151
|
Genetics of recessive cognitive disorders. Trends Genet 2013; 30:32-9. [PMID: 24176302 DOI: 10.1016/j.tig.2013.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 09/11/2013] [Accepted: 09/20/2013] [Indexed: 01/23/2023]
Abstract
Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elucidation has lagged behind. Here we review recent progress in this field, show that ARID is not rare even in outbred Western populations, and discuss the prospects for improving its diagnosis and prevention.
Collapse
|
152
|
X-linked intellectual disability-associated mutations in synaptophysin disrupt synaptobrevin II retrieval. J Neurosci 2013; 33:13695-700. [PMID: 23966691 DOI: 10.1523/jneurosci.0636-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptophysin is an integral synaptic vesicle (SV) protein that accounts for ∼10% of total SV protein cargo. Deletion of synaptophysin results in the defective retrieval of synaptobrevin II (sybII) from the plasma membrane during endocytosis, coupled with a slowing in the speed of endocytosis. Synaptophysin has been implicated in X-linked intellectual disability, with a recent study identifying four separate synaptophysin gene mutations in families affected by the disorder. To determine how these mutations may affect synaptophysin function, we expressed them in cultured neurons derived from synaptophysin knock-out mice. Two distinct truncating mutants were mislocalized throughout the axon and phenocopied the arrest of sybII retrieval in synaptophysin knock-out cultures. The remaining two mutants displayed a nerve terminal localization but did not support efficient sybII retrieval. Interestingly, one mutant fully rescued SV endocytosis kinetics, suggesting that sybII retrieval and endocytosis speed are independent from each other. These studies suggest that the efficient retrieval of sybII by synaptophysin may be key to maintaining synaptic health and perturbation of this event may contribute to the pathogenesis underlying neurodevelopmental disorders such as X-linked intellectual disability.
Collapse
|
153
|
Sarasua SM, Dwivedi A, Boccuto L, Chen CF, Sharp JL, Rollins JD, Collins JS, Rogers RC, Phelan K, DuPont BR. 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan-McDermid syndrome. Genet Med 2013; 16:318-28. [PMID: 24136618 DOI: 10.1038/gim.2013.144] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Phelan-McDermid syndrome is a developmental disability syndrome with varying deletions of 22q13 and varying clinical severity. We tested the hypothesis that, in addition to loss of the telomeric gene SHANK3, specific genomic regions within 22q13 are associated with important clinical features. METHODS We used a customized oligo array comparative genomic hybridization of 22q12.3-terminus to obtain deletion breakpoints in a cohort of 70 patients with terminal 22q13 deletions. We used association and receiver operating characteristic statistical methods in a novel manner and also incorporated protein interaction networks to identify 22q13 genomic locations and genes associated with clinical features. RESULTS Specific genomic regions and candidate genes within 22q13.2q13.32 were associated with severity of speech/language delay, neonatal hypotonia, delayed age at walking, hair-pulling behaviors, male genital anomalies, dysplastic toenails, large/fleshy hands, macrocephaly, short and tall stature, facial asymmetry, and atypical reflexes. We also found regions suggestive of a negative association with autism spectrum disorders. CONCLUSION This work advances the field of research beyond the observation of a correlation between deletion size and phenotype and identifies candidate 22q13 loci, and in some cases specific genes, associated with singular clinical features observed in Phelan-McDermid syndrome. Our statistical approach may be useful in genotype-phenotype analyses for other microdeletion or microduplication syndromes.
