038/s41588-023-01449-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 08/23/2023]
Abstract
Copy number variants (CNVs) are major contributors to genetic diversity and disease. While standardized methods, such as the genome analysis toolkit (GATK), exist for detecting short variants, technical challenges have confounded uniform large-scale CNV analyses from whole-exome sequencing (WES) data. Given the profound impact of rare and de novo coding CNVs on genome organization and human disease, we developed GATK-gCNV, a flexible algorithm to discover rare CNVs from sequencing read-depth information, complete with open-source distribution via GATK. We benchmarked GATK-gCNV in 7,962 exomes from individuals in quartet families with matched genome sequencing and microarray data, finding up to 95% recall of rare coding CNVs at a resolution of more than two exons. We used GATK-gCNV to generate a reference catalog of rare coding CNVs in WES data from 197,306 individuals in the UK Biobank, and observed strong correlations between per-gene CNV rates and measures of mutational constraint, as well as rare CNV associations with multiple traits. In summary, GATK-gCNV is a tunable approach for sensitive and specific CNV discovery in WES data, with broad applications.
Collapse
Affiliation(s)
- Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jack M Fu
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel K Lee
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrey N Smirnov
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura D Gauthier
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Walker
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David I Benjamin
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Collins
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric Banks
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
187
|
Aradhya S, Facio FM, Metz H, Manders T, Colavin A, Kobayashi Y, Nykamp K, Johnson B, Nussbaum RL. Applications of artificial intelligence in clinical laboratory genomics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32057. [PMID: 37507620 DOI: 10.1002/ajmg.c.32057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
Collapse
Affiliation(s)
- Swaroop Aradhya
- Invitae Corporation, San Francisco, California, USA
- Adjunct Clinical Faculty, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hillery Metz
- Invitae Corporation, San Francisco, California, USA
| | - Toby Manders
- Invitae Corporation, San Francisco, California, USA
| | | | | | - Keith Nykamp
- Invitae Corporation, San Francisco, California, USA
| | | | - Robert L Nussbaum
- Invitae Corporation, San Francisco, California, USA
- Volunteer Faculty, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
188
|
Durbin MD, Fairman K, Helvaty LR, Huang M, Li M, Abreu D, Geddes GC, Helm BM, Landis BJ, McEntire A, Mitchell DK, Ware SM. Genetic Testing Guidelines Impact Care in Newborns with Congenital Heart Defects. J Pediatr 2023; 260:113495. [PMID: 37211210 PMCID: PMC10660555 DOI: 10.1016/j.jpeds.2023.113495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To evaluate genetic evaluation practices in newborns with the most common birth defect, congenital heart defects (CHD), we determined the prevalence and the yield of genetic evaluation across time and across patient subtypes, before and after implementation of institutional genetic testing guidelines. STUDY DESIGN This was a retrospective, cross-sectional study of 664 hospitalized newborns with CHD using multivariate analyses of genetic evaluation practices across time and patient subtypes. RESULTS Genetic testing guidelines for hospitalized newborns with CHD were implemented in 2014, and subsequently genetic testing increased (40% in 2013 and 75% in 2018, OR 5.02, 95% CI 2.84-8.88, P < .001) as did medical geneticists' involvement (24% in 2013 and 64% in 2018, P < .001). In 2018, there was an increased use of chromosomal microarray (P < .001), gene panels (P = .016), and exome sequencing (P = .001). The testing yield was high (42%) and consistent across years and patient subtypes analyzed. Increased testing prevalence (P < .001) concomitant with consistent testing yield (P = .139) added an estimated 10 additional genetic diagnoses per year, reflecting a 29% increase. CONCLUSIONS In patients with CHD, yield of genetic testing was high. After implementing guidelines, genetic testing increased significantly and shifted to newer sequence-based methods. Increased use of genetic testing identified more patients with clinically important results with potential to impact patient care.
