151
|
Fuell C, Kober OI, Hautefort I, Juge N. Mice deficient in intestinal γδ intraepithelial lymphocytes display an altered intestinal O-glycan profile compared with wild-type littermates. Glycobiology 2014; 25:42-54. [PMID: 25187161 DOI: 10.1093/glycob/cwu088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intestinal γδ T-cell receptor-bearing intraepithelial lymphocytes (γδ IELs) play a multifaceted role in maintaining mucosal homeostasis. In order to investigate the relationship between O-glycosylation and inflammation, we carried out an in-depth mass spectrometric comparison of the intestinal O-glycosylation profile of mice lacking γδ IELs (TCRδ(-/-)) and of their wild-type (WT) littermates. A total of 69 nonsulfated and 59 sulfated compositional types of O-glycans were identified in the small intestine and colon of TCRδ(-/-) and WT mice. Our results demonstrated structural differences in intestinal glycosylation in TCRδ(-/-) mice compared with WT littermates. TCRδ(-/-) colons contained a lower proportion of core-2 structures and an increased proportion of core-1 structures whereas TCRδ(-/-) small intestines had a decreased percentage of core-3 structures. The glycan antennae in TCRδ(-/-) colon and small intestine showed altered structural diversity compared with WT mice. There were significant differences in the sialylated species between the TCRδ(-/-) and WT mice with the sialylated Tn antigen found exclusively in the TCRδ(-/-)small intestine, whereas the sulfation pattern remained mostly unchanged. These findings provide novel molecular insights underpinning the role of γδ IELs in maintaining gut homeostasis.
Collapse
Affiliation(s)
- Christine Fuell
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Olivia I Kober
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Isabelle Hautefort
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Nathalie Juge
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| |
Collapse
|
152
|
Etzold S, Juge N. Structural insights into bacterial recognition of intestinal mucins. Curr Opin Struct Biol 2014; 28:23-31. [PMID: 25106027 DOI: 10.1016/j.sbi.2014.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 01/06/2023]
Abstract
The mucosal layer covering our gut epithelium represents the first line of host defenses against the luminal content, while enabling contacts between the resident microbiota and the host. Mucus is mainly composed of mucins, large glycoproteins containing a protein core and a high number of O-linked oligosaccharides. Mucin glycans act as binding sites or carbon sources for the intestinal microbes, thereby functioning as a host-specific determinant affecting the microbiota composition and human health. Reflecting the structural diversity of mucin glycans and their prime location, commensal and pathogenic microbes have evolved a range of adhesins allowing their interaction with the host. However, despite the recognised importance of mucin glycans in modulating intestinal homeostasis, information on carbohydrate-binding proteins from gut bacteria is disparate. This review is focussed on recent structural insights into host-microbe interactions mediated by mucins.
Collapse
Affiliation(s)
- Sabrina Etzold
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093-0715, USA
| | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom.
| |
Collapse
|
153
|
Abstract
The past decade has witnessed an explosion of knowledge regarding the vast microbial community that resides within our intestine-the gut microbiota. The topic has generated great expectations in terms of gaining a better understanding of disorders ranging from IBD to metabolic disorders and obesity. IBS is a condition for which investigators have long been in search of plausible underlying pathogeneses and it is inevitable that altered composition or function of the gut microbiota will be considered as a potential aetiological factor in at least a subset of patients with IBS. This Review describes the evidence implicating the gut microbiota in not only the expression of the intestinal manifestations of IBS, but also the psychiatric morbidity that coexists in up to 80% of patients with IBS. The evidence described herein ranges from proof-of-concept studies in animals to observational studies and clinical trials in humans. The gut microbiota is subject to influences from a diverse range of factors including diet, antibiotic usage, infection and stress. These factors have previously been implicated in the pathophysiology of IBS and further prompt consideration of a role for the gut microbiota in IBS.
