151
|
Sun Y, Mehmood A, Giampieri F, Battino MA, Chen X. Insights into the cellular, molecular, and epigenetic targets of gamma-aminobutyric acid against diabetes: a comprehensive review on its mechanisms. Crit Rev Food Sci Nutr 2023; 64:12620-12637. [PMID: 37694998 DOI: 10.1080/10408398.2023.2255666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Diabetes is a metabolic disease due to impaired or defective insulin secretion and is considered one of the most serious chronic diseases worldwide. Gamma-aminobutyric acid (GABA) is a naturally occurring non-protein amino acid commonly present in a wide range of foods. A number of studies documented that GABA has good anti-diabetic potential. This review summarized the available dietary sources of GABA as well as animal and human studies on the anti-diabetic properties of GABA, while also discussing the underlying mechanisms. GABA may modulate diabetes through various pathways such as inhibiting the activities of α-amylase and α-glucosidase, promoting β-cell proliferation, stimulating insulin secretion from β-cells, inhibiting glucagon secretion from α-cells, improving insulin resistance and glucose tolerance, and increasing antioxidant and anti-inflammatory activities. However, further mechanistic studies on animals and human are needed to confirm the therapeutic effects of GABA against diabetes.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maurizio Antonio Battino
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
152
|
Sarfraz M, Arafat M, Zaidi SHH, Eltaib L, Siddique MI, Kamal M, Ali A, Asdaq SMB, Khan A, Aaghaz S, Alshammari MS, Imran M. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers (Basel) 2023; 15:4499. [PMID: 37760469 PMCID: PMC10526844 DOI: 10.3390/cancers15184499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Mohammed Sanad Alshammari
- Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| |
Collapse
|
153
|
Wang J, Feng D, Xiang Y, Guo J, Huang N, Yu N, Yang H, Liu C, Zou K. Synthesis and inhibitory activity of euparin derivatives as potential dual inhibitors against α-glucosidase and protein tyrosine phosphatase 1B (PTP1B). Fitoterapia 2023; 169:105596. [PMID: 37364700 DOI: 10.1016/j.fitote.2023.105596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Diabetes mellitus is a serious threat to human life and health. The α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) were important targets for the treatment of type 2 diabetes mellitus. In this paper, euparin, a natural product from Eupatorium chinense possessed extensive pharmacological activities, was selected as the lead compound. It was derived into chalcone compounds with high efficiency, and the inhibitory activities of these 30 products on α-glucosidase and PTP1B were tested. The results showed that compounds 12 and 15 had good inhibitory activities against both enzymes. The IC50 value of 12 to inhibit α-glucosidase and PTP1B was 39.77 and 39.31 μM, and the IC50 value of 15 to inhibit α-glucosidase and PTP1B was 9.02 and 3.47 μM, respectively. In addition, molecular docking results showed that compounds 12 and 15 exhibited good binding affinities toward both α -glucosidase and PTP1B with negative binding energies. The results of the present study demonstrate that compounds 12 and 15 might be beneficial in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jinqiang Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Dandan Feng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Yimin Xiang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Ji Guo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Na Yu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Huishu Yang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Chengxiong Liu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China..
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China..
| |
Collapse
|
154
|
El-Huneidi W, Anjum S, Mohammed AK, Bin Eshaq S, Abdrabh S, Bustanji Y, Soares NC, Semreen MH, Alzoubi KH, Abu-Gharbieh E, Taneera J. Rosemarinic acid protects β-cell from STZ-induced cell damage via modulating NF-κβ pathway. Heliyon 2023; 9:e19234. [PMID: 37662743 PMCID: PMC10472240 DOI: 10.1016/j.heliyon.2023.e19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Rosmarinic acid (RA), a natural ester phenolic compound, is known to have antioxidant and anti-inflammatory properties. RA has also been reported to exhibit a hypoglycemic effect; however, the mechanisms underlying this effect have yet to be investigated. Therefore, the present study focused on the anti-diabetic effects and mechanism of RA in INS-1 cells using in vitro model. Streptozotocin (STZ) at a concentration of 3 mM was applied to INS-1 cells for 4 h to create a diabetic model. The cells were pretreated for 24 h with various concentrations (1 and 2.5 μM) of RA. The Cell viability, glucose-stimulated insulin secretion (GSIS), glucose uptake, lipid peroxidation, reactive oxygen species (ROS), apoptosis, and protein expression of Bcl-2, NF-κB, 1L-1β, and PARP were assessed. Results showed that STZ-treated INS-1 cells exhibited reduced cell viability, insulin release, insulin content, glucose uptake, and elevated MDA and ROS levels. Cells pretreated with RA maintained the function and morphology of β-cells against STZ-induced damage. Moreover, RA sustained high protein expression levels of Bcl-2 and low expression levels of NF-κB, IL-1β, and PARP. In conclusion, RA preserved β-cells function against STZ-induced damage by altering NF-κB and Bcl-2 pathways.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shabana Anjum
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Engineering, Drug Delivery Research Group, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shuhd Bin Eshaq
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sham Abdrabh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
155
|
Rohini HN, Punita P, Santhekadur PK, Ravishankar MV. Gestational Diabetes Mellitus - The Modern Indian Perspective. Indian J Endocrinol Metab 2023; 27:387-393. [PMID: 38107727 PMCID: PMC10723610 DOI: 10.4103/ijem.ijem_147_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a serious and most frequent health complication during pregnancy which is associated with a significant increase in the risk of maternal and neonatal outcomes. GDM is usually the result of β-cell dysfunction along with chronic insulin resistance during pregnancy. Seshiah et al. pioneer work led to the adoption of Diabetes in Pregnancy Study Group in India criteria as the norm to diagnose GDM, especially in the community setting. In 2014, the Maternal Health Division of the Ministry of Health and Family Welfare, Government of India, updated guidelines and stressed upon the proper use of guidelines such as using a glucometer for self-monitoring and the use of oral hypoglycaemic agents. The 2018 Government of India guidelines stress the importance of counselling about lifestyle modifications, weight control, exercise, and family planning.
Collapse
Affiliation(s)
- H N Rohini
- Department of Physiology, Meeankshi Medical College and Research Institute, Affiliated to Meenakshi Academy of Higher Education and Research, Mysore, India
| | - Pushpanathan Punita
- Department of Physiology, Meeankshi Medical College and Research Institute, Affiliated to Meenakshi Academy of Higher Education and Research, Mysore, India
| | - Prasanna Kumar Santhekadur
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, Mysore, India
| | - MV Ravishankar
- Department of Anatomy, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
156
|
de Oliveira E Silva Ullmann T, Ramalho BJ, Laurindo LF, Tofano RJ, Rubira CJ, Guiguer EL, Barbalho SM, Flato UAP, Sloan KP, Araujo AC. Effects of Vitamin D Supplementation in Diabetic Kidney Disease: A Systematic Review. J Ren Nutr 2023; 33:618-628. [PMID: 37302723 DOI: 10.1053/j.jrn.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes Mellitus is a highly prevalent condition in which Diabetes Mellitus type 2 is the most common. Diabetic Kidney Disease is one of the most relevant complications and affects approximately one-third of patients with Diabetes Mellitus. It is characterized by increased urinary protein excretion and a decrease in glomerular filtration rate, assessed by serum creatinine levels. Recent studies have shown that vitamin D levels are low in these patients. This study aimed to conduct a systematic review of the effects of vitamin D supplementation on proteinuria and creatinine, which are important markers for assessing the severity of kidney disease in patients with Diabetic Kidney Disease. PUBMED, EMBASE, and COCHRANE databases were consulted, Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were followed, and the COCHRANE toll for bias assessment was applied. Six papers were quantitative studies and fulfilled the inclusion criteria for this review. The results showed that vitamin D supplementation of 50,000 I.U./week for 8 weeks effectively reduced proteinuria and creatinine in patients with Diabetic Kidney Disease, particularly in patients with Diabetes Mellitus type 2. Vitamin D supplementation is beneficial for patients with Diabetic Kidney Disease by having essential effects on disease-related inflammatory markers, such as the reduction of proteinuria and creatinine. However, more clinical trials must be conducted to evaluate the intervention among more significant numbers of patients.
Collapse
Affiliation(s)
- Thais de Oliveira E Silva Ullmann
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | | | | | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | - Claudio José Rubira
- Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Department of Biochemistry, School of Food and Technology of Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Department of Biochemistry, School of Food and Technology of Marília, São Paulo, Brazil.
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil; Hospital Beneficente Unimar - University of Marília, São Paulo, Brazil
| | | | - Adriano Cressoni Araujo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil; Department of Biochemistry and Pharmacology, University of Marília, São Paulo, Brazil
| |
Collapse
|
157
|
Gupta A, Bhat HR, Singh UP. Discovery of imeglimin-inspired novel 1,3,5-triazine derivatives as antidiabetic agents in streptozotocin-induced diabetes in Wistar rats via inhibition of DPP-4. RSC Med Chem 2023; 14:1512-1536. [PMID: 37593577 PMCID: PMC10429709 DOI: 10.1039/d3md00085k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2023] [Indexed: 08/19/2023] Open
Abstract
Novel 1,3,5-triazine derivatives bearing oxazine have been synthesized and tested for their ability to inhibit a panel of dipeptidyl peptidase (DPP)-4, 8, and 9 enzymes. In a comparative inhibitory assay, the molecules showed potent inhibition of DPP-4 ranging from IC50 of 4.2 ± 0.30-260.5 ± 0.42 nM, with no activity against DPP-8 and DPP-9. Among the tested series, compound 8c demonstrated the strongest DPP-4 inhibitory activity with an IC50 of 4.2 ± 0.30 nM. It also showed the greatest binding affinity during docking studies with DPP-4 with a docking score of -8.956 and a glide energy of -78.546 kcal mol-1 and was found oriented in the S1 and S2 pockets of the DPP-4 active site, which is composed of the catalytic triad Ser 630, Asp 710, and His 740. The in vivo pharmacological assay revealed that compound 8c in a dose-dependent manner improved the insulin level, body weight, antioxidants, and HDL, and reduced the levels of blood glucose, LDL, and VLDL in streptozotocin-induced diabetes in Wistar rats. Our study demonstrated the discovery and development of novel 1,3,5-triazine derivatives bearing oxazine as a novel class of anti-diabetic agents via inhibition of DPP-4.