Collapse
Affiliation(s)
- Matthew D Durbin
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN
| | - Korre Fairman
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Lindsey R Helvaty
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Manyan Huang
- Department of Epidemiology and Biostatistics, Indiana University Bloomington School of Public Health, Bloomington, IN
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University Bloomington School of Public Health, Bloomington, IN
| | - Daniel Abreu
- Indiana University School of Medicine, Indianapolis, IN
| | - Gabrielle C Geddes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Benjamin J Landis
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; Division of Pediatric Cardiology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN
| | - Alexis McEntire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Dana K Mitchell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
189
|
Tian W, Yuan Y, Yuan E, Zhang L, Liu L, Li Y, Guo J, Cui X, Li P, Cui S. Evaluation of the clinical utility of extended non-invasive prenatal testing in the detection of chromosomal aneuploidy and microdeletion/microduplication. Eur J Med Res 2023; 28:304. [PMID: 37644576 PMCID: PMC10466692 DOI: 10.1186/s40001-023-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND With the development of whole-genome sequencing technology, non-invasive prenatal testing (NIPT) has been applied gradually to screen chromosomal microdeletions and microduplications that cannot be detected by traditional karyotyping. However, in NIPT, some false positives and false negatives occur. This study aimed to investigate the applicability of extended NIPT (NIPT-PLUS) in the detection of chromosomal aneuploidy and microdeletion/microduplication syndrome (MMS). METHODS A total of 452 pregnancies that underwent prenatal diagnostic testing (amniocentesis or chorionic villus sampling) by chromosomal microarray analysis (CMA), were screened by NIPT-PLUS from the peripheral blood sample of the pregnant women. The results of the two tested items were compared and analysed. RESULTS Of the 452 cases, 335 (74.12%) had positive CMA results, and 117 (25.88%) had no abnormal results. A total of 86 cases of trisomy 21, 18 and 13 and sex chromosome aneuploidy (SCA) were detected by CMA and NIPT-PLUS, with a detection rate of 96.51% (83/86). Among them, the detection rates of T18, T13; 47, XXY; 47, XXX and 47 XYY were 100%, and the detection rates of T21 and 45 XO were 96.55% and 90%, respectively. The detection sensitivity of rare chromosomal trisomy (RAT) was 80% (4/5). The positive predictive values of NIPT-PLUS for chromosome aneuploidy T21, T18 and T13 and for SCA and RAT were 90.32%, 87.50%, 25.00%, 88.89% and 50%, respectively. A total of 249 cases (74.32%) of chromosomal MMS were detected by CMA. The detection rate of NIPT-PLUS was 63.86% (159/249), and 90 cases (36.14%) were missed. The larger the MMS fragment, the higher the NIPT-PLUS detection sensitivity. In addition, most small fragments were of maternal origin. CONCLUSION The comparison between the CMA and NIPT-PLUS techniques shows that NIPT-PLUS has high sensitivity for detecting chromosomal aneuploidy and chromosomal copy number variations (CNVs) with fragments > 5 M. However, the sensitivity of CNV for fragments < 5 M is low, and the missed detection rate is high. Additionally, confined placental mosaicism and foetal mosaicism are the key factors causing false negatives in NIPT-PLUS, while maternal chromosomal abnormalities and confined placental mosaicism are key contributors to false positives, so appropriate genetic counselling is especially important for pregnant women before and after NIPT-PLUS testing.
Collapse
Affiliation(s)
- Weifang Tian
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China
| | - Yangyang Yuan
- Department of Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, Zhengzhou, 450052, China
| | - Erfeng Yuan
- Department of Clinical Laboratory Science, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, Zhengzhou, 450052, China
| | - Linlin Zhang
- Department of Clinical Laboratory Science, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, Zhengzhou, 450052, China
| | - Ling Liu
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China
- Perinatal Disease and Prevention of Birth Defects, Advanced Medical Center, Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Clinical Research Center for Perinatal Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying Li
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China
| | - Jing Guo
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China
| | - Xueyin Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China
| | - Pengyun Li
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China
| | - Shihong Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan Province, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou, 450052, China.
