151
|
Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun 2015; 6:7643. [PMID: 26158869 PMCID: PMC4510649 DOI: 10.1038/ncomms8643] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
It has been hypothesized that G-quadruplexes can sequester the 3' end of the telomere and prevent it from being extended by telomerase. Here we purify and characterize stable, conformationally homogenous human telomeric G-quadruplexes, and demonstrate that human telomerase is able to extend parallel, intermolecular conformations in vitro. These G-quadruplexes align correctly with the RNA template of telomerase, demonstrating that at least partial G-quadruplex resolution is required. A highly purified preparation of human telomerase retains this extension ability, establishing that the core telomerase enzyme complex is sufficient for partial G-quadruplex resolution and extension. The parallel-specific G-quadruplex ligand N-methyl mesoporphyrin IX (NMM) causes an increase in telomeric G-quadruplexes, and we show that telomerase colocalizes with a subset of telomeric G-quadruplexes in vivo. The ability of telomerase to partially unwind, extend and localize to these structures implies that parallel telomeric G-quadruplexes may play an important biological role.
Collapse
|
152
|
Cousins ARO, Ritson D, Sharma P, Stevens MFG, Moses JE, Searle MS. Ligand selectivity in stabilising tandem parallel folded G-quadruplex motifs in human telomeric DNA sequences. Chem Commun (Camb) 2015; 50:15202-5. [PMID: 25338751 DOI: 10.1039/c4cc07487d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biophysical studies of ligand interactions with three human telomeric repeat sequences (d(AGGG(TTAGGG)n, n = 3, 7 and 11)) show that an oxazole-based 'click' ligand, which induces parallel folded quadruplexes, preferentially stabilises longer telomeric repeats providing evidence for selectivity in binding at the interface between tandem quadruplex motifs.
Collapse
Affiliation(s)
- Alex R O Cousins
- Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
153
|
Zhang H, Xiang J, Hu H, Liu Y, Yang F, Shen G, Tang Y, Chen C. Selective recognition of specific G-quadruplex vs. duplex DNA by a phenanthroline derivative. Int J Biol Macromol 2015; 78:149-56. [DOI: 10.1016/j.ijbiomac.2015.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/22/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023]
|
154
|
Lannes L, Halder S, Krishnan Y, Schwalbe H. Tuning the pH Response of i-Motif DNA Oligonucleotides. Chembiochem 2015; 16:1647-56. [PMID: 26032298 DOI: 10.1002/cbic.201500182] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Cytosine-rich single-stranded DNA oligonucleotides are able to adopt an i-motif conformation, a four-stranded structure, near a pH of 6. This unique pH-dependent conformational switch is reversible and hence can be controlled by changing the pH. Here, we show that the pH response range of the human telomeric i-motif can be shifted towards more basic pH values by introducing 5-methylcytidines (5-MeC) and towards more acidic pH values by introducing 5-bromocytidines (5-BrC). No thermal destabilisation was observed in these chemically modified i-motif sequences. The time required to attain the new conformation in response to sudden pH changes was slow for all investigated sequences but was found to be ten times faster in the 5-BrC derivative of the i-motif.
Collapse
Affiliation(s)
- Laurie Lannes
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main (Germany)
| | - Saheli Halder
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065 (India)
| | - Yamuna Krishnan
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065 (India).,Department of Chemistry, University of Chicago, E305, GCIS, 929 E, 57th Street, Chicago, IL 60637 (USA)
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main (Germany).
| |
Collapse
|
155
|
Castor KJ, Metera KL, Tefashe UM, Serpell CJ, Mauzeroll J, Sleiman HF. Cyclometalated Iridium(III) Imidazole Phenanthroline Complexes as Luminescent and Electrochemiluminescent G-Quadruplex DNA Binders. Inorg Chem 2015; 54:6958-67. [PMID: 26125314 DOI: 10.1021/acs.inorgchem.5b00921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Katherine J. Castor
- Department of Chemistry, McGill University, 801 Sherbrooke
West, Montreal, Quebec H3A 0B8, Canada
| | - Kimberly L. Metera
- Department of Chemistry, McGill University, 801 Sherbrooke
West, Montreal, Quebec H3A 0B8, Canada
| | - Ushula M. Tefashe
- Department of Chemistry, McGill University, 801 Sherbrooke
West, Montreal, Quebec H3A 0B8, Canada
| | - Christopher J. Serpell
- Department of Chemistry, McGill University, 801 Sherbrooke
West, Montreal, Quebec H3A 0B8, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke
West, Montreal, Quebec H3A 0B8, Canada
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke
West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
156
|
Spectroscopic Studies on Binding of Porphyrin-Phenazine Conjugate to Four-Stranded Poly(G). J Fluoresc 2015; 25:1013-21. [PMID: 26076929 DOI: 10.1007/s10895-015-1585-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Binding of a novel cationic porphyrin-imidazophenazine conjugate, TMPyP(3+)-ImPzn, to four-stranded poly(G) was investigated in aqueous solutions of neutral pH under near physiological ionic conditions using absorption, polarized fluorescent spectroscopy and fluorescence titration techniques. In absence of the polymer the conjugate folds into stable internal heterodimer with stacking between the porphyrin and phenazine chromophores. Binding of TMPyP(3+)-ImPzn to poly(G) is realized by two competing ways. At low polymer-to-dye ratio (P/D < 6) outside electrostatic binding of the cationic porphyrin moieties of the conjugate to anionic polynucleotide backbone with their self-stacking is predominant. It is accompanied by heterodimer dissociation and distancing of phenazine moieties from the polymer. This binding mode is characterized by strong quenching of the conjugate fluorescence. Increase of P/D results in the disintegration of the porphyrin stacks and redistribution of the bound conjugate molecules along the polymer chain. At P/D > 10 another binding mode becomes dominant, embedding of TMPyP(3+)-ImPzn heterodimers into poly(G) groove as a whole is occurred.
Collapse
|
157
|
The relationship between telomere length and clinicopathologic characteristics in colorectal cancers among Tunisian patients. Tumour Biol 2015; 36:8703-13. [PMID: 26047604 DOI: 10.1007/s13277-015-3545-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023] Open
Abstract
Alterations in telomere dynamics have emerged as having a causative role in carcinogenesis. Both the telomere attrition contribute to tumor initiation via increasing chromosomal instability and that the telomere elongation induces cell immortalization and leads to tumor progression. The objectives of this study are to investigate the dynamics of telomere length in colorectal cancer (CRC) and the clinicopathological parameters implicated. We measured the relative telomere length (RTL) in cancerous tissues and in corresponding peripheral blood leukocytes (PBL) using quantitative PCR (Q-PCR) from 94 patients with CRC. Telomere length correlated significantly in cancer tissues and corresponding PBL (r = 0.705). Overall, cancer tissue had shorter telomeres than PBL (p = 0.033). In both cancer tissue and PBL, the RTL was significantly correlated with age groups (p = 0.008 and p = 0.012, respectively). The RTL in cancer tissue was significantly longer in rectal tumors (p = 0.04) and in the late stage of tumors (p = 0.01). In PBL, the RTL was significantly correlated with the macroscopic aspect of tumors (p = 0.02). In addition, the telomere-length ratio of cancer to corresponding PBL increased significantly with late-stage groups. Shortening of the telomere was detected in 44.7%, elongation in 36.2%, and telomeres were unchanged in 19.1% of 94 tumors. Telomere shortening occurred more frequently in the early stage of tumors (p = 0.01). This study suggests that the telomere length in PBL is affected by the macroscopic aspect of tumors and that telomere length in cancer tissues is a marker for progression of CRC and depends on tumor-origin site.
