151
|
Tong Q, Qiu N, Ji J, Ye L, Zhai G. Research Progress in Bioinspired Drug Delivery Systems. Expert Opin Drug Deliv 2020; 17:1269-1288. [PMID: 32543953 DOI: 10.1080/17425247.2020.1783235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION To tackle challenges associated with traditional drug carriers, investigators have explored cells, cellular membrane, and macromolecular components including proteins and exosomes for the fabrication of delivery vehicles, owing to their excellent biocompatibility, lower toxicity, lower immunogenicity and similarities with the host. Biomacromolecule- and biomimetic nanoparticle (NP)-based drug/gene carriers are drawing immense attention, and biomimetic drug delivery systems (BDDSs) have been conceived and constructed. AREAS COVERED This review focuses on BDDS based on mammalian cells, including blood cells, cancer cells, adult stem cells, endogenous proteins, pathogens and extracellular vesicles (EVs). EXPERT OPINION Compared with traditional drug delivery systems (DDSs), BDDSs are based on biological nanocarriers, exhibiting superior biocompatibility, fewer side effects, natural targeting, and diverse modifications. In addition to directly employing natural biomaterials such as cells, proteins, pathogens and EVs as carriers, BDDSs offer these advantages by mimicking the structure of natural nanocarriers through bioengineering technologies. Furthermore, BDDSs demonstrate fewer limitations and irregularities than natural materials and can overcome several shortcomings associated with natural carriers. Although research remains ongoing to resolve these limitations, it is anticipated that BDDSs possess the potential to overcome challenges associated with traditional DDS, with a promising future in the treatment of human diseases.
Collapse
Affiliation(s)
- Qirong Tong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| |
Collapse
|
152
|
Kim H, Lee H, Jeon Y, Park W, Zhang Y, Kim B, Jang H, Xu B, Yeo Y, Kim DR, Lee CH. Bioresorbable, Miniaturized Porous Silicon Needles on a Flexible Water-Soluble Backing for Unobtrusive, Sustained Delivery of Chemotherapy. ACS NANO 2020; 14:7227-7236. [PMID: 32401016 PMCID: PMC8279902 DOI: 10.1021/acsnano.0c02343] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Conventional melanoma therapies suffer from the toxicity and side effects of repeated treatments due to the aggressive and recurrent nature of melanoma cells. Less-invasive topical chemotherapies by utilizing polymeric microneedles have emerged as an alternative, but the sustained, long-lasting release of drug cargos remains challenging. In addition, the size of the microneedles is relatively bulky for the small, curvilinear, and exceptionally sensitive cornea for the treatment of ocular melanoma. Here, we report a design of bioresorbable, miniaturized porous-silicon (p-Si) needles with covalently linked drug cargos at doses comparable to those of conventional polymeric microneedles. The p-Si needles are built on a water-soluble film as a temporary flexible holder that can be intimately interfaced with the irregular surface of living tissues, followed by complete dissolution with saline solution within 1 min. Consequently, the p-Si needles remain embedded inside tissues and then undergo gradual degradation, allowing for sustained release of the drug cargos. Its utility in unobtrusive topical delivery of chemotherapy with minimal side effects is demonstrated in a murine melanoma model.
Collapse
Affiliation(s)
- Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Heungsoo Lee
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yue Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hanmin Jang
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Corresponding Authors: (Y.Y.), (D.R.K.), (C.H.L.)
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
- Corresponding Authors: (Y.Y.), (D.R.K.), (C.H.L.)
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47907, USA
- Corresponding Authors: (Y.Y.), (D.R.K.), (C.H.L.)
| |
Collapse
|
153
|
Gazzi RP, Frank LA, Onzi G, Pohlmann AR, Guterres SS. New pectin-based hydrogel containing imiquimod-loaded polymeric nanocapsules for melanoma treatment. Drug Deliv Transl Res 2020; 10:1829-1840. [PMID: 32562254 DOI: 10.1007/s13346-020-00805-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We developed a pectin-based hydrogel containing nanocapsules as a new strategy for melanoma treatment. Our first objective was to evaluate the nanoencapsulation effect of imiquimod on melanoma. Imiquimod-loaded polymeric nanocapsules (NCimiq) showed significant time-dependent decrease in cell viability after treatment at 3 μmol L-1 (79% viable cells in 24 h and 55% in 72 h), which was not observed in cells treated with the solution of the drug (IMIQ) (99% viable cells in 24 h and 91% in 72 h). The second objective was to develop the hydrogel containing the drug-loaded nanocapsules (PEC-NCimiq). In vitro release study showed that 63% of imiquimod was released from the pectin-based hydrogel containing the drug (PEC-imiq) after 2 h, while 60% of the drug was released from PEC-NCimiq after 8 h. In the permeation study, 2.5 μg of imiquimod permeated the skin within 8 h after the initial contact of PEC-NCimiq, whereas only 2.1 μg of drug permeated after 12 h of contact when PEC-imiq was assayed. Pectin-based hydrogels enabled the drug penetration in all skin layers, especially the dermis (PEC-NCimiq = 6.8 μg and PEC-imiq = 4.3 μg). In the adhesion study, PEC-NCimiq showed the highest adhesiveness (42% removed from the skin) in comparison to PEC-imiq (71% removed from the skin). In conclusion, the nanoencapsulation provided a higher cytotoxic effect of imiquimod in SK-MEL-28, and the incorporation of the drug-loaded nanocapsules in pectin-based hydrogel showed higher adhesiveness and deeper penetration of the drug into the skin. Graphical abstract.