- Perinatal Disease and Prevention of Birth Defects, Advanced Medical Center, Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Clinical Research Center for Perinatal Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
190
|
Papageorgiou E, Athanasiadis A, Fidani S, Papoulidis I, Manolakos E, Siomou E, Chatzakis C, Sotiriadis A. The Effect of Resolution Level and Targeted Design in the Diagnostic Performance of Prenatal Chromosomal Microarray Analysis. Fetal Diagn Ther 2023; 50:397-405. [PMID: 37549642 DOI: 10.1159/000533137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION This study was performed to assess the optimal resolution for prenatal testing by array comparative genomic hybridization (aCGH), aiming to balance between maximum diagnostic yield and minimal detection of variants of uncertain significance (VOUS). METHODS This was a prospective study using data of 2,336 fetuses that underwent invasive prenatal diagnosis, and the samples were analyzed by aCGH. In total, six different aCGH platforms were studied; four different resolutions (0.18 Mb, 0.5 Mb, 1 Mb, and 2 Mb) and two platform designs (whole-genome [WG] and targeted). The results of these designs were compared based on their diagnostic yield and VOUS rate. The performance of the different designs was further analyzed according to indication for invasive testing. RESULTS The diagnostic yield of copy number variants increased with increasing level of analysis. The detection rates of clinically significant chromosomal abnormalities were almost the same across our targeted array designs; 7.2% with 0.18 Mb backbone/0.05 Mb versus 7.1% with 0.5 Mb backbone/0.05 Mb (p >0.05). However, a significant difference in the rate of VOUS was observed; 9.4% with 0.18 Mb backbone/0.05 Mb versus 6% with 0.5 Mb backbone/0.05 Mb (p <0.001). After analyzing the results across different indications for testing, we found that the application of non-targeted platform designs and lower levels of resolution analysis (such as 1 Mb WG or 0.5 MbL/1 MbG WG) would offer similar diagnostic yield in most cases with major congenital anomalies, with lower VOUS rates. However, the sample size for many indication groups was too small to extract robust associations. CONCLUSION It appears that the targeted array platform with 0.5 Mb backbone resolution and 0.05 Mb on targeted gene-rich regions is optimal for routine chromosomal microarray analysis use in prenatal diagnosis. It may be beneficial to individualize the minimum resolution in specific referral indications as the indications for invasive prenatal testing may be quite heterogeneous.
Collapse
Affiliation(s)
- Elena Papageorgiou
- Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Athanasiadis
- Third Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stiliani Fidani
- Department of General Biology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | - Christos Chatzakis
- Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
191
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
192
|
Zhuang J, Liu S, Chen X, Jiang Y, Chen C. Identification of a novel isolated 4q35.2 microdeletion in a Chinese pediatric patient using chromosomal microarray analysis: a case report and literature review. Mol Cytogenet 2023; 16:18. [PMID: 37533110 PMCID: PMC10399047 DOI: 10.1186/s13039-023-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Isolated terminal 4q35.2 microdeletion is an extremely rare copy number variant affecting people all over the world. To date, researchers still have controversial opinions and results on its pathogenicity. Here, we aim to present a Chinese pediatric patient with terminal 4q35.2 microdeletion and use this case to clarify the underlying genotype-phenotype correlation. METHODS A 17-year-old boy from Quanzhou, South China, was recruited as the main subject in this study. Karyotype and single-nucleotide polymorphism (SNP) based microarray analysis were carried out to detect chromosomal abnormalities and copy number variants in this family. Trio whole exome sequencing (Trio-WES) was performed to investigate the potential pathogenic variant in this family. RESULTS During observation, we identified abnormal clinical phenotypes including upper eyelid ptosis, motor developmental delay, abnormal posturing, abnormality of coordination, attention deficit hyperactivity disorder, and involuntary movements in the patient. SNP array analysis results confirmed a case of 2.0 Mb 4q35.2 microdeletion and parental SNP array verification results indicated that the terminal 4q35.2 microdeletion was inherited from his mother. No copy number variants were detected in his father. In addition, the trio-WES results demonstrated none of pathogenic or likely pathogenic variants in the patient. CONCLUSIONS This study brings a novel analysis of a case of 2.0 Mb terminal 4q35.2 microdeletion affecting a Chinese individual. In addition, additional clinical symptoms such as upper eyelid ptosis and involuntary movements were first reported to affect a patient with terminal 4q35.2 microdeletion, which may broaden the phenotype spectrum of the condition.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, People's Republic of China.
| | - Shufen Liu
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Xinying Chen
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, People's Republic of China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, People's Republic of China.