Collapse
Affiliation(s)
- Sara M Sarasua
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Alka Dwivedi
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Chin-Fu Chen
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Julia L Sharp
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Julianne S Collins
- 1] Greenwood Genetic Center, Greenwood, South Carolina, USA [2] Deceased
| | | | - Katy Phelan
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | |
Collapse
|
154
|
Abstract
Motifs rich in arginines and glycines were recognized several decades ago to play functional roles and were termed glycine-arginine-rich (GAR) domains and/or RGG boxes. We review here the evolving functions of the RGG box along with several sequence variations that we collectively term the RGG/RG motif. Greater than 1,000 human proteins harbor the RGG/RG motif, and these proteins influence numerous physiological processes such as transcription, pre-mRNA splicing, DNA damage signaling, mRNA translation, and the regulation of apoptosis. In particular, we discuss the role of the RGG/RG motif in mediating nucleic acid and protein interactions, a function that is often regulated by arginine methylation and partner-binding proteins. The physiological relevance of the RGG/RG motif is highlighted by its association with several diseases including neurological and neuromuscular diseases and cancer. Herein, we discuss the evidence for the emerging diverse functionality of this important motif.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
155
|
Willemsen M, Kleefstra T. Making headway with genetic diagnostics of intellectual disabilities. Clin Genet 2013; 85:101-10. [DOI: 10.1111/cge.12244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/31/2023]
Affiliation(s)
- M.H. Willemsen
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - T. Kleefstra
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW Developmental disorders, including intellectual disability, autism and attention deficit hyperactivity disorder (ADHD), are neuropsychiatric disorders that manifest in early childhood as deviations from the normal development. At present, in the majority of cases a cause cannot be found. However, in the past 5 years major advances have been made in the identification of specific genetic causes of these disorders. Here, we review these findings and discuss possible implications for our current understanding of the cause of developmental disorders. RECENT FINDINGS In addition to the disorders with known genetic cause that are associated with intellectual disability, autism and ADHD, an increasing number of novel recurrent structural variants are identified in association with these developmental disorders. These variants, as well as the genetic variants identified through sequencing approaches indicate the involvement of a large number of genes. SUMMARY Similar to what is the case for intellectual disability, recent genetic studies indicate a large degree of genetic heterogeneity for autism and ADHD. Many of the disease risk variants display incomplete penetrance, indicating that additional genetic, and possibly nongenetic, factors are relevant. Despite the high number of causative or contributing genes, functional studies of these genes indicate a large degree of convergence into a smaller number of neurobiological pathways. Elucidating these shared biological mechanisms is a crucial step towards the rational development of novel therapeutic interventions.
Collapse
|
157
|
Piton A, Redin C, Mandel JL. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet 2013; 93:368-83. [PMID: 23871722 DOI: 10.1016/j.ajhg.2013.06.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 06/08/2013] [Indexed: 12/30/2022] Open
Abstract
Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases.
Collapse
Affiliation(s)
- Amélie Piton
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7104, Institut National de la Santé et de la Recherche Médicale Unité 964, University of Strasbourg, 67404 Illkirch Cedex, France; Chaire de Génétique Humaine, Collège de France, 75231 Paris Cedex 05, France.
| | | | | |
Collapse
|
158
|
Loddo S, Parisi V, Doccini V, Filippi T, Bernardini L, Brovedani P, Ricci F, Novelli A, Battaglia A. Homozygous deletion in TUSC3 causing syndromic intellectual disability: a new patient. Am J Med Genet A 2013; 161A:2084-7. [PMID: 23825019 DOI: 10.1002/ajmg.a.36028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/14/2013] [Indexed: 11/06/2022]
Abstract
Defects in the TUSC3 gene have been identified in individuals with nonsyndromic autosomal recessive intellectual disability (ARID), due to either point mutations or intragenic deletions. We report on a boy with a homozygous microdeletion 8p22, sizing 203 kb, encompassing the first exon of the TUSC3 gene, detected by SNP-array analysis (Human Gene Chip 6.0; Affymetrix). Both nonconsanguineous parents come from a small Sicilian village and were heterozygous carriers of the microdeletion. The propositus had a few dysmorphic features and a moderate cognitive impairment. Verbal communication was impaired, with an inappropriate phonetic inventory, important phono-articolatory distortions, and bucco-phonatory dyspraxia. Comprehension was possible for simple sentences. Behavior was characterized by motor instability, high tendency to irritability and distraibility, anxiety traits, and an oppositional-defiant disorder. His parents were of normal intelligence. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltranferase complex that catalyzes a pivotal step in the protein N-glycosylation process. TUSC3 has been recently reported as a member of the plasma membrane Mg(2+) transport system, with a possible involvement in learning abilities, working memory and short- and long-term memory. This is the third family in which a deletion has been described. Although the pathogenic mechanism has not been clarified yet, our report argues for a more prominent role of TUSC3 in the etiology of intellectual disability and that deletions encompassing this gene could be more common than expected.