Collapse
|
158
|
Kim BG, Evans HM, Dubins DN, Chalikian TV. Effects of Salt on the Stability of a G-Quadruplex from the Human c-MYC Promoter. Biochemistry 2015; 54:3420-30. [DOI: 10.1021/acs.biochem.5b00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Byul G. Kim
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Heather M. Evans
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N. Dubins
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
159
|
König SLB, Evans AC, Huppert JL. Seven essential questions on G-quadruplexes. Biomol Concepts 2015; 1:197-213. [PMID: 25961997 DOI: 10.1515/bmc.2010.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The helical duplex architecture of DNA was discovered by Francis Crick and James Watson in 1951 and is well known and understood. However, nucleic acids can also adopt alternative structural conformations that are less familiar, although no less biologically relevant, such as the G-quadruplex. G-quadruplexes continue to be the subject of a rapidly expanding area of research, owing to their significant potential as therapeutic targets and their unique biophysical properties. This review begins by focusing on G-quadruplex structure, elucidating the intermolecular and intramolecular interactions underlying its formation and highlighting several substructural variants. A variety of methods used to characterize these structures are also outlined. The current state of G-quadruplex research is then addressed by proffering seven pertinent questions for discussion. This review concludes with an overview of possible directions for future research trajectories in this exciting and relevant field.
Collapse
|
160
|
Collie GW, Campbell NH, Neidle S. Loop flexibility in human telomeric quadruplex small-molecule complexes. Nucleic Acids Res 2015; 43:4785-99. [PMID: 25940631 PMCID: PMC4446451 DOI: 10.1093/nar/gkv427] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/20/2015] [Indexed: 01/25/2023] Open
Abstract
Quadruplex nucleic acids can be formed at the ends of eukaryotic chromosomes. Their formation and stabilisation by appropriate small molecules can be used as a means of inhibiting the telomere maintenance functions of telomerase in human cancer cells. The crystal structures have been determined for a number of complexes between these small molecules and human telomeric DNA and RNA quadruplexes. The detailed structural characteristics of these complexes have been surveyed here and the variations in conformation for the TTA and UUA loops have been explored. Loop conformations have been classified in terms of a number of discrete types and their distribution among the crystal structures. Sugar conformation and backbone angles have also been examined and trends highlighted. One particular loop class has been found to be most prevalent. Implications for in particular, rational drug design, are discussed.
Collapse
Affiliation(s)
- Gavin W Collie
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Nancy H Campbell
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
161
|
Yaku H, Murashima T, Miyoshi D, Sugimoto N. A mRNA-Responsive G-Quadruplex-Based Drug Release System. SENSORS 2015; 15:9388-403. [PMID: 25905703 PMCID: PMC4431183 DOI: 10.3390/s150409388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022]
Abstract
G-quadruplex-based drug delivery carriers (GDDCs) were designed to capture and release a telomerase inhibitor in response to a target mRNA. Hybridization between a loop on the GDDC structure and the mRNA should cause the G-quadruplex structure of the GDDC to unfold and release the bound inhibitor, anionic copper(II) phthalocyanine (CuAPC). As a proof of concept, GDDCs were designed with a 10-30-mer loop, which can hybridize with a target sequence in epidermal growth factor receptor (EGFR) mRNA. Structural analysis using circular dichroism (CD) spectroscopy showed that the GDDCs form a (3 + 1) type G-quadruplex structure in 100 mM KCl and 10 mM MgCl2 in the absence of the target RNA. Visible absorbance titration experiments showed that the GDDCs bind to CuAPC with Ka values of 1.5 × 105 to 5.9 × 105 M−1 (Kd values of 6.7 to 1.7 μM) at 25 °C, depending on the loop length. Fluorescence titration further showed that the G-quadruplex structure unfolds upon binding to the target RNA with Ka values above 1.0 × 108 M−1 (Kd values below 0.01 μM) at 25 °C. These results suggest the carrier can sense and bind to the target RNA, which should result in release of the bound drug. Finally, visible absorbance titration experiments demonstrated that the GDDC release CuAPC in response to the target RNA.
Collapse
Affiliation(s)
- Hidenobu Yaku
- Advanced Research Division, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan.
| | - Takashi Murashima
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Naoki Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
162
|
Changenet-Barret P, Hua Y, Markovitsi D. Electronic excitations in Guanine quadruplexes. Top Curr Chem (Cham) 2015; 356:183-201. [PMID: 24563011 DOI: 10.1007/128_2013_511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Guanine rich DNA strands, such as those encountered at the extremities of human chromosomes, have the ability to form four-stranded structures (G-quadruplexes) whose building blocks are guanine tetrads. G-quadruplex structures are intensively studied in respect of their biological role, as targets for anticancer therapy and, more recently, of their potential applications in the field of molecular electronics. Here we focus on their electronic excited states which are compared to those of non-interacting mono-nucleotides and those of single and double stranded structures. Particular emphasis is given to excited state relaxation processes studied by time-resolved fluorescence spectroscopy from femtosecond to nanosecond time scales. They include ultrafast energy transfer and trapping of ππ* excitations by charge transfer states. The effect of various structural parameters, such as the nature of the metal cations located in the central cavity of G-quadruplexes, the number of tetrads or the conformation of the constitutive single strands, are examined.
Collapse
|
163
|
Školáková P, Foldynová-Trantírková S, Bednářová K, Fiala R, Vorlíčková M, Trantírek L. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA. Nucleic Acids Res 2015; 43:4733-45. [PMID: 25855805 PMCID: PMC4482068 DOI: 10.1093/nar/gkv296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10–15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5′-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5′-C-rich and 3′-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model.