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
193
|
Cucinotta F, Lintas C, Tomaiuolo P, Baccarin M, Picinelli C, Castronovo P, Sacco R, Piras IS, Turriziani L, Ricciardello A, Scattoni ML, Persico AM. Diagnostic yield and clinical impact of chromosomal microarray analysis in autism spectrum disorder. Mol Genet Genomic Med 2023; 11:e2182. [PMID: 37186221 PMCID: PMC10422062 DOI: 10.1002/mgg3.2182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by high heritability estimates and recurrence rates; its genetic underpinnings are very heterogeneous and include variable combinations of common and rare variants. Array-comparative genomic hybridization (aCGH) offers significant sensitivity for the identification of copy number variants (CNVs), which can act as susceptibility or causal factors for ASD. METHODS The aim of this study was to evaluate both diagnostic yield and clinical impact of aCGH in 329 ASD patients of Italian descent. RESULTS Pathogenic/likely pathogenic CNVs were identified in 50/329 (15.2%) patients, whereas 89/329 (27.1%) carry variants of uncertain significance. The 10 most enriched gene sets identified by Gene Ontology Enrichment Analysis are primarily involved in neuronal function and synaptic connectivity. In 13/50 (26.0%) patients with pathogenic/likely pathogenic CNVs, the outcome of array-CGH led to the request of 25 additional medical exams which would not have otherwise been prescribed, mainly including brain MRI, EEG, EKG, and/or cardiac ultrasound. A positive outcome was obtained in 12/25 (48.0%) of these additional tests. CONCLUSIONS This study confirms the satisfactory diagnostic yield of aCGH, underscoring its potential for better, more in-depth care of children with autism when genetic results are analyzed also with a focus on patient management.
Collapse
Affiliation(s)
- Francesca Cucinotta
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
- IRCCS Centro Neurolesi “Bonino Pulejo”MessinaItaly
| | - Carla Lintas
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio‐Medico”RomeItaly
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
- Synlab GeneticsBioggioSwitzerland
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio‐Medico”RomeItaly
| | - Ignazio Stefano Piras
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio‐Medico”RomeItaly
- Neurogenomics DivisionThe Translational Genomics Research InstitutePhoenixArizonaUSA
| | - Laura Turriziani
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
| | | | - Antonio M. Persico
- Child and Adolescent Neuropsychiatry Program, Modena University Hospital & Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
194
|
Cai M, Que Y, Chen M, Zhang M, Huang H, Xu L, Lin N. Pathogenic copy number variations are associated with foetal short femur length in a tertiary referral centre study. J Cell Mol Med 2023; 27:2354-2361. [PMID: 37401003 PMCID: PMC10424293 DOI: 10.1111/jcmm.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Shortened foetal femur length (FL) is a common abnormal phenotype that often causes anxiety in pregnant women, and standard clinical treatments remain unavailable. We investigated the clinical characteristics, genetic aetiology and obstetric pregnancy outcomes of foetuses with short FL and provided a reference for perinatal management of such cases. Chromosomal microarray analysis was used to analyse the copy number variations (CNV) in short FL foetuses. Of the 218 foetuses with short FL, 33 foetuses exhibited abnormal CNVs, including 19 with pathogenic CNVs and 14 with variations of uncertain clinical significance. Of the 19 foetuses with pathogenic CNVs, four had aneuploidy, 14 had deletions/duplications, and one had pathogenic uniparental diploidy. The 7q11.23 microdeletion was detected in three foetuses. The severity of short FL was not associated with the rate of pathogenic CNVs. The duration of short FL for the intrauterine ultrasound phenotype in foetuses carrying a pathogenic CNV was independent of the gestational age. Further, maternal age was not associated with the incidence of foetal pathogenic CNVs. Adverse pregnancy outcomes occurred in 77 cases, including termination of pregnancy in 63 cases, postnatal dwarfed foetuses with intellectual disability in 11 cases, and three deaths within 3 months of birth. Pathogenic CNVs closely related to foetal short FL were identified, among which the 7q11.23 microdeletion was highly associated with short FL development. This study provides a reference for the perinatal management of foetuses with short FL.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Yanting Que