Collapse
Affiliation(s)
- Sara Loddo
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Bassani S, Zapata J, Gerosa L, Moretto E, Murru L, Passafaro M. The neurobiology of X-linked intellectual disability. Neuroscientist 2013; 19:541-52. [PMID: 23820068 DOI: 10.1177/1073858413493972] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
X-linked intellectual disability (XLID) affects 1% to 3% of the population. XLID subsumes several heterogeneous conditions, all of which are marked by cognitive impairment and reduced adaptive skills. XLID arises from mutations on the X chromosome; to date, 102 XLID genes have been identified. The proteins encoded by XLID genes are involved in higher brain functions, such as cognition, learning and memory, and their molecular role is the subject of intense investigation. Here, we review recent findings concerning a representative group of XLID proteins: the fragile X mental retardation protein; methyl-CpG-binding protein 2 and cyclin-dependent kinase-like 5 proteins, which are involved in Rett syndrome; the intracellular signaling molecules of the Rho guanosine triphosphatases family; and the class of cell adhesion molecules. We discuss how XLID gene mutations affect the structure and function of synapses.
Collapse
Affiliation(s)
- Silvia Bassani
- CNR Institute of Neuroscience, Department BIOMETRA, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
160
|
Zhou J, McCarrey JR, Wang PJ. A 1.1-Mb segmental deletion on the X chromosome causes meiotic failure in male mice. Biol Reprod 2013; 88:159. [PMID: 23677977 DOI: 10.1095/biolreprod.112.106963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mammalian X chromosome contains a large number of multicopy genes that are expressed during spermatogenesis. The roles of these genes during germ cell development and the functional significance of gene multiplication remain mostly unexplored, as the presence of multicopy gene families poses a challenge for genetic studies. Here we report the deletion of a 1.1-Mb segment of the mouse X chromosome that is syntenic with the human Xq22.1 region and contains 20 genes that are expressed predominantly in testis and brain, including three members of the nuclear export factor gene family (Nxf2, Nxf3, and Nxf7) and five copies of preferentially expressed antigen in melanoma-like 3 (Pramel3). We have shown that germline-specific Cre/loxP-mediated deletion of this 1.1-Mb segment is efficient and causes defective chromosomal synapsis, meiotic arrest, and sterility in male mice. Our results demonstrate that this 1.1-Mb region contains one or more novel X-linked factors that are essential for male meiosis.
Collapse
Affiliation(s)
- Jian Zhou
- Center for Animal Transgenesis and Germ Cell Research, Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
161
|
Vandewalle J, Bauters M, Van Esch H, Belet S, Verbeeck J, Fieremans N, Holvoet M, Vento J, Spreiz A, Kotzot D, Haberlandt E, Rosenfeld J, Andrieux J, Delobel B, Dehouck MB, Devriendt K, Fryns JP, Marynen P, Goldstein A, Froyen G. The mitochondrial solute carrier SLC25A5 at Xq24 is a novel candidate gene for non-syndromic intellectual disability. Hum Genet 2013; 132:1177-85. [PMID: 23783460 DOI: 10.1007/s00439-013-1322-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/30/2013] [Indexed: 11/28/2022]
Abstract
Loss-of-function mutations in several different neuronal pathways have been related to intellectual disability (ID). Such mutations often are found on the X chromosome in males since they result in functional null alleles. So far, microdeletions at Xq24 reported in males always have been associated with a syndromic form of ID due to the loss of UBE2A. Here, we report on overlapping microdeletions at Xq24 that do not include UBE2A or affect its expression, in patients with non-syndromic ID plus some additional features from three unrelated families. The smallest region of overlap, confirmed by junction sequencing, harbors two members of the mitochondrial solute carrier family 25, SLC25A5 and SLC25A43. However, identification of an intragenic microdeletion including SLC25A43 but not SLC25A5 in a healthy boy excluded a role for SLC25A43 in cognition. Therefore, our findings point to SLC25A5 as a novel gene for non-syndromic ID. This highly conserved gene is expressed ubiquitously with high levels in cortex and hippocampus, and a presumed role in mitochondrial exchange of ADP/ATP. Our data indicate that SLC25A5 is involved in memory formation or establishment, which could add mitochondrial processes to the wide array of pathways that regulate normal cognitive functions.