Collapse
|
154
|
Abstract
Entamoeba histolytica is the third-leading cause of parasitic mortality globally. E. histolytica infection generally does not cause symptoms, but the parasite has potent pathogenic potential. The origins, benefits, and triggers of amoebic virulence are complex. Amoebic pathogenesis entails depletion of the host mucosal barrier, adherence to the colonic lumen, cytotoxicity, and invasion of the colonic epithelium. Parasite damage results in colitis and, in some cases, disseminated disease. Both host and parasite genotypes influence the development of disease, as do the regulatory responses they govern at the host-pathogen interface. Host environmental factors determine parasite transmission and shape the colonic microenvironment E. histolytica infects. Here we highlight research that illuminates novel links between host, parasite, and environmental factors in the regulation of E. histolytica virulence.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908; ,
| | | |
Collapse
|
155
|
Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses. Appl Environ Microbiol 2014; 80:5068-77. [PMID: 24928883 DOI: 10.1128/aem.01039-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactobacillus rhamnosus GG is a widely used probiotic, and the strain's salutary effects on the intestine have been extensively documented. We previously reported that strain GG can modulate inflammatory signaling, as well as epithelial migration and proliferation, by activating NADPH oxidase 1-catalyzed generation of reactive oxygen species (ROS). However, how strain GG induces these responses is unknown. Here, we report that strain GG's probiotic benefits are dependent on the bacterial-epithelial interaction mediated by the SpaC pilin subunit. By comparing strain GG to an isogenic mutant that lacks SpaC (strain GGΩspaC), we establish that SpaC is necessary for strain GG to adhere to gut mucosa, that SpaC contributes to strain GG-induced epithelial generation of ROS, and that SpaC plays a role in strain GG's capacity to stimulate extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in enterocytes. In addition, we show that SpaC is required for strain GG-mediated stimulation of cell proliferation and protection against radiologically inflicted intestinal injury. The identification of a critical surface protein required for strain GG to mediate its probiotic influence advances our understanding of the molecular basis for the symbiotic relationship between some commensal bacteria of the gut lumen and enterocytes. Further insights into this relationship are critical for the development of novel approaches to treat intestinal diseases.
Collapse
|
156
|
Hasegawa M, Inohara N. Regulation of the gut microbiota by the mucosal immune system in mice. Int Immunol 2014; 26:481-7. [PMID: 24792038 DOI: 10.1093/intimm/dxu049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The benefits of commensal bacteria to the health of the host have been well documented, such as providing stimulation to potentiate host immune responses, generation of useful metabolites, and direct competition with pathogens. However, the ability of the host immune system to control the microbiota remains less well understood. Recent microbiota analyses in mouse models have revealed detailed structures and diversities of microbiota at different sites of the digestive tract in mouse populations. The contradictory findings of previous studies on the role of host immune responses in overall microbiota composition are likely attributable to the high β-diversity in mouse populations as well as technical limitations of the methods to analyze microbiota. The host employs multiple systems to strictly regulate their interactions with the microbiota. A spatial segregation between the host and microbiota is achieved with the mucosal epithelium, which is further fortified with a mucus layer on the luminal side and Paneth cells that produce antimicrobial peptides. When commensal bacteria or pathogens breach the epithelial barrier and translocate to peripheral tissues, the host immune system is activated to eliminate them. Defective segregation and tissue elimination of commensals result in exaggerated inflammatory responses and possibly death of the host. In this review, we discuss the current understanding of mouse microbiota, its common features with human microbiota, the technologies utilized to analyze microbiota, and finally the challenges faced to delineate the role of host immune responses in the composition of the luminal microbiota.
Collapse
Affiliation(s)
- Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, 1150W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, 1150W. Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
157
|
Etzold S, MacKenzie DA, Jeffers F, Walshaw J, Roos S, Hemmings AM, Juge N. Structural and molecular insights into novel surface-exposed mucus adhesins from Lactobacillus reuteri human strains. Mol Microbiol 2014; 92:543-56. [PMID: 24593252 DOI: 10.1111/mmi.12574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
The mucus layer covering the gastrointestinal tract is the first point of contact of the intestinal microbiota with the host. Cell surface macromolecules are critical for adherence of commensal bacteria to mucus but structural information is scarce. Here we report the first molecular and structural characterization of a novel cell-surface protein, Lar_0958 from Lactobacillus reuteri JCM 1112(T) , mediating adhesion of L. reuteri human strains to mucus. Lar_0958 is a modular protein of 133 kDa containing six repeat domains, an N-terminal signal sequence and a C-terminal anchoring motif (LPXTG). Lar_0958 homologues are expressed on the cell-surface of L. reuteri human strains, as shown by flow-cytometry and immunogold microscopy. Adhesion of human L. reuteri strains to mucus in vitro was significantly reduced in the presence of an anti-Lar_0958 antibody and Lar_0958 contribution to adhesion was further confirmed using a L. reuteri ATCC PTA 6475 lar_0958 KO mutant (6475-KO). The X-ray crystal structure of a single Lar_0958 repeat, determined at 1.5 Å resolution, revealed a divergent immunoglobulin (Ig)-like β-sandwich fold, sharing structural homology with the Ig-like inter-repeat domain of internalins of the food borne pathogen Listeria monocytogenes. These findings provide unique structural insights into cell-surface protein repeats involved in adhesion of Gram-positive bacteria to the intestine.