Collapse
Affiliation(s)
- R P Gazzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L A Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de QuímicaOrgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Silvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. .,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752/405 CEP, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
154
|
Cai L, Xu J, Yang Z, Tong R, Dong Z, Wang C, Leong KW. Engineered biomaterials for cancer immunotherapy. MedComm (Beijing) 2020; 1:35-46. [PMID: 34766108 PMCID: PMC8489675 DOI: 10.1002/mco2.8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Although cancer immunotherapy is showing tremendous promise and has progressed to the clinic, it has only achieved sporadic efficacy, with only a fraction of patients benefitting from the therapy and with undesirable side effects due to poor selectivity and high doses. Localized delivery of immunomodulators to activate anticancer immunity in situ avoids overactivation of the systemic immune system and reduces side effects. Engineered biomaterials-implantable, injectable, or transdermal-fabricated into drug delivery devices are critical components for the development of localized cancer immunotherapies. In this review, we briefly summarize progress in the application of engineered biomaterials to the localized delivery of cancer immunotherapy.
Collapse
Affiliation(s)
- Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Studythe Institute of Laboratory MedicineSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkUSA
| |
Collapse
|
155
|
Zhai J, Tan FH, Luwor RB, Srinivasa Reddy T, Ahmed N, Drummond CJ, Tran N. In Vitro and In Vivo Toxicity and Biodistribution of Paclitaxel-Loaded Cubosomes as a Drug Delivery Nanocarrier: A Case Study Using an A431 Skin Cancer Xenograft Model. ACS APPLIED BIO MATERIALS 2020; 3:4198-4207. [DOI: 10.1021/acsabm.0c00269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Fiona H. Tan
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rodney B. Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - T. Srinivasa Reddy
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3353, Australia
- Federation University Australia, Ballarat, Victoria 3010, Australia
| | - Calum J. Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
156
|
Wang S, Wu YY, Wang X, Shen P, Jia Q, Yu S, Wang Y, Li X, Chen W, Wang A, Lu Y. Lycopene prevents carcinogen-induced cutaneous tumor by enhancing activation of the Nrf2 pathway through p62-triggered autophagic Keap1 degradation. Aging (Albany NY) 2020; 12:8167-8190. [PMID: 32365333 PMCID: PMC7244072 DOI: 10.18632/aging.103132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Biologically active natural products have been used for the chemoprevention of cutaneous tumors. Lycopene is the main active phytochemical in tomatoes. We herein aimed to assess the cancer preventive effects of lycopene and to find potential molecular targets. In chemically-induced cutaneous tumor mice and cell models, lycopene attenuated cutaneous tumor incidence and multiplicity as well as the tumorigenesis of normal cutaneous cells in phase-selectivity (only in the promotion phase) manners. By utilizing a comprehensive approach combining bioinformatics with network pharmacology, we predicted that intracellular autophagy and redox status were associated with lycopene’s preventive effect on cutaneous tumors. Lycopene stimulated the activation of antioxidant enzymes and the translocation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) that predominantly maintained intracellular redox equilibrium. The cancer chemopreventive effects were mediated by Nrf2. Further, lycopene enhanced the expression of autophagy protein p62. Therefore this led to the degradation of Keap1(Kelch ECH associating protein 1), the main protein locking Nrf2 in cytoplasm. In conclusion, our study provides preclinical evidence of the chemopreventive effects of lycopene on cutaneous tumors and reveals the mechanistic link between lycopene’s stimulation of Nrf2 signaling pathway and p62-mediated degradation of Keap1 via the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Siliang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Yuan-Yuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xu Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yuan Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
157
|
Svitina H, Swanepoel R, Rossouw J, Netshimbupfe H, Gouws C, Hamman J. Treatment of Skin Disorders with Aloe Materials. Curr Pharm Des 2020; 25:2208-2240. [PMID: 31269881 DOI: 10.2174/1381612825666190703154244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Swanepoel
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jacques Rossouw
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Happiness Netshimbupfe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
158
|
Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med 2020; 52:538-547. [PMID: 32235869 PMCID: PMC7210257 DOI: 10.1038/s12276-020-0412-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Understanding the cellular and molecular mechanisms of tumor initiation and progression for each cancer type is central to making improvements in both prevention and therapy. Identifying the cancer cells of origin and the necessary and sufficient mechanisms of transformation and progression provide opportunities for improved specific clinical interventions. In the last few decades, advanced genetic manipulation techniques have facilitated rapid progress in defining the etiologies of cancers and their cells of origin. Recent studies driven by various groups have provided experimental evidence indicating the cellular origins for each type of skin and esophageal cancer and have identified underlying mechanisms that stem/progenitor cells use to initiate tumor development. Specifically, cyclooxygenase-2 (Cox-2) is associated with tumor initiation and progression in many cancer types. Recent studies provide data demonstrating the roles of Cox-2 in skin and esophageal malignancies, especially in squamous cell carcinomas (SCCs) occurring in both sites. Here, we review experimental evidence aiming to define the origins of skin and esophageal cancers and discuss how Cox-2 contributes to tumorigenesis and differentiation.