Collapse
Affiliation(s)
- Joke Vandewalle
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Cacciagli P, Desvignes JP, Girard N, Delepine M, Zelenika D, Lathrop M, Lévy N, Ledbetter DH, Dobyns WB, Villard L. AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet 2013; 22:363-8. [PMID: 23756445 DOI: 10.1038/ejhg.2013.135] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/09/2022] Open
Abstract
MRXS5 or Pettigrew syndrome was described 20 years ago in a four generation family including nine affected individuals presenting with facial dysmorphism, intellectual disability, Dandy-Walker malformation and inconstant choreoathetosis. Four individuals had iron deposition in the basal ganglia seen on MRI or at autopsy. The mutation causing Pettigrew has remained elusive since the initial description of the condition. We report the identification of a mutation in the X-linked AP1S2 gene in the original Pettigrew syndrome family using X-chromosome exome sequencing. We report additional phenotype details for several of the affected individuals, allowing us to further refine the phenotype corresponding to this X-linked intellectual disability syndrome. The AP1S2 c.426+1 G>T mutation segregates with the disease in the Pettigrew syndrome family and results in loss of 46 amino acids in the clathrin adaptor complex small chain domain that spans most of the AP1S2 protein sequence. The mutation reported here in AP1S2 is the first mutation that is not predicted to cause a premature termination of the coding sequence or absence of the AP1S2 protein. Although most of the families affected by a mutation in AP1S2 were initially described as having different disorders assigned to at least three different OMIM numbers (MIM 300629, 300630 and 304340), our analysis of the phenotype shows that they are all the same syndrome with recognition complicated by highly variable expressivity that is seen within as well as between families and is probably not explained by differences in mutation severity.
Collapse
Affiliation(s)
- Pierre Cacciagli
- 1] Inserm, U910, Faculté de Médecine de La Timone, Marseille, France [2] Aix Marseille Université, Faculté de Médecine, Marseille, France [3] Assistance Publique Hôpitaux de Marseille, Département de Génétique Médicale et de Biologie Cellulaire, Hôpital d'Enfants de La Timone, Marseille, France
| | - Jean-Pierre Desvignes
- 1] Inserm, U910, Faculté de Médecine de La Timone, Marseille, France [2] Aix Marseille Université, Faculté de Médecine, Marseille, France
| | - Nadine Girard
- Assistance Publique Hôpitaux de Marseille, Service de Neuroradiologie, Hôpital de La Timone, Marseille, France
| | - Marc Delepine
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, Evry, France
| | - Diana Zelenika
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, Evry, France
| | - Mark Lathrop
- 1] Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, Evry, France [2] Fondation Jean Dausset - CEPH, Paris, France
| | - Nicolas Lévy
- 1] Inserm, U910, Faculté de Médecine de La Timone, Marseille, France [2] Aix Marseille Université, Faculté de Médecine, Marseille, France [3] Assistance Publique Hôpitaux de Marseille, Département de Génétique Médicale et de Biologie Cellulaire, Hôpital d'Enfants de La Timone, Marseille, France
| | | | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Laurent Villard
- 1] Inserm, U910, Faculté de Médecine de La Timone, Marseille, France [2] Aix Marseille Université, Faculté de Médecine, Marseille, France
| |
Collapse
|
163
|
Expanding the phenotype of IQSEC2 mutations: truncating mutations in severe intellectual disability. Eur J Hum Genet 2013; 22:289-92. [PMID: 23674175 DOI: 10.1038/ejhg.2013.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/09/2022] Open
Abstract
Intellectual disability (ID) is frequent in the general population, with 1 in 50 individuals directly affected worldwide. The multiple etiologies include X-linked ID (XLID). Among syndromic XLID, few syndromes present severe ID associated with postnatal microcephaly and midline stereotypic hand movements. We report on three male patients with ID, midline stereotypic hand movements, hypotonia, hyperkinesia, strabismus, as well as seizures (2/3), and non-inherited and postnatal onset microcephaly (2/3). Using array CGH and exome sequencing we characterised two truncating mutations in IQSEC2, namely two de novo intragenic duplication mapped to the Xp11.22 region and a nonsense mutation in exon 7. We propose that truncating mutations in IQSEC2 are responsible for syndromic severe ID in male patients and should be screened in patients without mutations in MECP2, FOXG1, CDKL5 and MEF2C.