Collapse
Affiliation(s)
- Akanksha Gupta
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj Uttar Pradesh India 211007
- United Institute of Pharmacy Prayagraj Uttar Pradesh India 211008
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University Dibrugarh Assam India 786004
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj Uttar Pradesh India 211007
| |
Collapse
|
158
|
Huang XM, Zhong X, Du YJ, Guo YY, Pan TR. Effects of glucagon-like peptide-1 receptor agonists on glucose excursion and inflammation in overweight or obese type 2 diabetic patients. World J Diabetes 2023; 14:1280-1288. [PMID: 37664475 PMCID: PMC10473942 DOI: 10.4239/wjd.v14.i8.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Currently, the lack of comparative studies between weekly and daily formulations of glucagon-like peptide-1 receptor agonists (GLP-1RAs) for glucose excursion is worth investigation. AIM To investigate the effects of weekly and daily formulations of GLP-1RA on glucose excursion and inflammation in overweight and obese patients with type 2 diabetes. METHODS Seventy patients with type 2 diabetes mellitus who were treated at our hospital between January 2019 and January 2022 were enrolled in this retrospective analysis. All patients were treated with metformin. We evaluated changes in blood glucose levels and a series of important indicators in patients before and after treatment with either a weekly or daily preparation of GLP-1RA (group A; n = 33 and group B; n = 37). RESULTS The degree of decrease in the levels of fasting blood glucose, mean blood glucose, mean amplitude of glycemic excursions, total cholesterol, triglycerides, tumor necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein after treatment in group A was higher than that in group B (P < 0.05), whereas the 2-h postprandial blood glucose levels decreased more so in group B than in group A (P < 0.001). However, there were no statistically significant differences in the levels of glycated hemoglobin, standard deviation of blood glucose, coefficient of variation, absolute mean of daily differences, percentage of time with 3.9 mmol/L < glucose < 10 mmol/L, and high- and low-density lipoproteins between the two groups (P > 0.05). The incidence of adverse reactions was significantly lower in group A than in group B (P < 0.05). CONCLUSION The effect of the weekly preparation of GLP-1RA in controlling blood glucose levels in the patients, suppressing inflammation, and reducing adverse reactions was significantly higher than that of the daily preparations, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Xiao-Min Huang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Yi-Jun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Yan-Yun Guo
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Tian-Rong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
159
|
Mokgalaboni K, Dlamini S, Phoswa WN, Modjadji P, Lebelo SL. The Impact of Punica granatum Linn and Its Derivatives on Oxidative Stress, Inflammation, and Endothelial Function in Diabetes Mellitus: Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2023; 12:1566. [PMID: 37627561 PMCID: PMC10451900 DOI: 10.3390/antiox12081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus is recognized as the leading contributor to cardiovascular disease and associated mortality rates worldwide. Despite the use of pharmaceutical drugs to treat diabetes, its prevalence continues to rise alarmingly. Therefore, exploring remedies with a lower toxicity profile is crucial while remaining safe and effective in addressing this global public health crisis. Punica granatum Linn (pomegranate), known for its properties and safety profile, has been investigated in applied research and preclinical and clinical trials. However, conflicting reports still exist regarding its effects in diabetes. According to our knowledge, no systematic review has been conducted to critically analyze evidence from preclinical and clinical trials simultaneously, explicitly focusing on oxidative stress, inflammation, and endothelial function in diabetes. Therefore, in this systematic review, we searched for evidence on the impact of pomegranate in diabetes using databases such as PubMed, Scopus, and Google Scholar. Our inclusion criteria were limited to studies published in English. Of the 170 retrieved studies, 46 were deemed relevant and underwent critical analysis. The analyzed evidence suggests that pomegranate has the potential to alleviate oxidative stress, inflammation, and endothelial dysfunction in diabetes. Although a beneficial impact was noted in these markers, the endothelial function evidence still requires validation through further clinical trials with a powered sample size.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| | - Sanele Dlamini
- School of Chemicals and Physical Sciences, Faculty of Agriculture and Natural Science, University of Mpumalanga, Mbombela 1200, South Africa
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| | - Perpetua Modjadji
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Sogolo L. Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| |
Collapse
|
160
|
Wancewicz B, Zhu Y, Fenske RJ, Weeks AM, Wenger K, Pabich S, Daniels M, Punt M, Nall R, Peter DC, Brasier A, Cox ED, Davis DB, Ge Y, Kimple ME. Metformin Monotherapy Alters the Human Plasma Lipidome Independent of Clinical Markers of Glycemic Control and Cardiovascular Disease Risk in a Type 2 Diabetes Clinical Cohort. J Pharmacol Exp Ther 2023; 386:169-180. [PMID: 36918276 PMCID: PMC10353072 DOI: 10.1124/jpet.122.001493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023] Open
Abstract
Type 2 diabetes (T2D) is a rising pandemic worldwide. Diet and lifestyle changes are typically the first intervention for T2D. When this intervention fails, the biguanide metformin is the most common pharmaceutical therapy. Yet its full mechanisms of action remain unknown. In this work, we applied an ultrahigh resolution, mass spectrometry-based platform for untargeted plasma metabolomics to human plasma samples from a case-control observational study of nondiabetic and well-controlled T2D subjects, the latter treated conservatively with metformin or diet and lifestyle changes only. No statistically significant differences existed in baseline demographic parameters, glucose control, or clinical markers of cardiovascular disease risk between the two T2D groups, which we hypothesized would allow the identification of circulating metabolites independently associated with treatment modality. Over 3000 blank-reduced metabolic features were detected, with the majority of annotated features being lipids or lipid-like molecules. Altered abundance of multiple fatty acids and phospholipids were found in T2D subjects treated with diet and lifestyle changes as compared with nondiabetic subjects, changes that were often reversed by metformin. Our findings provide direct evidence that metformin monotherapy alters the human plasma lipidome independent of T2D disease control and support a potential cardioprotective effect of metformin worthy of future study. SIGNIFICANCE STATEMENT: This work provides important new information on the systemic effects of metformin in type 2 diabetic subjects. We observed significant changes in the plasma lipidome with metformin therapy, with metabolite classes previously associated with cardiovascular disease risk significantly reduced as compared to diet and lifestyle changes. While cardiovascular disease risk was not a primary outcome of our study, our results provide a jumping-off point for future work into the cardioprotective effects of metformin, even in well-controlled type 2 diabetes.
Collapse
Affiliation(s)
- Benjamin Wancewicz
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Yanlong Zhu
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Rachel J Fenske
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Alicia M Weeks
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Kent Wenger
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Samantha Pabich
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Michael Daniels
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Margaret Punt
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Randall Nall
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Darby C Peter
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Allan Brasier
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Elizabeth D Cox
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Dawn Belt Davis
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Ying Ge
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| | - Michelle E Kimple
- Departments of Cell and Regenerative Biology (B.W., Y.Z., K.W., Y.G., M.E.K.), Pediatrics (E.D.C.), and Chemistry (Y.G.); Human Proteomics Program, School of Medicine and Public Health (Y.Z., K.W., Y.G.); Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (R.J.F., A.M.W., S.P., M.D., M.P., R.N., D.C.P., A.B., D.B.D., M.E.K.); Interdepartmental Graduate Program in Nutritional Sciences (R.J.F., M.E.K.); and Institute for Clinical and Translational Research (A.B.), University of Wisconsin-Madison, Madison, Wisconsin; and Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin (D.B.D., M.E.K.)
| |
Collapse
|
161
|
Tang L, Xiao M, Cai S, Mou H, Li D. Potential Application of Marine Fucosyl-Polysaccharides in Regulating Blood Glucose and Hyperglycemic Complications. Foods 2023; 12:2600. [PMID: 37444337 DOI: 10.3390/foods12132600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes mellitus (DM) has become the world's third major disease after tumors and cardiovascular disease. With the exploitation of marine biological resources, the efficacy of using polysaccharides isolated from marine organisms in blood glucose regulation has received widespread attention. Some marine polysaccharides can reduce blood glucose by inhibiting digestive enzyme activity, eliminating insulin resistance, and regulating gut microbiota. These polysaccharides are mainly fucose-containing sulphated polysaccharides from algae and sea cucumbers. It follows that the hypoglycemic activity of marine fucosyl-polysaccharides is closely related to their structure, such as their sulfate group, monosaccharide composition, molecular weight and glycosidic bond type. However, the structure of marine fucosyl-polysaccharides and the mechanism of their hypoglycemic activity are not yet clear. Therefore, this review comprehensively covers the effects of marine fucosyl-polysaccharides sources, mechanisms and the structure-activity relationship on hypoglycemic activity. Moreover, the potential regulatory effects of fucosyl-polysaccharides on vascular complications caused by hyperglycemia are also summarized in this review. This review provides rationales for the activity study of marine fucosyl-polysaccharides and new insights into the high-value utilization of marine biological resources.
Collapse
Affiliation(s)
- Luying Tang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Shenyuan Cai
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| |
Collapse
|
162
|
Mohsin SN, Saleem F, Humayun A, Tanweer A, Muddassir A. Prospective Nutraceutical Effects of Cinnamon Derivatives Against Insulin Resistance in Type II Diabetes Mellitus-Evidence From the Literature. Dose Response 2023; 21:15593258231200527. [PMID: 37701673 PMCID: PMC10494518 DOI: 10.1177/15593258231200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Apart from advances in pharmaceutical antidiabetic agents, efforts are being made toward hypoglycemic agents derived from natural sources. Cinnamon has been reported to have significant benefits for human health, particularly as an anti-inflammatory, antidiabetic, and anti-hypertriglyceridemic agent. The phytochemicals in cinnamon can be extracted from different parts of plant by distillation and solvent extraction. These chemicals help in decreasing insulin resistance and can act against hyperglycemia and dyslipidemia, inflammation and oxidative stress, obesity, overweight, and abnormal glycation of proteins. Cinnamon has shown to improve all of these conditions in in vitro, animal, and/or human studies. However, the mechanism of action of active ingredients found in cinnamon remains unclear. The current review presents the outstanding ability of cinnamon derivatives to control diabetes by various pathways modulating insulin release and insulin receptor signaling. It was also found that the type and dosage of cinnamon as well as subject characteristics including drug interactions are likely to affect the response to cinnamon. Future research directions based on this review include the synergistic usage of various cinnamon derivatives in managing and/or preventing diabetes and possible other relevant chronic diseases.