- College of Clinical Medicine for Obstetrics and Gynecology and PediatricsFujian Medical UniversityFuzhouChina
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| |
Collapse
|
195
|
Bonini KE, Thomas-Wilson A, Marathe PN, Sebastin M, Odgis JA, Biase MD, Kelly NR, Ramos MA, Insel BJ, Scarimbolo L, Rehman AU, Guha S, Okur V, Abhyankar A, Phadke S, Nava C, Gallagher KM, Elkhoury L, Edelmann L, Zinberg RE, Abul-Husn NS, Diaz GA, Greally JM, Suckiel SA, Horowitz CR, Kenny EE, Wasserstein M, Gelb BD, Jobanputra V. Identification of copy number variants with genome sequencing: Clinical experiences from the NYCKidSeq program. Clin Genet 2023; 104:210-225. [PMID: 37334874 PMCID: PMC10505482 DOI: 10.1111/cge.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Collapse
Affiliation(s)
- Katherine E. Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Priya N. Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A. Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Nicole R. Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Michelle A. Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beverly J. Insel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Scarimbolo
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | | | - Shruti Phadke
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Caroline Nava
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Katie M. Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Randi E. Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John M. Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Sabrina A. Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
196
|
Mitrakos A, Kosma K, Makrythanasis P, Tzetis M. Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield? Genes (Basel) 2023; 14:1519. [PMID: 37628571 PMCID: PMC10454647 DOI: 10.3390/genes14081519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Chromosomal microarray analysis (CMA) is considered a first-tier test for patients with developmental disabilities and congenital anomalies and is also routinely applied in prenatal diagnosis. The current consensus size cut-off for reporting copy number variants (CNVs) in the prenatal setting ranges from 200 Kb to 400 Kb, with the intention of minimizing the impact of variants of uncertain significance (VUS). Very limited data are currently available on the application of higher resolution platforms prenatally. The aim of this study is to investigate the feasibility and impact of applying high-resolution CMA in the prenatal setting. To that end, we report on the outcomes of applying CMA with a size cut-off of 20 Kb in 250 prenatal samples and discuss the findings and diagnostic yield and also provide follow-up for cases with variants of uncertain significance. Overall, 19.6% (49) showed one or more chromosomal abnormalities, with the findings classified as Pathogenic (P) or Likely Pathogenic (LP) in 15.6% and as VUS in 4%. When excluding the cases with known familial aberrations, the diagnostic yield was 12%. The smallest aberration detected was a 32 Kb duplication of the 16p11.2 region. In conclusion, this study demonstrates that prenatal diagnosis with a high-resolution aCGH platform can reliably detect smaller CNVs that are often associated with neurodevelopmental phenotypes while providing an increased diagnostic yield, regardless of the indication for testing, with only a marginal increase in the VUS incidence. Thus, it can be an important tool in the prenatal setting.