Collapse
|
164
|
Marshall LS, Simon J, Wood T, Peng M, Owen R, Feldman GS, Zaragoza MV. Deletion Xq27.3q28 in female patient with global developmental delays and skewed X-inactivation. BMC MEDICAL GENETICS 2013; 14:49. [PMID: 23634718 PMCID: PMC3643848 DOI: 10.1186/1471-2350-14-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 04/25/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Global developmental delay and mental retardation are associated with X-linked disorders including Hunter syndrome (mucopolysaccharidosis type II) and Fragile X syndrome (FXS). Single nucleotide mutations in the iduronate 2-sulfatase (IDS) gene at Xq28 most commonly cause Hunter syndrome while a CGG expansion in the FMR1 gene at Xq27.3 is associated with Fragile X syndrome. Gene deletions of the Xq27-28 region are less frequently found in either condition with rare reports in females. Additionally, an association between Xq27-28 deletions and skewed X-inactivation of the normal X chromosome observed in previous studies suggested a primary role of the Xq27-28 region in X-inactivation. CASE PRESENTATION We describe the clinical, molecular and biochemical evaluations of a four year-old female patient with global developmental delay and a hemizygous deletion of Xq27.3q28 (144,270,614-154,845,961 bp), a 10.6 Mb region that contains >100 genes including IDS and FMR1. A literature review revealed rare cases with similar deletions that included IDS and FMR1 in females with developmental delay, variable features of Hunter syndrome, and skewed X-inactivation of the normal X chromosome. In contrast, our patient exhibited skewed X-inactivation of the deleted X chromosome and tested negative for Hunter syndrome. CONCLUSIONS This is a report of a female with a 10.6 Mb Xq27-28 deletion with skewed inactivation of the deleted X chromosome. Contrary to previous reports, our observations do not support a primary role of the Xq27-28 region in X-inactivation. A review of the genes in the deletion region revealed several potential genes that may contribute to the patient's developmental delays, and sequencing of the active X chromosome may provide insight into the etiology of this clinical presentation.
Collapse
|
165
|
Bryda EC. The Mighty Mouse: the impact of rodents on advances in biomedical research. MISSOURI MEDICINE 2013; 110:207-211. [PMID: 23829104 PMCID: PMC3987984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mice and rats have long served as the preferred species for biomedical research animal models due to their anatomical, physiological, and genetic similarity to humans. Advantages of rodents include their small size, ease of maintenance, short life cycle, and abundant genetic resources. The Rat Resource and Research Center (RRRC) and the MU Mutant Mouse Regional Resource Center (MMRRC) serve as centralized repositories for the preservation and distribution of the ever increasing number of rodent models.