Collapse
Affiliation(s)
- Petra Školáková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska, 135, 612 65 Brno, Czech Republic
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic Institute of Parasitology, Academy of Sciences of the Czech Republic, Branisovska, 31, 375 05 Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska, 135, 612 65 Brno, Czech Republic Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska, 135, 612 65 Brno, Czech Republic Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| |
Collapse
|
164
|
Biological potential of carbazole derivatives. Eur J Med Chem 2015; 94:405-26. [DOI: 10.1016/j.ejmech.2015.02.059] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 11/21/2022]
|
165
|
Chen ZF, Qin QP, Qin JL, Liu YC, Huang KB, Li YL, Meng T, Zhang GH, Peng Y, Luo XJ, Liang H. Stabilization of G-quadruplex DNA, inhibition of telomerase activity, and tumor cell apoptosis by organoplatinum(II) complexes with oxoisoaporphine. J Med Chem 2015; 58:2159-79. [PMID: 25650792 DOI: 10.1021/jm5012484] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two G-quadruplex ligands [Pt(L(a))(DMSO)Cl] (Pt1) and [Pt(L(b))(DMSO)Cl] (Pt2) have been synthesized and fully characterized. The two complexes are more selective for SK-OV-3/DDP tumor cells versus normal cells (HL-7702). It was found that both Pt1 and Pt2 could be a telomerase inhibitor targeting G-quadruplex DNA. This is the first report demonstrating that telomeric, c-myc, and bcl-2 G-quadruplexes and caspase-3/9 preferred to bind with Pt2 rather than Pt1, which also can induce senescence and apoptosis. The different biological behavior of Pt1 and Pt2 may correlate with the presence of a 6-hydroxyl group in L(b). Importantly, Pt1 and Pt2 exhibited higher safety in vivo and more effective inhibitory effects on tumor growth in the HCT-8 and NCI-H460 xenograft mouse model, compared with cisplatin. Taken together, these mechanistic insights indicate that both Pt1 and Pt2 display low toxicity and could be novel anticancer drug candidates.
Collapse
Affiliation(s)
- Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University , Yucai Road 15, Guilin 541004, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Ebrahimi M, Khayamian T, Hadadzadeh H, Sayed Tabatabaei BE, Jannesari Z, Khaksar G. Spectroscopic, biological, and molecular modeling studies on the interactions of [Fe(III)-meloxicam] with G-quadruplex DNA and investigation of its release from bovine serum albumin (BSA) nanoparticles. J Biomol Struct Dyn 2015; 33:2316-29. [PMID: 25563680 DOI: 10.1080/07391102.2014.1003195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The guanine-rich sequence, specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5'-G3(T2AG3)3-3' (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV-vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30) × 10(5) M(-1)). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV-vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release pattern with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a π-π interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.
Collapse
Affiliation(s)
- Malihe Ebrahimi
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Taghi Khayamian
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Hassan Hadadzadeh
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | | | - Zahra Jannesari
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Ghazale Khaksar
- b Department of Agricultural Biotechnology, College of Agriculture , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| |
Collapse
|
167
|
Raju G, Srinivas R, Reddy MD, Reddy CR, Nagesh N. Studies on non-covalent interaction of coumarin attached pyrimidine and 1-methyl indole 1,2,3 triazole analogues with intermolecular telomeric G-quadruplex DNA using ESI-MS and spectroscopy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:489-506. [PMID: 24972013 DOI: 10.1080/15257770.2014.891742] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, electrospray ionization mass spectrometry (ESI-MS) and spectroscopy have been used to evaluate the non-covalent interaction, stoichiometry, and selectivity of two synthetic coumarin-attached nucleoside and non-nucleoside 1,2,3-triazoles, namely, (1-(5-(hydroxymethyl)-4-(4-((2-oxo-2H-chromen-4-yloxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-furan-2-yl)5-methyl pyrimidine-2,4(1H,3H)-dione (Tr1) and 4-((1-((-1-methyl-1H-indol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (Tr2) with two different human telomeric intermolecular G-quadruplex DNA structures formed by d(T2AG3) and d(T2AG3)2 sequences. ESI-MS studies indicate that Tr1 specifically interacts with four-stranded intermolecular parallel quadruplex complex, whereas Tr2 interacts with two hairpin as well as four-stranded intermolecular parallel quadruplex complexes. UV-Visible spectroscopic studies suggest that Tr1 and Tr2 interact with G-quadruplex structure and unwind them. Job plots show that stoichiometry of ligand:quadruplex DNA is 1:1. Circular dichroism (CD) studies of G-quadruplex DNA and Tr1/Tr2 ligands manifest that they unfold DNA on interaction. Fluorescence studies demonstrate that ligand molecules intercalate between the two stacks of quadruplex DNA and non-radiative energy transfer occurs between the excited ligand molecules (donor) and quadruplex DNA (acceptor), resulting in enhancement of fluorescence emission intensity. Thus, these studies suggest that nucleoside and non-nucleoside ligands efficiently interact with d(T2AG3) and d(T2AG3)2 G-quadruplex DNA but the interaction is not alike with all kinds of quadruplex DNA, this is probably due to the variation in the pharmacophores and structure of the ligand molecules.
Collapse
Affiliation(s)
- G Raju
- a National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology , Hyderabad , India
| | | | | | | | | |
Collapse
|
168
|
Chaubey AK, Dubey KD, Ojha RP. MD simulation of LNA-modified human telomeric G-quadruplexes: a free energy calculation. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1182-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
169
|
Xu L, Chen X, Wu J, Wang J, Ji L, Chao H. Dinuclear Ruthenium(II) Complexes That Induce and Stabilise G-Quadruplex DNA. Chemistry 2015; 21:4008-20. [DOI: 10.1002/chem.201405991] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/08/2022]
|
170
|
Nagesh N, Raju G, Srinivas R, Ramesh P, Reddy MD, Reddy CR. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells. Biochim Biophys Acta Gen Subj 2015; 1850:129-40. [DOI: 10.1016/j.bbagen.2014.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 12/30/2022]
|
171
|
Davis KJ, Richardson C, Beck JL, Knowles BM, Guédin A, Mergny JL, Willis AC, Ralph SF. Synthesis and characterisation of nickel Schiff base complexes containing the meso-1,2-diphenylethylenediamine moiety: selective interactions with a tetramolecular DNA quadruplex. Dalton Trans 2015; 44:3136-50. [DOI: 10.1039/c4dt02926g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two nickel(ii) Schiff base complexes exhibit binding selectivity for a tetramolecular DNA quadruplex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony C. Willis
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | | |
Collapse
|
172
|
Roe S, Gunaratnam M, Spiteri C, Sharma P, Alharthy RD, Neidle S, Moses JE. Synthesis and biological evaluation of hybrid acridine-HSP90 ligand conjugates as telomerase inhibitors. Org Biomol Chem 2015; 13:8500-4. [DOI: 10.1039/c5ob01177a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis and biological evaluation of a series of bifunctional acridine-HSP90 inhibitor ligands as telomerase inhibitors is herein described.