Collapse
Affiliation(s)
- Saima Naz Mohsin
- NIH, HRI, Research Center NHRC, Shaikh Zayed Post Graduate Medical Institute, Lahore, Pakistan
| | - Faiza Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Humayun
- Department of Public Health and Community Medicine, Shaikh Zayed Postgraduate Medical Institute, Lahore, Pakistan
| | - Afifa Tanweer
- Department of Nutrition & Dietetics, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ambreen Muddassir
- Department of Medicine, Shaikh Zayed Post Graduate Medical Institute, Lahore, Pakistan
| |
Collapse
|
163
|
Kim H, Kim M, Oh K, Lee S, Lim S, Lee S, Kim YH, Suh KH, Min KH. Discovery of orally active sulfonylphenyl thieno[3,2-d]pyrimidine derivatives as GPR119 agonists. Eur J Med Chem 2023; 258:115584. [PMID: 37356344 DOI: 10.1016/j.ejmech.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has great potential as a therapeutic target for the treatment of type II diabetes. Novel thieno[3,2-d]pyrimidine derivatives were discovered as GPR119 agonists through a bioisosteric replacement strategy. The sulfonylphenyl thieno[3,2-d] pyrimidine scaffold was introduced, and its derivatives exhibited potent agonistic activity for GPR119 in cell-based assays. The representative derivative 43 displayed excellent pharmacokinetic profiles in rodents and significantly improved glucose tolerance in vivo. In OGTT study, compound 43 reduced significantly blood glucose levels in both mice and rats.
Collapse
Affiliation(s)
- Heecheol Kim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minjung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyujin Oh
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sohee Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sunyoung Lim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Sangdon Lee
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong-si, 18469, Republic of Korea
| | - Kyung Hoon Min
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
164
|
Deng X, Liang J, Wang L, Niu L, Xiao J, Guo Q, Liu X, Xiao C. Whole Grain Proso Millet ( Panicum miliaceum L.) Attenuates Hyperglycemia in Type 2 Diabetic Mice: Involvement of miRNA Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37294881 DOI: 10.1021/acs.jafc.2c08184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the hypoglycemic effects and underlying mechanism of whole grain proso millet (Panicum miliaceum L.; WPM) on type 2 diabetes mellitus (T2DM). The results showed that WPM supplementation significantly reduced fasting blood glucose (FBG) and serum lipid levels in T2DM mice induced by a high-fat diet (HFD) combined with streptozotocin (STZ), with improved glucose tolerance, liver and kidney injury, and insulin resistance. In addition, WPM significantly inhibited the expression of gluconeogenesis-related genes G6pase, Pepck, Foxo1, and Pgc-1α. Further study by miRNA high-throughput sequencing revealed that WPM supplementation mainly altered the liver miRNA expression profile of T2DM mice by increasing the expression of miR-144-3p_R-1 and miR-423-5p, reducing the expression of miR-22-5p_R-1 and miR-30a-3p. GO and KEGG analyses showed that the target genes of these miRNAs were mainly enriched in the PI3K/AKT signaling pathway. WPM supplementation significantly increased the level of PI3K, p-AKT, and GSK3β in the liver of T2DM mice. Taken together, WPM exerts antidiabetic effects by improving the miRNA profile and activating the PI3K/AKT signaling pathway to inhibit gluconeogenesis. This study implies that PM can act as a dietary supplement to attenuate T2DM.
Collapse
Affiliation(s)
- Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiayi Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lehui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
165
|
Tesfaye T, Teka F, Duga G, Obsa T, Dereje B, Makonnen E. Anti-Hyperglycemic and Hypoglycemic Activities of 80% Methanol Extract and Solvent Fractions of Ocimum lamiifolium Hochst Ex Benth. (Lamiaceae) Leaves in Mice. J Exp Pharmacol 2023; 15:255-266. [PMID: 37304205 PMCID: PMC10257431 DOI: 10.2147/jep.s409997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
Background Globally, the prevalence of diabetes mellitus is rising. Due to the scarcity, high cost, and many adverse effects of modern treatments, traditional medicine is commonly used in rural areas to treat a variety of illnesses, including diabetes mellitus. The aim of this study was to assess the antihyperglycemic and hypoglycemic effects of Ocimum lamiifolium Hochst ex Benth leaves. Methods A crude methanol 80% extract's and its solvent fractions' effects on healthy, oral glucose-given, and STZ-induced diabetic mice were examined. Swiss albino mice of either sex were assigned into sixteen groups, each containing six mice, for the OGTT and hypoglycemia tests. Male mice were used in the study, and they were divided into groups for the negative control (citrate buffer for diabetic mice), the normal control (Tween 2%), the test groups, and a positive control (glibenclamide) for the antihyperglycemic test in STZ (200 mg/kg body weight)-induced diabetic mice. Results A crude 80% methanol extract of 200 mg/kg effectively lowered blood glucose levels (p <0.05) and none of the fractions extracts caused hypoglycemia shock in norma mice. The aqueous residue at 100, 200, and 400 mg/kg, the n-butanol fraction at 100 and 200 mg/kg, and the chloroform fraction at 200 mg/kg demonstrated higher glucose tolerance in orally glucose-loaded mice (p <0.05). The crude 400 mg/kg of an 80% methanol extract, 100 and 200 mg/kg of the n-butanol fraction, 200 and 400 mg/kg of the chloroform fraction, and 5 mg/kg of glibenclamide significantly reduced blood glucose levels in STZ-induced diabetic mice (p <0.05). Conclusion The current research demonstrates that a crude 80% methanol extract of Ocimum lamiifolium Hochst ex Benth leaves, as well as its solvent fractions, significantly reduce blood sugar levels in mice that are healthy, loaded with glucose, and streptozotocin induced diabetic mice.
Collapse
Affiliation(s)
- Tilahun Tesfaye
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Science, Ambo University, Ambo, Ethiopia
| | - Firehiwot Teka
- Department of Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Gudeta Duga
- Department of Pharmacy, College of Medicine and Health Science, Ambo University, Ambo, Ethiopia
| | - Temesgen Obsa
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, Jigjiga University, Jigjiga, Ethiopia
| | - Beyene Dereje
- Department of Pharmacology, School of Medicine, College of Medicine and Health Science, Dire Dawa University, Dire Dawa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
166
|
Al Hayek AA, Al Dawish MA. Use of Flash Glucose Monitoring and Glycemic Control in Patients with Type 2 Diabetes Mellitus Not Treated with an Intensive Insulin Regimen: 1-Year Real-Life Retrospective Cohort Study. Adv Ther 2023; 40:2855-2868. [PMID: 37133646 DOI: 10.1007/s12325-023-02508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Estimation of laboratory-derived glycated hemoglobin (HbA1c) cannot be individually used to monitor clinically significant trends in glucose variability. Hence, clinicians advise use of continuous glucose monitoring (CGM) devices such as the Freestyle Libre™ flash glucose monitoring system (FLASH) to optimize glycemic control by estimating glucose monitoring index (GMI) values, which convert mean glucose into an estimate of simultaneously measured laboratory HbA1c. This study aimed to investigate the sustainability of intermittently scanned continuous glucose monitoring (isCGM) in patients with type 2 diabetes mellitus (T2DM) not on intensive insulin regimen, and correlations between GMI values obtained from isCGM and laboratory-derived HbA1c values. METHODS A retrospective review of 93 patients with T2DM not on intensive insulin regimen, using FLASH device, was conducted at a major tertiary hospital in Saudi Arabia, over 1 year of continuous device use. To determine the sustainability of isCGM, various glycemic markers such as average glucose and time in range were evaluated. Paired t test or Wilcoxon signed-rank test was used to assess differences in markers of glycemic control, and Pearson's correlation was used to determine correlations between HbA1c and GMI values. RESULTS Descriptive analysis shows the mean HbA1c value significantly decreased following continued use of isCGM. Pre-isCGM mean HbA1c value of 8.3% improved to 8.1% (p < 0.001) and 7.9% (p < 0.001) in the first 90 and last 90 days of device use, respectively. For both 90-day time periods, correlation analysis revealed a statistically significant positive correlation and linear regression between laboratory-derived HbA1c and GMI values (first 90 days r = 0.7999, p < 0.001; last 90 days r = 0.6651, p < 0.001). CONCLUSION Continuous use of isCGM demonstrated reductions in HbA1c levels for patients with T2DM not on an intensive insulin regimen. The GMI values showed high levels of agreement with measured HbA1c, indicating their accuracy in glucose management.
Collapse
Affiliation(s)
- Ayman A Al Hayek
- Department of Endocrinology and Diabetes, Diabetes Treatment Center, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh, 11159, Kingdom of Saudi Arabia.
| | - Mohamed A Al Dawish
- Department of Endocrinology and Diabetes, Diabetes Treatment Center, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh, 11159, Kingdom of Saudi Arabia
| |
Collapse
|
167
|
Ma P, Yu F, Zhong Y, Xu L, Xiao P. Protective effects of flavonoids in Coreopsis tinctoria Nutt. in a mouse model of type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116214. [PMID: 36736673 DOI: 10.1016/j.jep.2023.116214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coreopsis tinctoria Nutt., a popular tea drink used in the Xinjiang region of China, has been traditionally used to treat diabetes and chronic metabolic diseases in China, Portugal, and North America. The bioactive extraction and potential mechanism have not been fully elucidated until now. AIM OF THE STUDY Traditional herbal medicines usually share network targets due to multicomponent therapeutics. Therefore, we tried to explore the protective effects of C. tinctoria on diabetes and the related molecular mechanism. MATERIALS AND METHODS A flavonoid-rich fraction of C. tinctoria (CTF) was prepared. After 15 weeks of continuous treatment with CTF, the blood glucose and blood lipid levels of experimental mice were evaluated. Tissue was collected for differentially expressed genes (DEGs), bioinformatics analysis, RT‒PCR and Western blot for target-related DEGs. RESULTS After 15 weeks of continuous treatment with CTF, db/db mice showed reversed levels of glucose, insulin, glucagon and glycated hemoglobin A1c. CTF treatment also regulated total cholesterol, triglycerides, low density lipoprotein, nonesterified fatty acid, alanine transaminase, and aspartate transaminase. Major metabolic pathways were found to be dysregulated in the liver using a combined analysis of transcriptomics and network pharmacology. CTF treatment regulated 48.2% of 6357 dysregulated genes in db/db mice. The mitochondrial electron transport chain and tricarboxylic acid cycle were mainly affected. The sequencing data showed that fifty-nine predicted target genes for CTF were reverse regulated. Together with 1528 coexpressed genes, these genes reflected the main characteristics of the whole perturbed transcriptomic profile, i.e., dysregulated mitochondrial metabolism. The important genes of the target and coexpressed genes were further verified at the gene and protein levels. CONCLUSIONS The results confirm that the metabolic changes induced by hyperglycemia are closely related to mitochondrial metabolism in the liver. CTF alters a core gene set that exerts regulatory effects at the biological pathway level in db/db mice. In conclusion, our data reveal that an important molecular event for CTF treatment is the regulation of mitochondrial metabolism and support the idea that herbs or natural compounds are potential therapeutic substances for mitochondrial dysfunction-related diabetes.