Collapse
Affiliation(s)
- Elizabeth C Bryda
- Rat Resource and Research Center, Department of Veterinary Pathobiology, University of Missouri, USA.
| |
Collapse
|
166
|
Cottereau E, Mortemousque I, Moizard MP, Bürglen L, Lacombe D, Gilbert-Dussardier B, Sigaudy S, Boute O, David A, Faivre L, Amiel J, Robertson R, Viana Ramos F, Bieth E, Odent S, Demeer B, Mathieu M, Gaillard D, Van Maldergem L, Baujat G, Maystadt I, Héron D, Verloes A, Philip N, Cormier-Daire V, Frouté MF, Pinson L, Blanchet P, Sarda P, Willems M, Jacquinet A, Ratbi I, Van Den Ende J, Lackmy-Port Lis M, Goldenberg A, Bonneau D, Rossignol S, Toutain A. Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:92-105. [PMID: 23606591 DOI: 10.1002/ajmg.c.31360] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is a rare X-linked multiple congenital abnormality/intellectual disability syndrome characterized by pre- and post-natal overgrowth, distinctive craniofacial features, macrocephaly, variable congenital malformations, organomegaly, increased risk of tumor and mild/moderate intellectual deficiency. In 1996, Glypican 3 (GPC3) was identified as the major gene causing SGBS but the mutation detection rate was only 28-70%, suggesting either genetic heterogeneity or that some patients could have alternative diagnoses. This was particularly suggested by some reports of atypical cases with more severe prognoses. In the family reported by Golabi and Rosen, a duplication of GPC4 was recently identified, suggesting that GPC4 could be the second gene for SGBS but no point mutations within GPC4 have yet been reported. In the genetics laboratory in Tours Hospital, GPC3 molecular testing over more than a decade has detected pathogenic mutations in only 8.7% of individuals with SGBS. In addition, GPC4 mutations have not been identified thus raising the question of frequent misdiagnosis. In order to better delineate the phenotypic spectrum of SGBS caused by GPC3 mutations, and to try to define specific clinical criteria for GPC3 molecular testing, we reviewed the clinical features of all male cases with a GPC3 mutation identified in the two molecular laboratories providing this test in France (Tours and Paris). We present here the results of the analysis of 42 patients belonging to 31 families and including five fetuses and three deceased neonates.
Collapse
Affiliation(s)
- Edouard Cottereau
- Service de Génétique, Centre Hospitalo‐Universitaire, and UMR INSERM U930, Faculté de Médecine, Université François Rabelais, Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
XLID CUL4B mutants are defective in promoting TSC2 degradation and positively regulating mTOR signaling in neocortical neurons. Biochim Biophys Acta Mol Basis Dis 2013; 1832:585-93. [DOI: 10.1016/j.bbadis.2013.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 01/06/2023]
|
168
|
Gazou A, Riess A, Grasshoff U, Schäferhoff K, Bonin M, Jauch A, Riess O, Tzschach A. Xq22.3-q23 deletion includingACSL4in a patient with intellectual disability. Am J Med Genet A 2013; 161A:860-4. [DOI: 10.1002/ajmg.a.35778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 11/11/2022]
|
169
|
Zhang X, Bao L, Yang L, Wu Q, Li S. Roles of intracellular fibroblast growth factors in neural development and functions. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1038-44. [DOI: 10.1007/s11427-012-4412-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023]
|
170
|
Freitas BCG, Trujillo CA, Carromeu C, Yusupova M, Herai RH, Muotri AR. Stem cells and modeling of autism spectrum disorders. Exp Neurol 2012; 260:33-43. [PMID: 23036599 DOI: 10.1016/j.expneurol.2012.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/24/2012] [Indexed: 01/21/2023]
Abstract
Human neurons, generated from reprogrammed somatic cells isolated from live patients, bring a new perspective on the understanding of Autism Spectrum Disorders (ASD). The new technology can nicely complement other models for basic research and the development of therapeutic compounds aiming to revert or ameliorate the condition. Here, we discuss recent advances on the use of stem cells and other models to study ASDs, as well as their limitations, implications and future perspectives.