Collapse
Affiliation(s)
- S. Roe
- School of Chemistry
- University of Nottingham
- University Park
- UK
| | | | - C. Spiteri
- School of Chemistry
- University of Nottingham
- University Park
- UK
| | - P. Sharma
- School of Chemistry
- University of Nottingham
- University Park
- UK
| | - R. D. Alharthy
- Department of Chemistry
- King Abdulaziz University
- Saudi Arabia
| | - S. Neidle
- School of Pharmacy
- University College London
- UK
| | - J. E. Moses
- School of Chemistry
- University of Nottingham
- University Park
- UK
| |
Collapse
|
173
|
Theoretical Studies on the Folding Mechanisms for Different DNA G-quadruplexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:123-41. [DOI: 10.1007/978-94-017-9245-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
174
|
Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations. Molecules 2014; 20:206-23. [PMID: 25547724 PMCID: PMC6272608 DOI: 10.3390/molecules20010206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in π-π stacking. Some natural flexible cyclic molecules from Traditional Chinese Medicine have shown high binding affinity with G-quadruplex, such as berbamine and many other alkaloids. Using the structural information available on G-quadruplex structures, we performed a high throughput in silico screening of commercially available alkaloid derivative databases by means of a structure-based approach based on docking and molecular dynamics simulations against the human telomeric sequence d[AG3(T2AG3)3] and the c-myc promoter structure. We identified 69 best hits reporting an improved theoretical binding affinity with respect to the active set. Among them, a berberine derivative, already known to remarkably inhibit telomerase activity, was related to a better theoretical affinity versusc-myc.
Collapse
|
175
|
Ilyinsky NS, Varizhuk AM, Beniaminov AD, Puzanov MA, Shchyolkina AK, Kaluzhny DN. G-quadruplex ligands: Mechanisms of anticancer action and target binding. Mol Biol 2014. [DOI: 10.1134/s0026893314060077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
176
|
Riva B, Ferreira R, Musso L, Artali R, Scaglioni L, Mazzini S. Molecular recognition in naphthoquinone derivatives - G-quadruplex complexes by NMR. Biochim Biophys Acta Gen Subj 2014; 1850:673-80. [PMID: 25497213 DOI: 10.1016/j.bbagen.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/04/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND G-quadruplexes have become important drug-design targets for the treatment of various human disorders such as cancer, diabetes and cardiovascular diseases. Recently, G-quadruplex structures have been visualized in the DNA of human cells and appeared to be dynamically sensitive to the cell cycle and stabilized by small molecule ligands. A small library of isoxazolo naphthoquinones (1a-h), which exhibited a strong antiproliferative activity on different cancer cell lines, was studied as potential ligands of G-quadruplex DNA. METHODS The DNA binding properties of a series of the selected compounds have been analyzed by fluorescence assays. NMR/modeling studies were performed to describe the complexes between G-quadruplex DNA sequences and two selected compounds 1a and 1b. RESULTS 1a and 1b in the presence of G-quadruplexes, d(T(2)AG(3)T)(4), d(TAG(3)T(2)A)(4) and d(T(2)G(3)T(2))(4), showed good ability of intercalation and the formation of complexes with 2:1 stoichiometry. 1a showed an important interaction with the sequence Pu22 belonging to the promoter of oncogenes c-myc. CONCLUSIONS The ligands directly interact with the external G-tetrads of the G-quadruplexes, without alterations in the structure of the G-quadruplex core. The role of the adenine moieties over the G-tetrads in the stabilization of the complexes was discussed. GENERAL SIGNIFICANCE The results obtained suggested that the strong antiproliferative activity of isoxazolo naphthoquinones is not due to the Hsp90 inhibition, but mainly to the interaction at the level of telomeres and/or at the level of gene promoter. These findings can be used as a basis for the rational drug design of new anticancer agents.
Collapse
Affiliation(s)
- Benedetta Riva
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della scienza 3, 20126 Milan, Italy.
| | - Ruben Ferreira
- Department of Chemical and Biological Engineering, Chalmers University of Technology SE-412 96 Göteborg, Sweden.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | | | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
177
|
Lecarme L, Prado E, De Rache A, Nicolau-Travers ML, Bonnet R, van Der Heyden A, Philouze C, Gomez D, Mergny JL, Jamet H, Defrancq E, Jarjayes O, Thomas F. Interaction of polycationic Ni(II)-salophen complexes with G-quadruplex DNA. Inorg Chem 2014; 53:12519-31. [PMID: 25383703 DOI: 10.1021/ic502063r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of nine Ni(II) salophen complexes involving one, two, or three alkyl-imidazolium side-chains was prepared. The lengths of the side-chains were varied from one to three carbons. The crystal structure of one complex revealed a square planar geometry of the nickel ion. Fluorescence resonance energy transfer melting of G-quadruplex structures in the presence of salophen complex were performed. The G-quadruplex DNA structures were stabilized in the presence of the complexes, but a duplex DNA was not. The binding constants of the complexes for parallel and antiparallel G-quadruplex DNA, as well as hairpin DNA, were measured by surface plasmon resonance. The compounds were selective for G-quadruplex DNA, as reflected by equilibrium dissociation constant KD values in the region 0.1-1 μM for G-quadruplexes and greater than 2 μM for duplex DNA. Complexes with more and shorter side-chains had the highest binding constants. The structural basis for the interaction of the complexes with the human telomeric G-quadruplex DNA was investigated by computational studies: the aromatic core of the complex stacked over the last tetrad of the G-quadruplex with peripherical cationic side chains inserted into opposite grooves. Biochemical studies (telomeric repeat amplification protocol assays) indicated that the complexes significantly inhibited telomerase activity with IC50 values as low as 700 nM; the complexes did not significantly inhibit polymerase activity.
Collapse
Affiliation(s)
- Laureline Lecarme
- Université Grenoble Alpes , Département de Chimie Moléculaire, UMR CNRS 5250, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Kalathiya U, Padariya M, Baginski M. Molecular Modeling and Evaluation of Novel Dibenzopyrrole Derivatives as Telomerase Inhibitors and Potential Drug for Cancer Therapy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:1196-1207. [PMID: 26357055 DOI: 10.1109/tcbb.2014.2326860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
During previous years, many studies on synthesis, as well as on anti-tumor, anti-inflammatory and anti-bacterial activities of the pyrazole derivatives have been described. Certain pyrazole derivatives exhibit important pharmacological activities and have proved to be useful template in drug research. Considering importance of pyrazole template, in current work the series of novel inhibitors were designed by replacing central ring of acridine with pyrazole ring. These heterocyclic compounds were proposed as a new potential base for telomerase inhibitors. Obtained dibenzopyrrole structure was used as a novel scaffold structure and extension of inhibitors was done by different functional groups. Docking of newly designed compounds in the telomerase active site (telomerase catalytic subunit TERT) was carried out. All dibenzopyrrole derivatives were evaluated by three docking programs: CDOCKER, Ligandfit docking (Scoring Functions) and AutoDock. Compound C_9g, C_9k and C_9l performed best in comparison to all designed inhibitors during the docking in all methods and in interaction analysis. Introduction of pyrazole and extension of dibenzopyrrole in compounds confirm that such compound may act as potential telomerase inhibitors.