Collapse
Affiliation(s)
- Sabrina Etzold
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | |
Collapse
|
158
|
Shuttling of information between the mucosal and luminal environment drives intestinal homeostasis. FEBS Lett 2014; 588:4148-57. [DOI: 10.1016/j.febslet.2014.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
|
159
|
Etzold S, Kober OI, Mackenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol 2014; 16:888-903. [PMID: 24373178 DOI: 10.1111/1462-2920.12377] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the underpinning mechanisms of these interactions are not understood. Here, we provide structural and functional insights into the canonical mucus-binding protein (MUB), a multi-repeat cell-surface adhesin found in Lactobacillus inhabitants of the GI tract. X-ray crystallography together with small-angle X-ray scattering demonstrated a 'beads on a string' arrangement of repeats, generating 174 nm long protein fibrils, as shown by atomic force microscopy. Each repeat consists of tandemly arranged Ig- and mucin-binding protein (MucBP) modules. The binding of full-length MUB was confined to mucus via multiple interactions involving terminal sialylated mucin glycans. While individual MUB domains showed structural similarity to fimbrial proteins from Gram-positive pathogens, the particular organization of MUB provides a structural explanation for the mechanisms in which lactobacilli have adapted to their host niche by maximizing interactions with the mucus receptors, potentiating the retention of bacteria within the mucus layer. Together, this study reveals functional and structural features which may affect tropism of microbes across mucus and along the GI tract, providing unique insights into the mechanisms adopted by commensals and probiotics to adapt to the mucosal environment.
Collapse
Affiliation(s)
- Sabrina Etzold
- Institute of Food Research, Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Alvarado I, Abel-Santos E. How enteric pathogens know they hit the sweet spot. Future Microbiol 2014; 9:13-6. [DOI: 10.2217/fmb.13.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
EVALUATION OF: Ng KM, Ferreyra JA, Higginbottom SK et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502(7469), 96–99 (2013). The human gut microbiota is a complex system of commensal microorganisms required for normal host physiology. Disruption of this protective barrier by antibiotics creates opportunities for enteric pathogens to establish infections. Although the correlation between the use of antibiotics and enteric infections have been known for some time, the specific signals that allow enteric pathogens to recognize a susceptible host have not been determined. In a recent article, Ng et al. demonstrated that the expansion of both Salmonella typhimurium and Clostridium difficile infections is enhanced by the availability of host-specific sugars liberated from the intestinal mucus by commensal bacteria. These results show how antibiotic removal of specific species from the gut microbiome allows symbiotic functions to be hijacked by pathogenic species.
Collapse
Affiliation(s)
- Israel Alvarado
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Ernesto Abel-Santos
- Department of Chemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, Campus Box 4003, Las Vegas, NV 89154, USA
| |
Collapse
|
161
|
Neef A, Sanz Y. Future for probiotic science in functional food and dietary supplement development. Curr Opin Clin Nutr Metab Care 2013; 16:679-87. [PMID: 24071779 DOI: 10.1097/mco.0b013e328365c258] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The purpose of this study is to provide an update of probiotic science evolving from classical approaches to the development of next-generation probiotics, parallel to advances in the understanding of the complexity of the gut microbiome and its role in human health. RECENT FINDINGS The probiotic concept is based on the notion that the gut ecosystem contributes to human physiology and, consequently, its modulation may help to maintain health and reduce disease risk. The understanding of the complexity of the gut microbiota and the specific components associated with progression from health to disease is rapidly increasing, thanks to the use of high-throughput and next-generation sequencing techniques in progressively better controlled epidemiological studies. Evidence on microbiome-mediated effects by intervention with classical probiotics on humans is, however, limited. The new information is helping to set a rationale for selection of a next generation of probiotics. Candidates include Clostridia clusters IV, XIVa and XVIII, Faecalibacterium prausnitzii, Akkermansia muciniphila and Bacteroides uniformis, the effects of which have been evaluated in preclinical trials with promising results for inflammatory and diet-related disorders. Yet, the extent to which new probiotic formulations consisting of nonconventional indigenous gut bacteria will be effective on humans at a population level or in personalized nutrition strategies remains to be explored. SUMMARY Understanding the role that indigenous intestinal bacteria and their ecological interactions play in human health and disease based on epidemiological, intervention and mechanistic studies will provide a robust rationale for selection of probiotic strains and facilitate the optimization of integrated dietary strategies to efficiently modulate the human gut microbiome, leading to improvements in nutrition and clinical practice.
Collapse
Affiliation(s)
- Alexander Neef
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | | |
Collapse
|