Collapse
Affiliation(s)
- Anastasios Mitrakos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (K.K.); (P.M.)
| | | | | | - Maria Tzetis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (K.K.); (P.M.)
| |
Collapse
|
197
|
Montanucci L, Lewis-Smith D, Collins RL, Niestroj LM, Parthasarathy S, Xian J, Ganesan S, Macnee M, Brünger T, Thomas RH, Talkowski M, Helbig I, Leu C, Lal D. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat Commun 2023; 14:4392. [PMID: 37474567 PMCID: PMC10359300 DOI: 10.1038/s41467-023-39539-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | | | - Shridhar Parthasarathy
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie Xian
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie Macnee
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| |
Collapse
|
198
|
Farrell M, Dietterich TE, Harner MK, Bruno LM, Filmyer DM, Shaughnessy RA, Lichtenstein ML, Britt AM, Biondi TF, Crowley JJ, Lázaro-Muñoz G, Forsingdal AE, Nielsen J, Didriksen M, Berg JS, Wen J, Szatkiewicz J, Mary Xavier R, Sullivan PF, Josiassen RC. Increased Prevalence of Rare Copy Number Variants in Treatment-Resistant Psychosis. Schizophr Bull 2023; 49:881-892. [PMID: 36454006 PMCID: PMC10318882 DOI: 10.1093/schbul/sbac175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND It remains unknown why ~30% of patients with psychotic disorders fail to respond to treatment. Previous genomic investigations of treatment-resistant psychosis have been inconclusive, but some evidence suggests a possible link between rare disease-associated copy number variants (CNVs) and worse clinical outcomes in schizophrenia. Here, we identified schizophrenia-associated CNVs in patients with treatment-resistant psychotic symptoms and then compared the prevalence of these CNVs to previously published schizophrenia cases not selected for treatment resistance. METHODS CNVs were identified using chromosomal microarray (CMA) and whole exome sequencing (WES) in 509 patients with treatment-resistant psychosis (a lack of clinical response to ≥3 adequate antipsychotic medication trials over at least 5 years of psychiatric hospitalization). Prevalence of schizophrenia-associated CNVs in this sample was compared to that in a previously published large schizophrenia cohort study. RESULTS Integrating CMA and WES data, we identified 47 cases (9.2%) with at least one CNV of known or possible neuropsychiatric risk. 4.7% (n = 24) carried a known neurodevelopmental risk CNV. The prevalence of well-replicated schizophrenia-associated CNVs was 4.1%, with duplications of the 16p11.2 and 15q11.2-q13.1 regions, and deletions of the 22q11.2 chromosomal region as the most frequent CNVs. Pairwise loci-based analysis identified duplications of 15q11.2-q13.1 to be independently associated with treatment resistance. CONCLUSIONS These findings suggest that CNVs may uniquely impact clinical phenotypes beyond increasing risk for schizophrenia and may potentially serve as biological entry points for studying treatment resistance. Further investigation will be necessary to elucidate the spectrum of phenotypic characteristics observed in adult psychiatric patients with disease-associated CNVs.
Collapse
Affiliation(s)
- Martilias Farrell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Lisa M Bruno
- Translational Neuroscience, LLC, Conshohocken, PA, USA
| | | | | | | | - Allison M Britt
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tamara F Biondi
- Office of the Vice Chancellor for Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jacob Nielsen
- Division of Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rose Mary Xavier
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
199
|
Masri AT, Oweis L, Ali M, Hamamy H. Global developmental delay and intellectual disability in the era of genomics: Diagnosis and challenges in resource limited areas. Clin Neurol Neurosurg 2023; 230:107799. [PMID: 37236004 DOI: 10.1016/j.clineuro.2023.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
AIMS To report the diagnostic yield of clinical singleton whole exome sequencing (WES) performed among a group of Jordanian children presenting with global developmental delay /intellectual disability (GDD/ID), discuss the underlying identified genetic disorders and the challenges encountered. PATIENTS AND METHODS This retrospective medical record review study included 154 children who were diagnosed with GDD/ID at our clinic at Jordan University Hospital between 2016 and 2021, and whose diagnostic work up included WES. RESULTS Consanguinity among parents was reported in 94/154 (61.0%) patients and history of other affected siblings in 35/154 (22.7%) patients. Pathogenic and likely pathogenic variants (solved cases) were reported in 69/154 (44.8%) patients, a variant of uncertain significance was reported in 54/154 (35.0%) and a negative result was reported in 31/154 (20.1%) cases. In the solved cases, autosomal recessive diseases were the most common (33/69; 47.8%). Metabolic disorders were identified in 20/69 (28.9%) patients, followed by developmental and epileptic encephalopathies (9/69; 13.0%) and MECP2 related disorders (7/69; 10.1%). Other single gene disorders were identified in 33/69; 47.8%) patients. CONCLUSION This study had several limitations, as it was hospital-based and only including patients who were able to afford the test. Nevertheless, it yielded several important findings. In resource-limited countries, WES may be a reasonable approach. We discussed the challenges that clinicians meet in the context of shortage of resources.