Collapse
|
179
|
Ghasemi S, Ahmadi F. The study of binding of methyl tert-butyl ether to human telomeric G-quadruplex and calf thymus DNA by gas chromatography, a thermodynamic discussion. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:112-9. [DOI: 10.1016/j.jchromb.2014.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/30/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022]
|
180
|
Qin QP, Chen ZF, Shen WY, Jiang YH, Cao D, Li YL, Xu QM, Liu YC, Huang KB, Liang H. Synthesis of a platinum(II) complex with 2-(4-methoxy-phenyl) imidazo [4,5-f]-[1,10] phenanthrolin and study of its antitumor activity. Eur J Med Chem 2014; 89:77-87. [PMID: 25462228 DOI: 10.1016/j.ejmech.2014.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
Abstract
A new platinum(II) complex of [Pt(II)(L) (pn)]Cl·2H2O (1) (pn = 1,3-propanediamine) with 2-(4-methoxy-phenyl)imidazo [4,5-f]-[1,10]phenanthrolin (H-L) was synthesized and characterized. In complex 1, the platinum adopts a four-coordinated square planar geometry. Complex 1 exhibited selective cytotoxicity against NCI-H460, BEL-7402, SK-OV-3, SK-OV-3/DDP and HeLa cell lines with IC50 values in the micromolar range (9.7-35.8 μM), but low cytotoxicity toward normal human liver HL-7702 cells. Complex 1 caused HeLa cell cycle arrest at S phase and it induced HeLa apoptosis by the activation of caspase-3/9. Various experiments showed that complex 1 preferred to bind with G-quadruplex in c-myc. Taken together, we found that complex 1 exerted its antitumor activity mainly via inhibiting telomerase by interaction with c-myc quadruplex and activation of caspase-3/9.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China.
| | - Wen-Ying Shen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Yan-Hua Jiang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Dong Cao
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Yu-Lan Li
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Qing-Min Xu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Yan-Cheng Liu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Ke-Bin Huang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, PR China.
| |
Collapse
|
181
|
Pontinha ADR, Lombardo CM, Neidle S, Oliveira-Brett AM. Triazole-linked phenyl derivatives: redox mechanisms and in situ electrochemical evaluation of interaction with dsDNA. Bioelectrochemistry 2014; 101:97-105. [PMID: 25194950 DOI: 10.1016/j.bioelechem.2014.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
The redox mechanism of two trisubstituted triazole-linked phenyl derivatives (CL41 and CL42) and a disubstituted triazole-linked phenyl derivative (CL2r50) were studied using cyclic, differential pulse and square wave voltammetry at a glassy carbon electrode. The CL41, CL42 and CL2r50 oxidation is a complex, pH-dependent irreversible process involving the formation of electroactive products that undergo two consecutive reversible oxidation reactions. The DNA interaction with CL41, CL42 and CL2r50 was investigated by differential pulse voltammetry using the dsDNA-electrochemical biosensor and in DNA/trisubstituted triazole incubated solutions. All three trisubstituted triazole-linked phenyl derivatives interacted with dsDNA causing morphological and oxidative damage to the dsDNA structure in a time-dependent manner. The DNA-electrochemical biosensor enabled the detection of oxidative damage to DNA following the occurrence of the 8-oxoGua and/or 2,8-oxoAde oxidation peaks.
Collapse
Affiliation(s)
- A Dora R Pontinha
- Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | | | - Stephen Neidle
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | | |
Collapse
|
182
|
Zhang HR, Wang YZ, Wu MS, Feng QM, Shi HW, Chen HY, Xu JJ. Visual electrochemiluminescence detection of telomerase activity based on multifunctional Au nanoparticles modified with G-quadruplex deoxyribozyme and luminol. Chem Commun (Camb) 2014; 50:12575-7. [DOI: 10.1039/c4cc06302c] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
183
|
Parrotta L, Ortuso F, Moraca F, Rocca R, Costa G, Alcaro S, Artese A. Targeting unimolecular G-quadruplex nucleic acids: a new paradigm for the drug discovery? Expert Opin Drug Discov 2014; 9:1167-87. [PMID: 25109710 DOI: 10.1517/17460441.2014.941353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION G-quadruplexes (G4s) are targets of great interest because of their roles in crucial biological processes, such as aging and cancer. G4s are based on the formation of G-quartets, stabilised by Hoogsteen-type hydrogen bonds and by interaction with cations between the tetrads. These biologically relevant conformations were first discovered in eukaryotic chromosomal telomeric DNA, but have also been found in the proximal location of promoters in a number of human genes. Therefore, the extensive analysis of an intriguing target could move towards the rational drug design of new selective anticancer agents. AREAS COVERED The authors review G4 structural characterisation, with detailed insight related to the polymorphism issue. The authors describe the topologically distinct G4 structural forms and the factors involved in their interconversion mechanisms, such as the sequence of the oligonucleotides, the strand stoichiometry and orientation, the syn-anti conformation of the guanine glycosidic bonds and the G4 loop types and the environmental factors. Furthermore, the authors report several studies related to folding and unfolding kinetic profiles in order to understand the conformational view of monomolecular G4 formations. EXPERT OPINION G4 unimolecular nucleic acids can be considered as valid targets for the rational drug development of novel anticancer agents. Structural biology represents an essential link between the biology and medicinal chemistry knowledge in this field. In silico methods have already been demonstrated to be useful, especially if well integrated with biophysical tests. If this proves successful, the G4-targeting paradigm could also be extended to drug discovery beyond neoplastic pathologies.
Collapse
Affiliation(s)
- Lucia Parrotta
- Università degli Studi "Magna Græcia", Dipartimento di Scienze della Salute , Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro , Italy
| | | | | | | | | | | | | |
Collapse
|
184
|
Ungvarsky J, Plsikova J, Janovec L, Koval J, Mikes J, Mikesová L, Harvanova D, Fedorocko P, Kristian P, Kasparkova J, Brabec V, Vojtickova M, Sabolova D, Stramova Z, Rosocha J, Imrich J, Kozurkova M. Novel trisubstituted acridines as human telomeric quadruplex binding ligands. Bioorg Chem 2014; 57:13-29. [PMID: 25171773 DOI: 10.1016/j.bioorg.2014.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 11/24/2022]
Abstract
A novel series of trisubstituted acridines were synthesized with the aim of mimicking the effects of BRACO19. These compounds were synthesized by modifying the molecular structure of BRACO19 at positions 3 and 6 with heteroacyclic moieties. All of the derivatives presented in the study exhibited stabilizing effects on the human telomeric DNA quadruplex. UV-vis spectroscopy, circular dichroism, linear dichroism and viscosimetry were used in order to study the nature of the DNA binding in more detail. The results show that all of the novel derivatives were able to fold the single-stranded DNA sequences into antiparallel G-quadruplex structures, with derivative 15 exhibiting the highest stabilizing capability. Cell cycle analysis revealed that a primary trend of the "braco"-like derivatives was to arrest the cells in the S- and G2M-phases of the cell cycle within the first 72h, with derivative 13 and BRACO19 proving particularly effective in suppressing cell proliferation. All studies derivatives were less toxic to human fibroblast cell line in comparison with HT 29 cancer cell line.