Collapse
Affiliation(s)
- Pei Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Fan Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
168
|
Panthi VK, Imran M, Chaudhary A, Paudel KR, Mohammed Y. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds. Nanomedicine (Lond) 2023; 18:391-411. [PMID: 37140389 DOI: 10.2217/nnm-2022-0281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Quercetin is a well-known plant flavanol that exhibits multiple biological activities, including antioxidant, anti-inflammatory and anticancer activities. The role of quercetin in wound healing has been widely explored by a range of researchers in different models. However, the physicochemical properties, such as solubility and permeability, of this compound are low, which ultimately limits its bioavailability on the target site. To overcome these limitations for successful therapy, scientists have developed a range of nanoformulations that provide effective therapeutic potential. In this review, the broad mechanism of quercetin for acute and chronic wounds is covered. A compilation of recent advances on the horizon of wound healing via quercetin is incorporated with several advanced nanoformulations.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy & Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Mohammad Imran
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Yousuf Mohammed
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102, Australia
| |
Collapse
|
169
|
Maity D, Guha Ray P, Buchmann P, Mansouri M, Fussenegger M. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300890. [PMID: 36893359 DOI: 10.1002/adma.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Currently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.7 mW cm-2 , 0.9 V, 50 mm glucose) to drive opto- and electro-genetic regulation of vesicular insulin release from engineered beta cells. It is shown that this integration of blood-glucose monitoring with elimination of excessive blood glucose by combined electro-metabolic conversion and insulin-release-mediated cellular consumption enables the metabolic fuel cell to restore blood-glucose homeostasis in an automatic, self-sufficient, and closed-loop manner in an experimental model of type-1 diabetes.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
170
|
Anantachoke N, Duangrat R, Sutthiphatkul T, Ochaikul D, Mangmool S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023; 12:foods12091818. [PMID: 37174355 PMCID: PMC10178031 DOI: 10.3390/foods12091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a traditional health beverage produced by fermenting sweetened tea with a symbiotic culture of bacteria and yeasts. Consumption of kombucha beverages has been growing and there is kombucha commercially available worldwide as one of the most famous low-alcohol beverages. Kombucha beverages have been claimed to have beneficial effects on human health because they contain a variety of bioactive compounds that possess various functional properties. At present, several kinds of raw material (e.g., milk, fruit, vegetables, and herbs) have been fermented with kombucha consortium and consumed as kombucha beverages. Although several studies have been written regarding the biological activities of kombucha and raw materials, there is however little information available on the characterization of their components as well as the biological activities of fermented kombucha from many raw material mixtures. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In addition, the adverse effects and toxicity of kombucha consumption were also reviewed. In this study, we focused on the main and latest studies of the pharmacological effects of kombucha beverages produced from various kinds of raw materials, including antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, anticancer, antidiabetic, antihypertensive, and antihyperlipidemic effects in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanyarat Sutthiphatkul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangjai Ochaikul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
171
|
Haddad F, Dokmak G, Bader M, Karaman R. A Comprehensive Review on Weight Loss Associated with Anti-Diabetic Medications. Life (Basel) 2023; 13:1012. [PMID: 37109541 PMCID: PMC10144237 DOI: 10.3390/life13041012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a complex metabolic condition that can have a negative impact on one's health and even result in mortality. The management of obesity has been addressed in a number of ways, including lifestyle changes, medication using appetite suppressants and thermogenics, and bariatric surgery for individuals who are severely obese. Liraglutide and semaglutide are two of the five Food and Drug Administration (FDA)-approved anti-obesity drugs that are FDA-approved agents for the treatment of type 2 diabetes mellitus (T2DM) patients. In order to highlight the positive effects of these drugs as anti-obesity treatments, we analyzed the weight loss effects of T2DM agents that have demonstrated weight loss effects in this study by evaluating clinical studies that were published for each agent. Many clinical studies have revealed that some antihyperglycemic medications can help people lose weight, while others either cause weight gain or neutral results. Acarbose has mild weight loss effects and metformin and sodium-dependent glucose cotransporter proteins-2 (SGLT-2) inhibitors have modest weight loss effects; however, some glucagon-like peptide-1 (GLP-1) receptor agonists had the greatest impact on weight loss. Dipeptidyl peptidase 4 (DPP-4) inhibitors showed a neutral or mild weight loss effect. To sum up, some of the GLP-1 agonist drugs show promise as weight-loss treatments.
Collapse
Affiliation(s)
- Fatma Haddad
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ghadeer Dokmak
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
| | - Maryam Bader
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
172
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
173
|
Coulter-Parkhill A, Dobbin S, Tanday N, Gault VA, McClean S, Irwin N. A novel peptide isolated from Aphonopelma chalcodes tarantula venom with benefits on pancreatic islet function and appetite control. Biochem Pharmacol 2023; 212:115544. [PMID: 37044298 DOI: 10.1016/j.bcp.2023.115544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Proof-of-concept for therapeutic application of venom-derived compounds in diabetes is exemplified by the incretin mimetic, exenatide, originally extracted from the saliva of the venomous Heloderma suspectum lizard. In this regard, we have isolated and sequenced a novel 28 amino acid peptide named Δ-theraphotoxin-Ac1 (Δ-TRTX-AC1) from venom of the Mexican Blond tarantula spider Aphonopelma chalcodes, with potential therapeutic benefits for diabetes. Following confirmation of the structure and safety profile of the synthetic peptide, assessment of enzymatic stability and effects of Δ-TRTX-AC1 on in vitro beta-cell function were studied, alongside potential mechanisms. Glucose homeostatic and satiety actions of Δ-TRTX-AC1 alone, and in combination with exenatide, were then assessed in C57BL/6 mice. Synthetic Δ-TRTX-AC1 was shown to adopt a characteristic inhibitor cysteine knot (ICK)-like structure and was non-toxic to beta-cells. Δ-TRTX-AC1 evoked glucose-dependent insulin secretion from BRIN BD11 cells with bioactivity confirmed in murine islets. Insulin secretory potency was established to be dependent on KATP and Ca2+ channel beta-cell signalling. In addition, Δ-TRTX-AC1 enhanced beta-cell proliferation and provided significant protection against cytokine-induced apoptosis. When injected co-jointly with glucose in mice at a dose of 250 nmol/kg, Δ-TRTX-AC1 decreased blood-glucose levels and evoked a significant satiating effect. Moreover, whilst Δ-TRTX-AC1 did not enhance exenatide induced benefits on glucose homeostasis, the peptide significantly augmented exenatide mediated suppression of appetite. Together these data highlight the therapeutic potential of tarantula spider venom-derived peptides, such as Δ-TRTX-Ac1, for diabetes and related obesity.
Collapse
Affiliation(s)
| | - Swm Dobbin
- Ulster University, Coleraine, Northern Ireland, UK
| | - N Tanday
- Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- Ulster University, Coleraine, Northern Ireland, UK
| | - S McClean
- Ulster University, Coleraine, Northern Ireland, UK
| | - N Irwin
- Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
174
|
Wu SY, Wu HT, Wang YC, Chang CJ, Shan YS, Wu SR, Chiu YC, Hsu CL, Juan HF, Lan KY, Chu CW, Lee YR, Lan SH, Liu HS. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19:1239-1257. [PMID: 36109708 PMCID: PMC10012902 DOI: 10.1080/15548627.2022.2123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic β-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in β-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from β-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Ying Lan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
175
|
Kumar DL, Mittal R, Bhalla A, Kumar A, Madan H, Pandhi K, Garg Y, Singh K, Jain A, Rana S. Knowledge and Awareness About Diabetes Mellitus Among Urban and Rural Population Attending a Tertiary Care Hospital in Haryana. Cureus 2023; 15:e38359. [PMID: 37266052 PMCID: PMC10230119 DOI: 10.7759/cureus.38359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is one of the fastest-growing public health problems in the twenty-first century. The ignorance among people about their disease may be related to their low socioeconomic status and lack of quality education available to them about the disease. It is a serious condition leading to several complications if the individual does not follow up regularly for check-ups and blood sugar monitoring. Lifestyle modifications such as a healthy diet, regular exercise, reducing weight, stress management, and smoking cessation can play a critical role in managing diabetes and improving the health and well-being of diabetic patients. Thus, through this study, we want to assess and create awareness among diabetic patients. METHODOLOGY It is a hospital-based cross-sectional study conducted at a tertiary care hospital on diagnosed cases of DM. The patients aged 18 years or above of either gender who had already been diagnosed with DM type 1 and type 2 were included, and patients with gestational DM were excluded from the study. Informed consent was taken from the patients, and all the required details were obtained using a well-structured questionnaire. After obtaining all the answers, the level of knowledge and awareness was analyzed, and the data was entered into an MS Excel sheet (Microsoft, Redmond, Washington) and analyzed by Statistical Package for the Social Sciences (SPSS) version 22.0 (IBM Corp., Armonk, NY). RESULTS In our study, the maximum prevalence of diabetes was seen in males (55.5%) than females (44.5%), and the mean age of our study population was 53.3 ± 16.4 years. In our study, participants from rural areas made up the majority (59%) compared to those from urban areas (41%), and the majority of participants had a high school education. Among 211 diabetics, about 84%, 79%, and 41% of the patients knew about diabetes, symptoms of diabetes, and complication of diabetes. Only 18% of the patients were aware of the symptoms of hypoglycemia, and 38% of the patients possess their own glucometers and monitor their blood sugar levels on a regular basis. Merely 38% of the diabetics were aware of the various DM treatment choices. About 52% of patients had some awareness of insulin therapy. Out of 211 patients, about half skipped their antidiabetic prescriptions, and of those, 22% took a double dose the next day. A total of 121 patients (57%) combined the use of alternative and allopathic medications, and among these, 22% of patients had replaced the allopathic with alternative medicines. Almost 53% of patients had a positive family history of diabetes; 54% of patients believe that obesity is unrelated to diabetes, and 79% of diabetics are aware of the lifestyle changes that must be done for diabetes. Almost 67% of the patients believed that diabetes could be permanently treated, and 84% of patients believed that eating too much sugar caused their diabetes. CONCLUSION In our study, a significant number of patients suffering from diabetes had less knowledge and awareness about it. The prevalence of myths about the onset of diabetes was noticeably higher among diabetic patients. It was observed that a greater number of patients were shifting to alternative medications instead of allopathic ones, and in the long run, it can lead to various complications. Therefore, there is an immediate need to promote awareness about diabetes among the general population.