Collapse
Affiliation(s)
- Beatriz C G Freitas
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Cleber A Trujillo
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Cassiano Carromeu
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Marianna Yusupova
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Roberto H Herai
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA.
| |
Collapse
|
171
|
Abstract
In the past decade, we have witnessed a flood of reports about mutations that cause or contribute to intellectual disability (ID). This rapid progress has been driven in large part by the implementation of chromosomal microarray analysis and next-generation sequencing methods. The findings have revealed extensive genetic heterogeneity for ID, as well as examples of a common genetic etiology for ID and other neurobehavioral/psychiatric phenotypes. Clinical diagnostic application of these new findings is already well under way, despite incomplete understanding of non-Mendelian transmission patterns that are sometimes observed.
Collapse
Affiliation(s)
- Jay W Ellison
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington 99207, USA.
| | | | | |
Collapse
|
172
|
Kakar N, Goebel I, Daud S, Nürnberg G, Agha N, Ahmad A, Nürnberg P, Kubisch C, Ahmad J, Borck G. A homozygous splice site mutation in TRAPPC9 causes intellectual disability and microcephaly. Eur J Med Genet 2012; 55:727-31. [PMID: 22989526 DOI: 10.1016/j.ejmg.2012.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
Autosomal recessive intellectual disability is believed to be particularly prevalent in highly consanguineous populations and genetic isolates and may account for a quarter of all non-syndromic cases. Mutations in more than 50 genes have been reported to be involved in autosomal recessive intellectual disability, including TRAPPC9 (MIM 611966), mutations of which have been identified in six families from different geographical origins. We performed a clinical and molecular genetic study of a consanguineous Pakistani family segregating intellectual disability and microcephaly. SNP-array-based homozygosity mapping revealed suggestive linkage to four genomic regions including one on chromosome 8 that contained TRAPPC9. We detected a homozygous TRAPPC9 splice donor site mutation (c.1024+1G>T) that cosegregated with intellectual disability in the family and led to skipping of exon 3 and exons 3 and 4 in blood-derived patient RNA. We have thus identified a novel splice site mutation leading to exon skipping and premature termination of TRAPPC9 translation. These data further suggest that TRAPPC9 mutations -unlike mutations in the vast majority of the known intellectual disability-associated genes- constitute a more frequent cause of autosomal-recessive cognitive deficits, especially when microcephaly is also present.
Collapse
Affiliation(s)
- Naseebullah Kakar
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Takano K, Liu D, Tarpey P, Gallant E, Lam A, Witham S, Alexov E, Chaubey A, Stevenson RE, Schwartz CE, Board PG, Dulhunty AF. An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet 2012; 21:4497-507. [PMID: 22814392 DOI: 10.1093/hmg/dds292] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chloride intracellular channel 2 (CLIC2) protein is a member of the glutathione transferase class of proteins. Its' only known function is the regulation of ryanodine receptor (RyR) intracellular Ca(2+) release channels. These RyR proteins play a major role in the regulation of Ca(2+) signaling in many cells. Utilizing exome capture and deep sequencing of genes on the X-chromosome, we have identified a mutation in CLIC2 (c.303C>G, p.H101Q) which is associated with X-linked intellectual disability (ID), atrial fibrillation, cardiomegaly, congestive heart failure (CHF), some somatic features and seizures. Functional studies of the H101Q variant indicated that it stimulated rather than inhibited the action of RyR channels, with channels remaining open for longer times and potentially amplifying Ca(2+) signals dependent on RyR channel activity. The overly active RyRs in cardiac and skeletal muscle cells and neuronal cells would result in abnormal cardiac function and trigger post-synaptic pathways and neurotransmitter release. The presence of both cardiomegaly and CHF in the two affected males and atrial fibrillation in one are consistent with abnormal RyR2 channel function. Since the dysfunction of RyR2 channels in the brain via 'leaky mutations' can result in mild developmental delay and seizures, our data also suggest a vital role for the CLIC2 protein in maintaining normal cognitive function via its interaction with RyRs in the brain. Therefore, our patients appear to suffer from a new channelopathy comprised of ID, seizures and cardiac problems because of enhanced Ca(2+) release through RyRs in neuronal cells and cardiac muscle cells.
Collapse
Affiliation(s)
- Kyoko Takano
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|