Collapse
Affiliation(s)
- Jan Ungvarsky
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jana Plsikova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic; Associated Tissue Bank of Faculty of Medicine, L. Pasteur University Hospital, Trieda SNP 1, 04166 Kosice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jan Koval
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jaromir Mikes
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Lucia Mikesová
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Denisa Harvanova
- Associated Tissue Bank of Faculty of Medicine, L. Pasteur University Hospital, Trieda SNP 1, 04166 Kosice, Slovak Republic
| | - Peter Fedorocko
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jana Kasparkova
- Institute of Biophysics, Department of Molecular Biophysics and Pharmacology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Department of Molecular Biophysics and Pharmacology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Maria Vojtickova
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Danica Sabolova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Zuzana Stramova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jan Rosocha
- Associated Tissue Bank of Faculty of Medicine, L. Pasteur University Hospital, Trieda SNP 1, 04166 Kosice, Slovak Republic
| | - Jan Imrich
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Maria Kozurkova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic.
| |
Collapse
|
185
|
Li YL, Qin QP, Liu YC, Chen ZF, Liang H. A platinum(II) complex of liriodenine from traditional Chinese medicine (TCM): Cell cycle arrest, cell apoptosis induction and telomerase inhibition activity via G-quadruplex DNA stabilization. J Inorg Biochem 2014; 137:12-21. [DOI: 10.1016/j.jinorgbio.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/02/2023]
|
186
|
You H, Zeng X, Xu Y, Lim CJ, Efremov AK, Phan AT, Yan J. Dynamics and stability of polymorphic human telomeric G-quadruplex under tension. Nucleic Acids Res 2014; 42:8789-95. [PMID: 25013179 PMCID: PMC4117794 DOI: 10.1093/nar/gku581] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As critical DNA structures capping the human chromosome ends, the stability and structural polymorphism of human telomeric G-quadruplex (G4) have drawn increasing attention in recent years. This work characterizes the equilibrium transitions of single-molecule telomeric G4 at physiological K+ concentration. We report three folded states of telomeric G4 with markedly different lifetime and mechanical stability. Our results show that the kinetically favored folding pathway is through a short-lived intermediate state to a longer-lived state. By examining the force dependence of transition rates, the force-dependent transition free energy landscape for this pathway is determined. In addition, an ultra-long-lived form of telomeric G4 structure with a much stronger mechanical stability is identified.
Collapse
Affiliation(s)
- Huijuan You
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xiangjun Zeng
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yue Xu
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Ci Ji Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, 117546, Singapore
| | - Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, 117546, Singapore Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| |
Collapse
|
187
|
Jin B, Zhang X, Zheng W, Liu X, Zhou J, Zhang N, Wang F, Shangguan D. Dicyanomethylene-Functionalized Squaraine as a Highly Selective Probe for Parallel G-Quadruplexes. Anal Chem 2014; 86:7063-70. [DOI: 10.1021/ac501619v] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Jin
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zheng
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Zhou
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dihua Shangguan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
188
|
Liu AH, Sun X, Wei XQ, Zhang YZ. Efficacy of multiple low-dose photodynamic TMPYP4 therapy on cervical cancer tumour growth in nude mice. Asian Pac J Cancer Prev 2014; 14:5371-4. [PMID: 24175828 DOI: 10.7314/apjcp.2013.14.9.5371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Photodynamic therapy (PDT) is an emerging therapeutic procedure suitable for the treatment of cervical cancer. However, the side effects of PDT are severe, including skin ulceration, so we designed an experiment to examine the effects of multiple low- dose photodynamic therapy of 5, 10, 15, 20-tetrakis(1- methylpyridinium-4-yl) porphyrin (Tmpyp4) on tumour growth by utilizing a model in nude mice implanted with Hela cervical cancer cells. MATERIALS AND METHODS Female BALB/c nude mice (aged 5-6 weeks, weighing 18-20 g) were used. Hela cervical cancer cells were injected subcutaneously (1 x 10(7) cells/200 μL). Ten days after injection, the mice were divided into three groups (n=6), the A group of controls without any treatment, the B group receiving a single-treatment with Tmpyp4 (10 mg/kg, intratumor injection) and irradiation (blue laser, 108 J/cm(2)), and the C group given three-treatments with Tmpyp4 (10 mg/ kg, intratumor injection) and irradiation at intervals of two days. After starting treatment, tumours were measured every two days, to assess growth. At 2 weeks after the last treatment of C group, tumour tissue and organs were collected from each mouse to evaluate tumor histology and organ damage. RESULTS Tumour growth in C group was significantly inhibited compared with A and B groups (P <0.05), without any injury to the skin and internal organs. CONCLUSION Our novel findings demonstrated that multiple low-dose photodynamic therapy of Tmpyp4 could inhibit cervical cancer growth significantly with no apparent side effects.
Collapse
Affiliation(s)
- Ai-Hong Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong Univeristy, Jinan, China E-mail :
| | | | | | | |
Collapse
|
189
|
The inhibitory effect of helenalin on telomerase activity is attributed to the alkylation of the CYS445 residue: Evidence from QM/MM simulations. J Mol Graph Model 2014; 51:97-103. [DOI: 10.1016/j.jmgm.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/16/2014] [Accepted: 04/28/2014] [Indexed: 01/18/2023]
|
190
|
Le HT, Dean WL, Buscaglia R, Chaires JB, Trent JO. An investigation of G-quadruplex structural polymorphism in the human telomere using a combined approach of hydrodynamic bead modeling and molecular dynamics simulation. J Phys Chem B 2014; 118:5390-405. [PMID: 24779348 PMCID: PMC4032189 DOI: 10.1021/jp502213y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/21/2014] [Indexed: 01/12/2023]
Abstract
Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures.