Collapse
Affiliation(s)
- Dr Lalit Kumar
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Rahul Mittal
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Akhil Bhalla
- Pain Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Ashwani Kumar
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Hritik Madan
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Kushagra Pandhi
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| | - Yukta Garg
- Pharmacy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, IND
| | - Kamaldeep Singh
- Internal Medicine, Jawaharlal Nehru Medical College, Chandigarh, IND
| | - Arpit Jain
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Surya Rana
- Internal Medicine, Adesh Medical College and Hospital, Shahbad, Kurukshetra, IND
| |
Collapse
|
176
|
Adelusi TI, Boyenle ID, Tolulope A, Adebisi J, Fatoki JO, Ukachi CD, Oyedele AQK, Ayoola AM, Timothy AA. GCMS fingerprints and phenolic extracts of Allium sativum inhibit key enzymes associated with type 2 diabetes. J Taibah Univ Med Sci 2023; 18:337-347. [PMID: 36817213 PMCID: PMC9926220 DOI: 10.1016/j.jtumed.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023] Open
Abstract
Objectives Inhibition of carbohydrate digestion enzymes (α-amylase and α-glucosidase) has been reported in studies as a therapeutic approach for the management or treatment of type 2 diabetes mellitus, owing to its potential to decrease postprandial hyperglycemia. The anti-diabetic potential of Allium sativum (also known as garlic) against diabetes mellitus has been established. Therefore, in this study, we assessed the antidiabetic potential of A. sativum using in vitro enzyme assays after which we explored computational modelling approach using the quantified GC-MS identities to unravel the key bioactive compounds responsible for the anti-diabetic potential. Methods We used in vitro enzyme inhibition assays (α-amylase and α-glucosidase) to evaluate antidiabetic potential and subsequently performed gas chromatography-mass spectroscopy (GC-MS) to identify and quantify the bioactive compounds of the plant extract. The identified bioactive compounds were subjected to in silico docking and pharmacokinetic assessment. Results A. sativum phenolic extract showed high dose-dependent inhibition of α-amylase and α-glucosidase (p < 0.05). Interestingly, the extract inhibited α-glucosidase with a half maximal inhibitory concentration of 53.75 μg/mL, a value higher than that obtained for the standard acarbose. Docking simulation revealed that morellinol and phentolamine were the best binders of α-glucosidase, with mean affinity values of -7.3 and -7.1 kcal/mol, respectively. These compounds had good affinity toward active site residues of the enzyme, and excellent drug-like and pharmacokinetic properties supporting clinical applications. Conclusions Our research reveals the potential of A. sativum as a functional food for the management of type 2 diabetes, and suggests that morellinol and phentolamine may be the most active compounds responsible for this anti-diabetic prowess. Therefore these compounds require further clinical asessment to demonstrate their potential for drug development.
Collapse
Affiliation(s)
- Temitope I. Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Ibrahim D. Boyenle
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- College of Health Sciences, Crescent University, Abeokuta, Nigeria
| | - Ajao Tolulope
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Jonathan Adebisi
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - John O. Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Osogbo, Osun State, Nigeria
| | - Chiamaka D. Ukachi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdul-Quddus K. Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Ashiru M. Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria
| | - Akinniyi A. Timothy
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
177
|
Zhang X, Ha S, Lau HCH, Yu J. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol 2023; 92:16-27. [PMID: 36965839 DOI: 10.1016/j.semcancer.2023.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Excess body weight is a global health problem due to sedentary lifestyle and unhealthy diet, affecting 2 billion population worldwide. Obesity is a major risk factor for metabolic diseases. Notably, the metabolic risk of obesity largely depends on body weight distribution, of which visceral adipose tissues but not subcutaneous fats are closely associated with obesity comorbidities, including type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and certain types of cancer. Latest multi-omics and mechanistical studies reported the crucial involvement of genetic and epigenetic alterations, adipokines dysregulation, immunity changes, imbalance of white and brown adipose tissues, and gut microbial dysbiosis in mediating the pathogenic association between visceral adipose tissues and comorbidities. In this review, we explore the epidemiology of excess body weight and the up-to-date mechanism of how excess body weight and obesity lead to chronic complications. We also examine the utilization of visceral fat measurement as an accurate clinical parameter for risk assessment in healthy individuals and clinical outcome prediction in obese subjects. In addition, current approaches for the prevention and treatment of excess body weight and its related metabolic comorbidities are further discussed. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Suki Ha
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
178
|
Kim BH, Yim SV, Hwang SD, Kim YS, Kim JH. A clinical trial on anti-diabetic efficacy of submerged culture medium of Ceriporia lacerata mycelium. BMC Complement Med Ther 2023; 23:83. [PMID: 36934269 PMCID: PMC10024018 DOI: 10.1186/s12906-023-03895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Increased glucose level and insulin resistance are major factors in Type 2 diabetes mellitus (T2M), which is chronic and debilitating disease worldwide. Submerged culture medium of Ceriporia lacerata mycelium (CLM) is known to have glucose lowering effects and improving insulin resistance in a mouse model in our previous studies. The main purpose of this clinical trial was to evaluate the functional efficacy and safety of CLM in enrolled participants with impaired fasting blood sugar or mild T2D for 12 weeks. METHODS A total of 72 participants with impaired fasting blood sugar or mild T2D were participated in a randomized, double-blind, placebo-controlled clinical trial. All participants were randomly assigned into the CLM group or placebo group. Fasting blood glucose (FBG), HbA1c, insulin, C-peptide, HOMA-IR, and HOMA-IR by C-peptide were used to assess the anti-diabetic efficacy of CLM for 12 weeks. RESULTS In this study, the effectiveness of CLM on lowering the anti-diabetic indicators (C-peptide levels, insulin, and FBG) was confirmed. CLM significantly elicited anti-diabetic effects after 12 weeks of ingestion without showing any side effects in both groups of participants. After the CLM treatment, FBG levels were effectively dropped by 63.9% (ITT), while HOMA-IR level in the CLM group with FBG > 110 mg/dL showed a marked decrease by 34% up to 12 weeks. Remarkably, the effect of improving insulin resistance was significantly increased in the subgroup of participants with insulin resistance, exhibiting effective reduction at 6 weeks (42.5%) and 12 weeks (61%), without observing a recurrence or hypoglycemia. HbA1c levels were also decreased by 50% in the participants with reduced indicators (FBG, insulin, C-peptide, HOMA-IR, and HOMA-IR). Additionally, it is noteworthy that the levels of insulin and C-peptide were significantly reduced despite the CLM group with FBG > 110 mg/dL. No significant differences were detected in the other parameters (lipids, blood tests, and blood pressure) after 12 weeks. CONCLUSION The submerged culture medium of CLM showed clinical efficacy in the improvement of FBG, insulin, C-peptide, HbAc1, and HOMA-index. The microbiome-based medium could benefit patients with T2D, FBG disorders, or pre-diabetes, which could guide a new therapeutic pathway in surging the global diabetes epidemic.
Collapse
Affiliation(s)
- Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Seong Deok Hwang
- Bio-R&D Center, Fugenbio Co., Ltd, Seoul, 06746, Republic of Korea
- FugenCellTech Co Ltd, Sangju, 37272, Gyeongsangbuk-Do, Korea
| | - Yoon Soo Kim
- Bio-R&D Center, Fugenbio Co., Ltd, Seoul, 06746, Republic of Korea
| | - Jeong-Hwan Kim
- Bio-R&D Center, Fugenbio Co., Ltd, Seoul, 06746, Republic of Korea.