Collapse
Affiliation(s)
- Amira T Masri
- Faculty of Medicine, Paediatric Department, Division of Child Neurology, The University of Jordan, Jordan.
| | - Liyana Oweis
- Faculty of Medicine, The University of Jordan, Jordan
| | - Majd Ali
- Faculty of Medicine, The University of Jordan, Jordan
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
200
|
Salim S, Hussain S, Banu A, Gowda SBM, Ahammad F, Alwa A, Pasha M, Mohammad F. The ortholog of human ssDNA-binding protein SSBP3 influences neurodevelopment and autism-like behaviors in Drosophila melanogaster. PLoS Biol 2023; 21:e3002210. [PMID: 37486945 PMCID: PMC10399856 DOI: 10.1371/journal.pbio.3002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
1p32.3 microdeletion/duplication is implicated in many neurodevelopmental disorders-like phenotypes such as developmental delay, intellectual disability, autism, macro/microcephaly, and dysmorphic features. The 1p32.3 chromosomal region harbors several genes critical for development; however, their validation and characterization remain inadequate. One such gene is the single-stranded DNA-binding protein 3 (SSBP3) and its Drosophila melanogaster ortholog is called sequence-specific single-stranded DNA-binding protein (Ssdp). Here, we investigated consequences of Ssdp manipulations on neurodevelopment, gene expression, physiological function, and autism-associated behaviors using Drosophila models. We found that SSBP3 and Ssdp are expressed in excitatory neurons in the brain. Ssdp overexpression caused morphological alterations in Drosophila wing, mechanosensory bristles, and head. Ssdp manipulations also affected the neuropil brain volume and glial cell number in larvae and adult flies. Moreover, Ssdp overexpression led to differential changes in synaptic density in specific brain regions. We observed decreased levels of armadillo in the heads of Ssdp overexpressing flies, as well as a decrease in armadillo and wingless expression in the larval wing discs, implicating the involvement of the canonical Wnt signaling pathway in Ssdp functionality. RNA sequencing revealed perturbation of oxidative stress-related pathways in heads of Ssdp overexpressing flies. Furthermore, Ssdp overexpressing brains showed enhanced reactive oxygen species (ROS), altered neuronal mitochondrial morphology, and up-regulated fission and fusion genes. Flies with elevated levels of Ssdp exhibited heightened anxiety-like behavior, altered decisiveness, defective sensory perception and habituation, abnormal social interaction, and feeding defects, which were phenocopied in the pan-neuronal Ssdp knockdown flies, suggesting that Ssdp is dosage sensitive. Partial rescue of behavioral defects was observed upon normalization of Ssdp levels. Notably, Ssdp knockdown exclusively in adult flies did not produce behavioral and functional defects. Finally, we show that optogenetic manipulation of Ssdp-expressing neurons altered autism-associated behaviors. Collectively, our findings provide evidence that Ssdp, a dosage-sensitive gene in the 1p32.3 chromosomal region, is associated with various anatomical, physiological, and behavioral defects, which may be relevant to neurodevelopmental disorders like autism. Our study proposes SSBP3 as a critical gene in the 1p32.3 microdeletion/duplication genomic region and sheds light on the functional role of Ssdp in neurodevelopmental processes in Drosophila.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Swetha B. M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mujaheed Pasha
- HBKU Core Labs, Hamad Bin Khalifa University (HBKU): Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|