Collapse
Affiliation(s)
- Huy T. Le
- Department
of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616, Louisville, Kentucky 40202, United States
| | - William L. Dean
- Department
of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616, Louisville, Kentucky 40202, United States
- James
Graham Brown Cancer Center, University of
Louisville, 529 South
Jackson Street, Louisville, Kentucky 40202, United
States
| | - Robert Buscaglia
- Department
of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616, Louisville, Kentucky 40202, United States
| | - Jonathan B. Chaires
- Department
of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616, Louisville, Kentucky 40202, United States
- James
Graham Brown Cancer Center, University of
Louisville, 529 South
Jackson Street, Louisville, Kentucky 40202, United
States
- Department
of Medicine, School of Medicine, University
of Louisville, 550 South
Jackson Street, Louisville, Kentucky 40202, United
States
| | - John O. Trent
- Department
of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616, Louisville, Kentucky 40202, United States
- James
Graham Brown Cancer Center, University of
Louisville, 529 South
Jackson Street, Louisville, Kentucky 40202, United
States
- Department
of Medicine, School of Medicine, University
of Louisville, 550 South
Jackson Street, Louisville, Kentucky 40202, United
States
| |
Collapse
|
191
|
Di Leva FS, Novellino E, Cavalli A, Parrinello M, Limongelli V. Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res 2014; 42:5447-55. [PMID: 24753420 PMCID: PMC4027208 DOI: 10.1093/nar/gku247] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1: ), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1: to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1: is able to bind both to the groove and to the 3' end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, I-16163 Genoa, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, I-80131 Naples, Italy
| | - Andrea Cavalli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, I-16163 Genoa, Italy Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, via Belmeloro, 6, I-40126 Bologna, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, via G. Buffi, 13, CH-6900 Lugano, Switzerland
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, I-80131 Naples, Italy
| |
Collapse
|
192
|
Ranpura H, Bialonska D, Bolton PH. Finding and characterizing the complexes of drug like molecules with quadruplex DNA: combined use of an enhanced hydroxyl radical cleavage protocol and NMR. PLoS One 2014; 9:e96218. [PMID: 24763734 PMCID: PMC3999192 DOI: 10.1371/journal.pone.0096218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
Structural information on the complexes of drug like molecules with quadruplex DNAs can aid the development of therapeutics and research tools that selectively target specific quadruplex DNAs. Screening can identify candidate molecules that require additional evaluation. An enhanced hydroxyl radical cleavage protocol is demonstrated that can efficiently provide structural information on the complexes of the candidate molecules with quadruplex DNA. NMR methods have been used to offer additional structural information about the complexes as well as validate the results of the hydroxyl radical approach. This multi-step protocol has been demonstrated on complexes of the chair type quadruplex formed by the thrombin binding aptamer, d(GGTTGGTGTGGTTGG). The hydroxyl radical results indicate that NSC 176319, Cain’s quinolinium that was found by screening, exhibits selective binding to the two TT loops. The NMR results are consistent with selective disruption of the hydrogen bonding between T4 and T13 as well as unstacking of these residues from the bottom quartet. Thus, the combination of screening, hydroxyl radical footprinting and NMR can find new molecules that selectively bind to quadruplex DNAs as well as provide structural information about their complexes.
Collapse
Affiliation(s)
- Harikrushan Ranpura
- Chemistry Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Dobroslawa Bialonska
- Chemistry Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Philip H. Bolton
- Chemistry Department, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
193
|
Xu XX, Na JJ, Bao FF, Zhou W, Pang CY, Li Z, Gu ZG. Dinuclear nickel(II) triple-stranded supramolecular cylinders: syntheses, characterization and G-quadruplexes binding properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:21-29. [PMID: 24457934 DOI: 10.1016/j.saa.2013.12.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Three dinuclear nickel triple-stranded supramolecular cylinders [Ni2(L1)3][ClO4]4 (1), [Ni2(L2)3][ClO4]4 (2) and [Ni2(L3)3][ClO4]4 (3) with bis(pyridylimine) Schiff base containing triphenyl groups in the spacers as ligands were synthesized and characterized. The human telomeric G-quadruplexes binding properties of cylinders 1-3 were evaluated by means of UV-Vis spectroscopy, circular dichroism (CD) spectroscopy and fluorescence resonance energy transfer (FRET) melting assay. UV-Vis studies revealed that the supramolecular cylinders 1-3 could bind to G-quadruplex DNA with high binding constants (Kb values ranging from 0.11-2.2×10(6) M(-1)). FRET melting studies indicated that the cylinders 1-3 had much stronger stabilizing effect on G-quadruplex DNA (ΔTm up to 24.5°C) than the traditional cylinder Ni2L3(4+) just containing diphenylmethane spacers (ΔTm=10.6 °C). Meanwhile, cylinders 1-3 were found to have a modest degree of selectivity for the quadruplex DNA versus duplex DNA in competition FRET assays. Moreover, CD spectroscopy revealed that complex 1 could induce G-quadruplex formation in the absence of metal ions solution and convert antiparallel G-quadruplex into hybrid structure in Na(+) solution. These results provided a new insight into the development of supramolecular cylinders as potential anticancer drugs targeting G-quadruplex DNA.
Collapse
Affiliation(s)
- Xin-Xin Xu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jing-Jing Na
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fei-Fei Bao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wen Zhou
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chun-Yan Pang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhi-Guo Gu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China; The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
194
|
Safa L, Delagoutte E, Petruseva I, Alberti P, Lavrik O, Riou JF, Saintomé C. Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability. Biochimie 2014; 103:80-8. [PMID: 24747047 DOI: 10.1016/j.biochi.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/09/2014] [Indexed: 01/01/2023]
Abstract
Replication protein A (RPA) is a single-stranded DNA binding protein that plays an essential role in telomere maintenance. RPA binds to and unfolds G-quadruplex (G4) structures formed in telomeric DNA, thus facilitating lagging strand DNA replication and telomerase activity. To investigate the effect of G4 stability on the interactions with human RPA (hRPA), we used a combination of biochemical and biophysical approaches. Our data revealed an inverse relationship between G4 stability and ability of hRPA to bind to telomeric DNA; notably small G4 ligands that enhance G4 stability strongly impaired G4 unfolding by hRPA. To gain more insight into the mechanism of binding and unfolding of telomeric G4 structures by RPA, we carried out photo-crosslinking experiments to elucidate the spatial arrangement of the RPA subunits along the DNA strands. Our results showed that RPA1 and RPA2 are arranged from 5' to 3' along the unfolded telomeric G4, as already described for unstructured single-stranded DNA, while no contact is possible with RPA3 on this short oligonucleotide. In addition, these data are compatible with a 5' to 3' directionality in G4 unfolding by hRPA.