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
179
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D. Parsing structural fragments of thiazolidin-4-one based α-amylase inhibitors: A combined approach employing in vitro colorimetric screening and GA-MLR based QSAR modelling supported by molecular docking, molecular dynamics simulation and ADMET studies. Comput Biol Med 2023; 157:106776. [PMID: 36947906 DOI: 10.1016/j.compbiomed.2023.106776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
α-Amylase (EC.3.2.1.1) is a ubiquitous digestive endoamylase. The abrupt rise in blood glucose levels due to the hydrolysis of carbohydrates by α-amylase at a faster rate is one of the main reasons for type 2 diabetes. The inhibitors prevent the action of digestive enzymes, slowing the digestion of carbs and eventually assisting in the management of postprandial hyperglycemia. In the course of developing α-amylase inhibitors, we have screened 2-aryliminothiazolidin-4-one based analogs for their in vitro α-amylase inhibitory potential and employed various in silico approaches for the detailed exploration of the bioactivity. The DNSA bioassay revealed that compounds 5c, 5e, 5h, 5j, 5m, 5o and 5t were more potent than the reference drug (IC60 value = 22.94 ± 0.24 μg mL-1). The derivative 5o with -NO2 group at both the rings was the most potent analog with an IC60 value of 19.67 ± 0.20 μg mL-1 whereas derivative 5a with unsubstituted aromatic rings showed poor inhibitory potential with an IC60 value of 33.40 ± 0.15 μg mL-1. The reliable QSAR models were developed using the QSARINS software. The high value of R2ext = 0.9632 for model IM-9 showed that the built model can be applied to predict the α-amylase inhibitory activity of the untested molecules. A consensus modelling approach was also employed to test the reliability and robustness of the developed QSAR models. Molecular docking and molecular dynamics were employed to validate the bioassay results by studying the conformational changes and interaction mechanisms. A step further, these compounds also exhibited good ADMET characteristics and bioavailability when tested for in silico pharmacokinetics prediction parameters.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
180
|
Kwak SH, Han KA, Kim KS, Yu JM, Kim E, Won JC, Kang JG, Chung CH, Oh S, Choi SH, Won KC, Kim SG, Cho SA, Cho BY, Park KS. Efficacy and safety of enavogliflozin, a novel SGLT2 inhibitor, in Korean people with type 2 diabetes: A 24-week, multicentre, randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 2023. [PMID: 36872067 DOI: 10.1111/dom.15046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
AIMS To evaluate the efficacy and safety of a novel sodium-glucose cotransporter 2 inhibitor, enavogliflozin 0.3 mg monotherapy, in Korean people with type 2 diabetes mellitus (T2DM) inadequately controlled with diet and exercise. MATERIALS AND METHODS This study was a randomized, double-blind, placebo-controlled trial conducted in 23 hospitals. Individuals with haemoglobin A1c (HbA1c) of 7.0%-10.0% after at least 8 weeks of diet and exercise modification were randomized to receive enavogliflozin 0.3 mg (n = 83) or placebo (n = 84) for 24 weeks. The primary outcome was a change in HbA1c at week 24 from baseline. Secondary outcomes included the proportion of participants achieving HbA1c <7.0%, change in fasting glucose, body weight and lipid levels. Adverse events were investigated throughout the study. RESULTS At week 24, the placebo-adjusted mean change in HbA1c from baseline in the enavogliflozin group was -0.99% (95% confidence interval -1.24%, -0.74%). The proportions of patients achieving HbA1c <7.0% (71% vs. 24%) at week 24 was significantly higher in the enavogliflozin group (p < .0001). Placebo-adjusted mean changes in fasting plasma glucose (-40.1 mg/dl) and body weight (-2.5 kg) at week 24 were statistically significant (p < .0001). In addition, a significant decrease in blood pressure, low-density lipoprotein cholesterol, triglyceride, and homeostasis model assessment of insulin resistance were observed, along with a significant increase in high-density lipoprotein cholesterol. No significant increase in treatment-related adverse events was observed for enavogliflozin. CONCLUSIONS Monotherapy with enavogliflozin 0.3 mg improved glycaemic control in people with T2DM. Enavogliflozin therapy also exerted beneficial effects on body weight, blood pressure and lipid profile.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kyung Ah Han
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jae Myung Yu
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - EunSook Kim
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine University of Ulsan, Ulsan, South Korea
| | - Jong Chul Won
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Jun Goo Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, South Korea
| | - Seungjoon Oh
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University Medical Center, Daegu, South Korea
| | - Sin Gon Kim
- Department of Internal Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Seung Ah Cho
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - Bo Young Cho
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
181
|
George A, Shrivastav PS. Preparation and optimization of tetraethyl orthosilicate cross-linked chitosan-guar gum-poly(vinyl alcohol) composites reinforced with montmorillonite for sustained release of sitagliptin. Int J Biol Macromol 2023; 229:51-61. [PMID: 36587636 DOI: 10.1016/j.ijbiomac.2022.12.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Development of efficient drug carriers has become an integral part of advanced drug delivery systems. This work aims at developing composites by adopting an economically viable method for sustained release of anti-diabetic drug sitagliptin - a potent and selective dipeptidyl peptidase-IV inhibitor. To combat the harsh environment of gastrointestinal tract, the composite (F13) was prepared using biodegradable polymers namely chitosan, guar gum and poly(vinyl alcohol) with montmorillonite clay as nano-filler and tetraethyl orthosilicate as the cross linker. The composites were characterized using FT-IR, XRD, DSC and SEM techniques. Physical properties such as thickness, swelling capacity, folding endurance and water solubility were studied. In vitro analysis of composites (F17, F19 and F20) in simulated gastric medium showed <14 % cumulative release in 2 h while a sustained release was observed in simulated intestinal medium. Drug release kinetics was investigated using five mathematical models namely zero order, first order, Higuchi, Hixon-Crowell and Korsemeyer-Peppas wherein the latter was the best fit model (R2, 0.969). Antimicrobial studies of drug free composite (F13) revealed good activity against bacteria as well as fungi. The results implied that the composites were pH sensitive and could serve as a potential choice for sustained release of drugs.
Collapse
Affiliation(s)
- Archana George
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
182
|
To Investigate the Potential Mechanism of Huanglian Jiangtang Formula Lowering Blood Sugar in View of Network Pharmacology and Molecular Docking Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2827938. [PMID: 36846049 PMCID: PMC9950321 DOI: 10.1155/2023/2827938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
Objective In view of network pharmacology and molecular docking technology, to explore the targets as well as effect mechanism of the Huanglian Jiangtang formula (including Coptis chinensis, Anemarrhena asphodeloides, rhubarb wine, Cortex Moutan, Rehmannia glutinosa, and dried ginger) in the type II diabetes therapy. Methods TCMSP and Batman database (DB) were used to retrieve the chemical components and action targets of drugs; GeneCards, OMIM, TTD, DrugBank, and other databases were applied to screen the disease targets. We used the UniProt DB to annotate the targets before building the drug-compound-target network with Cytoscape 3.9.1. We also exploited the String DB to construct the protein-protein interaction (PPI) network. In addition, the targets for the treatment of type II diabetes were searched in the DrugBank, OMIM, GeneCards, and TTD database; then, we utilized Venn to intersect the key targets for the therapy of type II diabetes and active ingredient targets to obtain common targets. Furthermore, we exploited the common targets using GO and KEGG enrichment analysis method. The common targets and core components were analyzed by molecular docking using the AutoDock software. Results A total of 61 effective components of this compound were screened out; drugs and type II diabetes have 278 common targets; the PPI network screened core target proteins such as CDKN1A, CDK2, and E2F1 with the help of molecular docking technology; the three main compounds including quercetin, kaempferol, and gamma-aminobutyric acid were obtained. Besides, the key target proteins had excellent binding properties with the main components. The signal pathways of six compound interventions in type II diabetes were mostly related to cancer, cocaine addiction, aminoacyl-tRNA biosynthesis, glycine, serine, threonine metabolism, platinum drug resistance, and other pathways, according to the KEGG enrichment analysis method. Conclusion In the treatment of diabetes, the Huanglian Jiangtang formula has sorts of properties especially in the aspects of composition, target, and pathway. Its molecular target and mechanism of action may be related to pathways in cancer, cocaine addiction, aminoacyl-tRNA biosynthesis, glycine, serine, threonine metabolism, platinum drug resistance, and other pathways. This conclusion can provide theoretical support and science for further research.
Collapse
|
183
|
He M, Li YJ, Shao J, Fu C, Li YS, Cui ZN. 2,5-Disubstituted furan derivatives containing imidazole, triazole or tetrazole moiety as potent α-glucosidase inhibitors. Bioorg Chem 2023; 131:106298. [PMID: 36455481 DOI: 10.1016/j.bioorg.2022.106298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
α-Glucosidase inhibitors (AGIs) are oral antidiabetic drugs, preferably used in treating type 2 diabetes mellitus, that delay the absorption of carbohydrates from the gastrointestinal system. In this work, 2,5-disubstituted furan derivatives containing imidazole, triazole or tetrazole moiety (III-01 ∼ III-45) were synthesized and characterized by elemental analysis, HRMS, 1H NMR, 13C NMR and single crystal X-ray. Their inhibitory activity against α-glucosidase was screened. The most promising inhibitors were compound III-11 (IC50 = 6.0 ± 1.1 μM), III-16 (IC50 = 2.2 ± 0.2 μM) and III-39 (IC50 = 4.6 ± 1.9 μM), respectively. Kinetic study revealed that compounds III-11 and III-39 were uncompetitive inhibitors against α-glucosidase. Meanwhile, III-16 (Ki = 5.1 ± 0.7 μM) was a competitive inhibitor. Furthermore, molecular docking studies indicated that the existence of the azole group played a critically important role in hydrogen bond interaction with α-glucosidase. Significantly, in vivo toxicity towards HEK293 cells, RAW264.7 cells and HepG2 cells suggested that compounds III-11 and III-39 possessed non-toxicity, that could be considered as potential candidates for further development of novel antidiabetic drugs.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Shao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Sheng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Center for Surveillance of Bacterial Resistance, Hefei 230022, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
184
|
Gandhi GR, Hillary VE, Antony PJ, Zhong LLD, Yogesh D, Krishnakumar NM, Ceasar SA, Gan RY. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Crit Rev Food Sci Nutr 2023; 64:6526-6545. [PMID: 36708221 DOI: 10.1080/10408398.2023.2170320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic syndrome defined through the dysfunction of pancreatic β-cells driven by a confluence of genetic and environmental elements. Insulin resistance, mediated by interleukins and other inflammatory elements, is one of the key factors contributing to the progression of T2DM. Many essential oils derived from dietary plants are beneficial against various chronic diseases. We reviewed the anti-diabetic properties of dietary plant-derived essential oil compounds, with a focus on their molecular mechanisms by modulating specific signaling pathways and other critical inflammatory mediators involved in insulin resistance. High-quality literature published in the last 12 years, from 2010 to 2022, was collected from the Scopus, Web of Science, PubMed, and Embase databases using the search terms "dietary plants," "essential oils," "anti-diabetic," "insulin resistance," "antihyperglycemic," "T2DM," "anti-diabetic essential oils," and anti-diabetic mechanism." According to the results, the essential oil compounds, including cinnamaldehyde, carvacrol, zingerone, sclareol, zerumbone, myrtenol, thujone, geraniol, citral, eugenol, thymoquinone, thymol, citronellol, α-terpineol, and linalool have been demonstrated to contain strong anti-diabetic effects via modulating various signal transduction pathways linked to glucose metabolism. Additionally, in diabetes-related animal models, they can also considerably reduce the expression of TNF-α, IL-1β, IL-4, IL-6, iNOS, and COX-2. The main signaling molecules regulated by these compounds include AMPK, GLUT4, Caspase-3, PPARγ, PPARα, NF-κB, p-IκBα, MyD88, MCP-1, SREBP-1c, AGEs, RAGE, VEGF, Nrf2/HO-1, and SIRT-1. They can also significantly inhibit the generation of TBARS and MDA, reduce oxidative stress, increase insulin levels, adiponectin, and glycoprotein enzymes, boost antioxidant enzymes like SOD, CAT, and GPx, as well as reduce glutathione and vital glycolytic enzymes. Besides, they can significantly lower the levels of liver enzymes and lipid profile markers. Moreover, most essential oil compounds are generally safe based on animal studies. In conclusion, dietary plant-derived essential oil compounds have potential anti-diabetic effects by influencing different signaling pathways and molecular targets linked to glucose metabolism, and should be safe and beneficial against diabetes and related complications.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | | | - Linda L D Zhong
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Devarajan Yogesh
- Department of Biochemistry, University of Madras, Chennai, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, India
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
185
|
Valentine WJ, Hoog M, Mody R, Belger M, Pollock R. Long-term cost-effectiveness analysis of tirzepatide versus semaglutide 1.0 mg for the management of type 2 diabetes in the United States. Diabetes Obes Metab 2023; 25:1292-1300. [PMID: 36655340 DOI: 10.1111/dom.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
AIM To evaluate the long-term cost-effectiveness of tirzepatide (5, 10 and 15 mg doses), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, versus semaglutide 1.0 mg, an injectable glucagon-like peptide-1 receptor agonist, based on the results of the head-to-head SURPASS-2 trial, from a US healthcare payer perspective. MATERIALS AND METHODS The PRIME Type 2 Diabetes Model was used to make projections of clinical and cost outcomes over a 50-year time horizon. Baseline cohort characteristics, treatment effects and adverse event rates were derived from the 40-week SURPASS-2 trial. Intensification to insulin therapy occurred when HbA1c reached 7.5%, in line with American Diabetes Association recommendations. Direct costs in 2021 US dollars (US$) and health state utilities were derived from published sources. Future costs and clinical benefits were discounted at 3% annually. RESULTS All three doses of tirzepatide were associated with lower diabetes-related complication rates, improved life expectancy, improved quality-adjusted life expectancy and higher direct costs versus semaglutide. This resulted in incremental cost-effectiveness ratios of US$ 75 803, 58 908 and 48 785 per quality-adjusted life year gained for tirzepatide 5, 10 and 15 mg, respectively, versus semaglutide. Tirzepatide remained cost-effective versus semaglutide over a range of sensitivity analyses. CONCLUSIONS Long-term projections based on the SURPASS-2 trial results indicate that 5, 10 and 15 mg doses of tirzepatide are likely to be cost-effective versus semaglutide 1.0 mg for the treatment of type 2 diabetes in the United States.
Collapse
Affiliation(s)
| | | | - Reema Mody
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
186
|
Altıntop MD, Demir Y, Türkeş C, Öztürk RB, Cantürk Z, Beydemir Ş, Özdemir A. A new series of hydrazones as small-molecule aldose reductase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200570. [PMID: 36603162 DOI: 10.1002/ardp.202200570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
In the search for small-molecule aldose reductase (AR) inhibitors, new tetrazole-hydrazone hybrids (1-15) were designed. An efficient procedure was employed for the synthesis of compounds 1-15. All hydrazones were subjected to an in vitro assay to assess their AR inhibitory profiles. Compounds 1-15 caused AR inhibition with Ki values ranging between 0.177 and 6.322 µM and IC50 values ranging between 0.210 and 0.676 µM. 2-[(1-(4-Hydroxyphenyl)-1H-tetrazol-5-yl)thio]-N'-(4-fluorobenzylidene)acetohydrazide (4) was the most potent inhibitor of AR in this series. Compound 4 markedly inhibited AR (IC50 = 0.297 µM) in a competitive manner (Ki = 0.177 µM) compared to epalrestat (Ki = 0.857 µM, IC50 = 0.267 µM). Based on the in vitro data obtained by applying the MTT test, compound 4 showed no cytotoxic activity toward normal (NIH/3T3) cells at the tested concentrations, indicating its safety as an AR inhibitor. Compound 4 exhibited proper interactions with crucial amino acid residues within the active site of AR. In silico QikProp data of all hydrazones (1-15) were also determined to assess their pharmacokinetic profiles. Taken together, compound 4 stands out as a promising inhibitor of AR for further in vivo studies.
Collapse
Affiliation(s)
- Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Remzi B Öztürk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
187
|
Chanu KD, Sharma N, Kshetrimayum V, Chaudhary SK, Ghosh S, Haldar PK, Mukherjee PK. Ageratina adenophora (Spreng.) King & H. Rob. Standardized leaf extract as an antidiabetic agent for type 2 diabetes: An in vitro and in vivo evaluation. Front Pharmacol 2023; 14:1178904. [PMID: 37138848 PMCID: PMC10149788 DOI: 10.3389/fphar.2023.1178904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Type 2 diabetes has become one of the major health concerns of the 21st century, marked by hyperglycemia or glycosuria, and is associated with the development of several secondary health complications. Due to the fact that chemically synthesized drugs lead to several inevitable side effects, new antidiabetic medications from plants have gained substantial attention. Thus, the current study aims to evaluate the antidiabetic capacity of the Ageratina adenophora hydroalcoholic (AAHY) extract in streptozotocin-nicotinamide (STZ-NA)-induced diabetic Wistar albino rats. The rats were segregated randomly into five groups with six rats each. Group I was normal control, and the other four groups were STZ-NA-induced. Group II was designated diabetic control, and group III, IV, and V received metformin (150 mg/kg b.w.) and AAHY extract (200 and 400 mg/kg b.w.) for 28 days. Fasting blood glucose, serum biochemicals, liver and kidney antioxidant parameters, and pancreatic histopathology were observed after the experimental design. The study concludes that the AAHY extract has a significant blood glucose lowering capacity on normoglycemic (87.01 ± 0.54 to 57.21 ± 0.31), diabetic (324 ± 2.94 to 93 ± 2.04), and oral glucose-loaded (117.75 ± 3.35 to 92.75 ± 2.09) Wistar albino rats. The in vitro studies show that the AAHY extract has α-glucosidase and α-amylase inhibitory activities which can restore the altered blood glucose level, glycated hemoglobin, body weight, and serum enzymes such as serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, serum alkaline phosphatase, total protein, urea, and creatinine levels close to the normal range in the treated STZ-NA-induced diabetic rats. The evaluation of these serum biochemicals is crucial for monitoring the diabetic condition. The AAHY extract has significantly enhanced tissue antioxidant parameters, such as superoxide dismutase, glutathione, and lipid peroxidation, close to normal levels. The presence of high-quantity chlorogenic (6.47% w/w) and caffeic (3.28% w/w) acids as some of the major phytoconstituents may contribute to the improvement of insulin resistance and oxidative stress. The study provides scientific support for the utilization of A. adenophora to treat type 2 diabetes in the STZ-NA-induced diabetic rat model. Although the preventive role of the AAHY extract in treating Wistar albino rat models against type 2 diabetes mellitus is undeniable, further elaborative research is required for efficacy and safety assessment in human beings.
Collapse
Affiliation(s)
- Khaidem Devika Chanu
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | - Nanaocha Sharma
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- *Correspondence: Nanaocha Sharma,
| | - Vimi Kshetrimayum
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | | | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pulok K. Mukherjee
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
| |
Collapse
|
188
|
Hu CM, Zheng YY, Lin AT, Zhang X, Wu XZ, Lin J, Xu XT, Xiong Z. Design, synthesis and evaluation of indole-based bisacylhydrazone derivatives as α-glucosidase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
189
|
Special Considerations for Management of Diabetes in Adult Patients with Intellectual and Developmental Disabilities. Adv Med 2023; 2023:2955772. [PMID: 36755896 PMCID: PMC9902153 DOI: 10.1155/2023/2955772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic health condition that is very prevalent worldwide. It has been demonstrated that individuals with intellectual and developmental disabilities (IDDs) are at a disproportionately high risk for developing diabetes. Persons with IDDs are estimated to be 2-3 times more likely to develop DM compared to the general population. The elevated risk of developing diabetes within the population of adults with IDDs is multifactorial and includes contributions from genetics, lifestyle, medication use and misuse, boundaries to appropriate medical care, a higher incidence of comorbid mental health disorders, and others. Further, inadequate screening for and management of diabetes for these patients results in heightened risk for adverse cardiovascular events and inferior health care outcomes. To improve patient outcomes for this unique patient population, health care providers need to be well trained in the optimal modalities of screening, diagnosis, and management of diabetes in adults with IDDs. This requires the development of effective diabetes intervention and health promotion programs aimed at patients with IDDs, utilizing a patient-centered approach to screening and management, and conducting further research to assess the impact of these interventions.
Collapse
|
190
|
Silica-Based Nanomaterials for Diabetes Mellitus Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010040. [PMID: 36671612 PMCID: PMC9855068 DOI: 10.3390/bioengineering10010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease with an alarming global prevalence, is associated with several serious health threats, including cardiovascular diseases. Current diabetes treatments have several limitations and disadvantages, creating the need for new effective formulations to combat this disease and its associated complications. This motivated the development of therapeutic strategies to overcome some of these limitations, such as low therapeutic drug bioavailability or poor compliance of patients with current therapeutic methodologies. Taking advantage of silica nanoparticle characteristics such as tuneable particle and pore size, surface chemistry and biocompatibility, silica-based nanocarriers have been developed with the potential to treat diabetes and regulate blood glucose concentration. This review discusses the main topics in the field, such as oral administration of insulin, glucose-responsive devices and innovative administration routes.
Collapse
|
191
|
Essghaier B, Dridi R, Mottola F, Rocco L, Zid MF, Hannachi H. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010100. [PMID: 36616010 PMCID: PMC9823831 DOI: 10.3390/nano13010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
The present paper described the first green synthesis of silver nanoparticles (AgNPs) from the extremophile plant Aeonium haworthii. The characterization of the biosynthesized silver nanoparticles was carried out by using UV-Vis, FTIR and STM analysis. The antioxidant, antidiabetic and antimicrobial properties were also reported. The newly described AgNPs were spherical in shape and had a size of 35-55 nm. The lowest IC50 values measured by the DPPH assay indicate the superior antioxidant behavior of our AgNPs as opposed to ascorbic acid. The silver nanoparticles show high antidiabetic activity determined by the inhibitory effect of α amylase as compared to the standard Acarbose. Moreover, the AgNPs inhibit bacterial growth owing to a bactericidal effect with the MIC values varying from 0.017 to 1.7 µg/mL. The antifungal action was evaluated against Candida albicans, Candida tropicalis, Candida glabrata, Candida sake and non-dermatophytic onychomycosis fungi. A strong inhibitory effect on Candida factors' virulence was observed as proteinase and phospholipase limitations. In addition, the microscopic observations show that the silver nanoparticles cause the eradication of blastospores and block filamentous morphogenesis. The combination of the antioxidant, antimicrobial and antidiabetic behaviors of the new biosynthesized silver nanoparticles highlights their promising use as natural phytomedicine agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Department of Biology, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Rihab Dridi
- Laboratoire de Matériaux Cristallochimie et Thermodynamique Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania L.Vanvitelli, 81100 Caserta, Italy
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania L.Vanvitelli, 81100 Caserta, Italy
| | - Mohamed Faouzi Zid
- Laboratoire de Matériaux Cristallochimie et Thermodynamique Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences, University Tunis El-Manar II, Tunis 2092, Tunisia
| |
Collapse
|
192
|
Alshammari MK, Alghazwni MK, Alharbi AS, Alqurashi GG, Kamal M, Alnufaie SR, Alshammari SS, Alshehri BA, Tayeb RH, Bougeis RJM, Aljehani AA, Alotaibi NM, Abida A, Imran M. Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy. Cancers (Basel) 2022; 15:cancers15010065. [PMID: 36612067 PMCID: PMC9817931 DOI: 10.3390/cancers15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy has been the predominant treatment modality for cancer patients, but its overall performance is still modest. Difficulty in penetration of tumor tissues, a toxic profile in high doses, multidrug resistance in an array of tumor types, and the differential architecture of tumor cells as they grow are some of the bottlenecks associated with the clinical usage of chemotherapeutics. Recent advances in tumor biology understanding and the emergence of novel targeted drug delivery tools leveraging various nanosystems offer hope for developing effective cancer treatments. Topotecan is a topoisomerase I inhibitor that stabilizes the transient TOPO I-DNA cleavable complex, leading to single-stranded breaks in DNA. Due to its novel mechanism of action, TOPO is reported to be active against various carcinomas, namely small cell lung cancer, cervical cancer, breast cancer, and ovarian cancer. Issues of cross-resistance with numerous drugs, rapid conversion to its inactive form in biological systems, appended adverse effects, and higher water solubility limit its therapeutic efficacy in clinical settings. Topotecan nanoformulations offer several benefits for enhancing the therapeutic action of this significant class of chemotherapeutics. The likelihood that the target cancer cells will be exposed to the chemotherapeutic drug while in the drug-sensitive s-phase is increased due to the slow and sustained release of the chemotherapeutic, which could provide for a sustained duration of exposure of the target cancer cells to the bioavailable drug and result in the desired therapeutic outcome. This article explores nanoenabled active and passive targeting strategies and combinatorial therapy employing topotecan to ameliorate various cancers, along with a glimpse of the clinical studies utilizing the said molecule.