Collapse
Affiliation(s)
- Layal Safa
- Structure des Acides Nucléiques, Télomères et Evolution, Inserm U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France; Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
| | - Emmanuelle Delagoutte
- Structure des Acides Nucléiques, Télomères et Evolution, Inserm U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France
| | - Irina Petruseva
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Patrizia Alberti
- Structure des Acides Nucléiques, Télomères et Evolution, Inserm U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France
| | - Olga Lavrik
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Jean-François Riou
- Structure des Acides Nucléiques, Télomères et Evolution, Inserm U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France.
| | - Carole Saintomé
- Structure des Acides Nucléiques, Télomères et Evolution, Inserm U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France; Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
195
|
Adrian M, Ang DJ, Lech CJ, Heddi B, Nicolas A, Phan AT. Structure and conformational dynamics of a stacked dimeric G-quadruplex formed by the human CEB1 minisatellite. J Am Chem Soc 2014; 136:6297-305. [PMID: 24742225 DOI: 10.1021/ja4125274] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CEB1 is a highly polymorphic human minisatellite. In yeast, the size variation of CEB1 tandem arrays has been associated with the capacity of the motif to form G-quadruplexes. Here we report on the NMR solution structure of a G-quadruplex formed by the CEB1 DNA G-rich fragment d(AGGGGGGAGGGAGGGTGG), harboring several G-tracts including one with six continuous guanines. This sequence forms a dimeric G-quadruplex involving the stacking of two subunits, each being a unique snapback parallel-stranded scaffold with three G-tetrad layers, three double-chain-reversal loops, and a V-shaped loop. The two subunits are stacked at their 5'-end tetrads, and multiple stacking rotamers may be present due to a high symmetry at the stacking interface. There is a conformational exchange in the millisecond time scale involving a swapping motion between two bases of the six-guanine tract. Our results not only add to the understanding of how the G-quadruplex formation in human minisatellite leads to genetic instability but also address the fundamental questions regarding stacking of G-quadruplexes and how a long continuous G-tract participates in the structure and conformational dynamics of G-quadruplexes.
Collapse
Affiliation(s)
- Michael Adrian
- School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | | | | | | | | | | |
Collapse
|
196
|
Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 2014; 77:422-87. [PMID: 24685980 DOI: 10.1016/j.ejmech.2014.03.018] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids.
Collapse
|
197
|
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms. PLoS Comput Biol 2014; 10:e1003448. [PMID: 24550717 PMCID: PMC3923661 DOI: 10.1371/journal.pcbi.1003448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/30/2013] [Indexed: 12/16/2022] Open
Abstract
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability. Tumour cells acquire the ability to divide and multiply indefinitely whereas normal cells can undergo only a limited number of divisions. The switch to immortalisation of the tumour cell is dependent on maintaining the integrity of telomere DNA which forms chromosome ends and is achieved through activation of the telomerase enzyme by turning on synthesis of the TERT gene, which is usually silenced in normal cells. Suppressing telomerase is toxic to cancer cells and it is widely believed that understanding TERT regulation could lead to potential cancer therapies. Previous studies have identified many of the factors which individually contribute to activate or repress TERT levels in cancer cells. However, transcription factors do not behave in isolation in cells, but rather as a complex co-operative network displaying inter-regulation. Therefore, full understanding of TERT regulation will require a broader view of the transcriptional network. In this paper we take a computational modelling approach to study TERT regulation at the network level. We tested interactions between 14 TERT-regulatory factors in an ovarian cancer cell line using a screening approach and developed a model to analyse which network interventions were able to silence TERT.
Collapse
|
198
|
Laguerre A, Desbois N, Stefan L, Richard P, Gros CP, Monchaud D. Porphyrin-based design of bioinspired multitarget quadruplex ligands. ChemMedChem 2014; 9:2035-9. [PMID: 24678052 DOI: 10.1002/cmdc.201300526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/06/2022]
Abstract
Secondary nucleic acid structures, such as DNA and RNA quadruplexes, are potential targets for cancer therapies. Ligands that interact with these targets could thus find application as anticancer agents. Synthetic G-quartets have recently found numerous applications, including use as bioinspired G-quadruplex ligands. Herein, the design, synthesis and preliminary biophysical evaluation of a new prototype multitarget G-quadruplex ligand, (PNA)PorphySQ, are reported, where peptidic nucleic acid guanine ((PNA)G) was incorporated in the porphyrin-templated synthetic G-quartet (PorphySQ). Using fluorescence resonance energy transfer (FRET)-melting experiments, PorphySQ was shown to possess enhanced quadruplex-interacting properties thanks to the presence of four positively charged (PNA)G residues that improve its electrostatic interactions with the binding site of both DNA and RNA quadruplexes (i.e., their negatively charged and accessible G-quartets), thereby making (PNA)PorphySQ an interesting prototype of a multitarget ligand. Both the chemical stability and water solubility of (PNA)PorphySQ are improved over the non-PNA derivative (PorphySQ), which are desirable properties for drug development, and while improvements remain to be made, this ligand is a promising lead for the further development of multitarget G-quadruplex ligands.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Institut de Chimie Moléculaire, Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon (France)
| | | | | | | | | | | |
Collapse
|
199
|
Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, Riou JF, Prioleau MN. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014; 33:732-46. [PMID: 24521668 DOI: 10.1002/embj.201387506] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation.
Collapse
Affiliation(s)
- Anne-Laure Valton
- Institut Jacques Monod, CNRS UMR7592 Université Paris Diderot Equipe Labellisée Ligue contre le cancer, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Gray RD, Trent JO, Chaires JB. Folding and unfolding pathways of the human telomeric G-quadruplex. J Mol Biol 2014; 426:1629-50. [PMID: 24487181 DOI: 10.1016/j.jmb.2014.01.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/30/2022]
Abstract
Sequence analogs of human telomeric DNA such as d[AGGG(TTAGGG)3] (Tel22) fold into monomeric quadruplex structures in the presence of a suitable cation. To investigate the pathway for unimolecular quadruplex formation, we monitored the kinetics of K(+)-induced folding of Tel22 by circular dichroism (CD), intrinsic 2-aminopurine fluorescence, and fluorescence resonance energy transfer (FRET). The results are consistent with a four-step pathway U ↔ I1 ↔ I2 ↔ I3 ↔ F where U and F represent unfolded and folded conformational ensembles and I1, I2, and I3 are intermediates. Previous kinetic studies have shown that I1 is formed in a rapid pre-equilibrium and may consist of an ensemble of "prefolded" hairpin structures brought about by cation-induced electrostatic collapse of the DNA. The current study shows that I1 converts to I2 with a relaxation time τ1=0.1s at 25 °C in 25 mM KCl. The CD spectrum of I2 is characteristic of an antiparallel quadruplex that could form as a result of intramolecular fold-over of the I1 hairpins. I3 is relatively slowly formed (τ2≈3700s) and has CD and FRET properties consistent with those expected of a triplex structure as previously observed in equilibrium melting studies. I3 converts to F with τ3≈750s. Identical pathways with different kinetic constants involving a rapidly formed antiparallel intermediate were observed with oligonucleotides forming mixed parallel/antiparallel hybrid-1 and hybrid-2 topologies {e.g. d[TTGGG(TTAGGG)3A] and d[TAGGG(TTAGGG)3TT]}. Aspects of the kinetics of unfolding were also monitored by the spectroscopic methods listed above and by time-resolved fluorescence lifetime measurements using a complementary strand trap assay. These experiments reveal a slow, rate-limiting step along the unfolding pathway.
Collapse
Affiliation(s)
- Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|