Collapse
Affiliation(s)
- Mohammed Kanan Alshammari
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh 12211, Saudi Arabia
- Correspondence: (M.K.A.); (M.I.)
| | | | - Abrar Saleh Alharbi
- Department of Pharmaceutical Sciences, Maternity and Children’s Hospital, Mecca 24246, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salman Rahim Alnufaie
- Department of Infection Control, Riyadh Third Health Cluster, Riyadh 13223, Saudi Arabia
| | - Salem Sayer Alshammari
- Department of Pharmaceutical Care, Al-Dawaa Medical Services, Jubail 35412, Saudi Arabia
| | - Bandar Ali Alshehri
- Laboratory Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Rami Hatem Tayeb
- Laboratory Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | | | - Alaa Adel Aljehani
- Laboratory Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Nawaf M. Alotaibi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abida Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.K.A.); (M.I.)
| |
Collapse
|
193
|
Gaber DA, Alburaykan AI, Alruthea LM, Aldohan NS, Alharbi RF, Aljohani AR, Albilaihi HM, Adogim SS. Development, in vitro Evaluation, and in vivo Study of Adhesive Buccal Films for the Treatment of Diabetic Pediatrics via Trans Mucosal Delivery of Gliclazide. Drug Des Devel Ther 2022; 16:4235-4250. [PMID: 36536629 PMCID: PMC9759005 DOI: 10.2147/dddt.s394523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Development and evaluation of bucco-adhesive films of Gliclazide for pediatric use. METHODS Sixteen films were formulated using a different combination of Gelatin, Hydroxy propyl methyl cellulose (HPMC), polyvinyl alcohol, Hydroxy propyl cellulose (HPC), chitosan, polyethylene glycol, sodium alginate, and carbopol. Compatibility study for drug and polymers was conducted using differential scanning calorimetry method and Fourier transform infrared spectroscopy. All films were examined for drug content, weight variation, thickness, swelling index, muco-adhesion and folding endurance. In vitro drug release has been completed for two hours. Stability studies were conducted at 4°C, 25°C, and 40°C for selected films. The optimized formulation based on in vitro data was selected for a bioavailability study in rabbits. RESULTS The selected film formula (carbopol 2%, HPMC 2%) did not demonstrate interactions between the drug and polymers, while it showed accepted content, muco-adhesion, and mechanical properties. The in vitro release study showed rapid and complete release of drug from films. Stability studies confirmed accepted stability of the selected film at 4°C and 25°C, but the film get hard with few particles at 40°C. The bioavailability studies conducted showed that there was 2.1 fold increase in the AUC0-24 of selected film compared with oral tablets. CONCLUSION Bucco adhesive films of Gliclazide is a promising dosage form for the treatment of diabetes in children.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Quality Control & Quality Assurance, Holding Company for Biological Products and Vaccines, Cairo, Egypt
- Department of Pharmaceutics, College of Pharmacy, AL-Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Abeer I Alburaykan
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Lama M Alruthea
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Njoud S Aldohan
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Raneem F Alharbi
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Alhanoof R Aljohani
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Helah M Albilaihi
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Somaiah S Adogim
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
194
|
Hypoglycemic Effect and Experimental Validation of Scutellariae Radix based on Network Pharmacology and Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Scutellariae Radix (SR) is a well-known traditional herb that has good pharmacological effects against diabetes. However, the mechanism of SR against diabetes is not clear. In this study, the ingredient–target–pathway relationship and hypoglycemic effect of SR on diabetes were explored using network pharmacology, molecular docking and an animal experiment. The targets of SR and diabetes were mined. The selected targets were studied using Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. The network of active components, targets and pathways was integrated to analyze the ingredient–target–pathway relationship. Then, the correspondence between the active components and targets was verified using molecular docking. Finally, an animal experiment was used to verify the hypoglycemic effect of SR. There were 52 components and 22 targets for the hypoglycemic effect of SR. We identified 18 biological processes, 9 cellular components, 15 molecular functions and 25 signaling pathways. Molecular docking results indicated that the targets of diabetes bound strongly to the main components. The animal experiments showed that SR could significantly decrease the blood glucose level of diabetic rats (p ≤ 0.05). This study explored the potential targets and signaling pathways of SR in diabetes, and the results may help to illustrate the hypoglycemic mechanism of SR.
Collapse
|
195
|
Fan M, Zhong X, Huang Y, Peng Z, Wang G. Synthesis, biological evaluation and molecular docking studies of chromone derivatives as potential α-glucosidase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
196
|
Lei XY, Liu SH, Zhao YX, Guo MJ, Tao L, Shen XC, Zhang NL. Lignans and Flavonoids from Cajanus cajan (L.) Millsp. and Their α-Glucosidase Inhibitory Activities. Chem Biodivers 2022; 19:e202200414. [PMID: 36200645 DOI: 10.1002/cbdv.202200414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
A pair of new lignan conformers (1-2), one new flavonoid glycoside (3), as well as nineteen known compounds were purified from the twigs and leaves of Cajanus cajan (L.) Millsp.. The planar structures of the unknown compounds were determined via NMR and high-resolution mass spectrometry, while their absolute configurations were elucidated via comparison between their experimental and calculated electronic circular dichroism (ECD) values. All the isolated compounds were assayed for their α-glucosidase inhibitory activities. The results demonstrated that compounds 8-12, 15-16, 18-19, 21-22 had strong inhibition activities, with compound 10 (IC50 =0.4±0.21 μM) most active. The structure-activity relationships were preliminarily summarized. Enzyme kinetics showed that compounds 8, 9, 15-16, 18-19, 21-22 were non-competitive inhibitors and compounds 10-12 were anti-competitive ones.
Collapse
Affiliation(s)
- Xin-Yu Lei
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Shao-Huan Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Ya-Xian Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Meng-Jia Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Nen-Ling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
197
|
Sun Y, Xu YX, Wang N, Wang F, Hui CC, Cheng YW, Cui MJ, Huang QY, Xu JG, Kong XM. Time-resolved strand displacement amplification enables G-quadruplex-amplified detection of type 2 diabetes mellitus-related circulating microRNA-146a. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
198
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
199
|
Liu Y, Zhou X, Zhou D, Jian Y, Jia J, Ge F. Isolation of Chalcomoracin as a Potential α-Glycosidase Inhibitor from Mulberry Leaves and Its Binding Mechanism. Molecules 2022; 27:molecules27185742. [PMID: 36144478 PMCID: PMC9504037 DOI: 10.3390/molecules27185742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf of Morus alba) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific Diels–Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC) and molecular docking. The results showed that chalcomoracin inhibited α-glucosidase through both competitive and non-competitive manners, and its inhibitory activity was stronger than that of 1-doxymycin (1-DNJ) but slightly weaker than that of acarbose. ITC analysis revealed that the combination of chalcomoracin and α-glucosidase was an entropy-driven spontaneous reaction, and the molecular docking results also verified this conclusion. During the binding process, chalcomoracin went into the “pocket” of α-glucosidase via hydrophobic interactions, and it is linked with residues Val544, Asp95, Ala93, Gly119, Arg275 and Pro287 by hydrogen bonds. This study provided a potential compound for the prevention and treatment of diabetes and a theoretical basis for the discovery of novel candidates for α-glycosidase inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongxing Jian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfu Jia
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515000, China
- Correspondence: (J.J.); (F.G.)
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (J.J.); (F.G.)
| |
Collapse
|
200
|
The Chemical and Pharmacological Research Progress on a Kind of Chinese Herbal Medicine, Fructus Malvae. Molecules 2022; 27:molecules27175678. [PMID: 36080446 PMCID: PMC9458057 DOI: 10.3390/molecules27175678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Since the outbreak of the COVID-19 pandemic, traditional Chinese medicine has played an important role in the treatment process. Furthermore, the discovery of artemisinin in Artemisia annua has reduced the incidence of malaria all over the world. Therefore, it is becoming urgent and important to establish a novel method of conducting systematic research on Chinese herbal medicine, improving the medicinal utilization value of traditional Chinese medicine and bringing great benefits to human health all over the world. Fructus Malvae, a kind of Chinese herbal medicine which has been recorded in the “Chinese Pharmacopoeia” (2020 edition), refers to the dry, ripe fruits of Malva verticillata L. Recently, some studies have shown that Fructus Malvae exhibits some special pharmacological activities; for example, it has diuretic, anti-diabetes, antioxidant and anti-tumor properties, and it alleviates hair loss. Furthermore, according to the reports, the active ingredients separated and identified from Fructus Malvae contain some very novel compounds such as nortangeretin-8-O-β-d-glucuronopyranoside and 1-O-(6-deoxy-6-sulfo)-glucopyranosyl-2-O-linolenoyl-3-O-palmitoyl glyceride, which could be screened as important candidate compounds for diabetes- or tumor-treatment drugs, respectively. Therefore, in this research, we take Fructus Malvae as an example and systematically summarize the chemical constituents and pharmacological activity research progress of it. This review will be helpful in promoting the development and application of Fructus Malvae and will also provide an example for other investigations of traditional Chinese medicine.
Collapse
|