Collapse
Affiliation(s)
- Hyeongsun Moon
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA.
| | - Andrew C White
- Department of Biological Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA
| |
Collapse
|
159
|
Xi Y, Ge J, Wang M, Chen M, Niu W, Cheng W, Xue Y, Lin C, Lei B. Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing. ACS NANO 2020; 14:2904-2916. [PMID: 32031782 DOI: 10.1021/acsnano.9b07173] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Traditional skin tumor surgery and chronic bacterial-infection-induced wound healing/skin regeneration is still a challenge. The ideal strategy should eliminate the tumor, enhance wound healing/skin formation, and be anti-infection. Herein, we designed a multifunctional elastomeric poly(l-lactic acid)-poly(citrate siloxane)-curcumin@polydopamine hybrid nanofibrous scaffold (denoted as PPCP matrix) for tumor-infection therapy and infection-induced wound healing. The PPCP matrix showed intrinsically multifunctional properties including antioxidative, anti-inflammatory, photothermal, antibacterial, anticancer, and angiogenesis bioactivities. The polydopamine/curcumin presented an excellent near-infrared photothermal/cancer cell toxicity capacity, respectively, which supported PPCP for synergetic skin tumor therapy and antibacterial properties in vitro/in vivo. Additionally, the PPCP nanofibrous matrix significantly promotes the adhesion and proliferation of normal skin cells and accelerates the cutaneous wound healing in normal mice and bacterial-infected mice by enhancing the early angiogenesis. The PPCP nanofibrous matrix with multifunctional bioactivities provides a competitive strategy for skin tumor and bacterial-infection-induced wound healing.
Collapse
Affiliation(s)
- Yuewei Xi
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Juan Ge
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bo Lei
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
160
|
Rogers B, Lawrence J, Chmura J, Ehler E, Ferreira C. Dosimetric characterization of a novel 90Y source for use in the conformal superficial brachytherapy device. Phys Med 2020; 72:52-59. [PMID: 32200298 DOI: 10.1016/j.ejmp.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/16/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To characterize the dose distribution in water of a novel beta-emitting brachytherapy source for use in a Conformal Superficial Brachytherapy (CSBT) device. METHODS AND MATERIALS Yttrium-90 (90Y) sources were designed for use with a uniquely designed CSBT device. Depth dose and planar dose measurements were performed for bare sources and sources housed within a 3D printed source holder. Monte Carlo simulated dose rate distributions were compared to film-based measurements. Gamma analysis was performed to compare simulated and measured dose rates from seven 90Y sources placed simultaneously using the CSBT device. RESULTS The film-based maximum measured surface dose rate for a bare source in contact with the surface was 3.35 × 10-7 cGy s-1 Bq-1. When placed in the source holder, the maximum measured dose rate was 1.41 × 10-7 cGy s-1 Bq-1. The Monte Carlo simulated depth dose rates were within 10% or 0.02 cm of the measured dose rates for each depth of measurement. The maximum film surface dose rate measured using a seven-source configuration within the CSBT device was 1.78 × 10-7 cGy s-1 Bq-1. Measured and simulated dose rate distribution of the seven-source configuration were compared by gamma analysis and yielded a passing rate of 94.08%. The gamma criteria were 3% for dose-difference and 0.07056 cm for distance-to-agreement. The estimated measured dose rate uncertainty was 5.34%. CONCLUSIONS 90Y is a unique source that can be optimally designed for a customized CSBT device. The rapid dose falloff provided a high dose gradient, ideal for treatment of superficial lesions. The dose rate uncertainty of the 90Y-based CSBT device was within acceptable brachytherapy standards and warrants further investigation.
Collapse
Affiliation(s)
- Brent Rogers
- University of Minnesota Medical School, Department of Radiation Oncology, United States.
| | - Jessica Lawrence
- University of Minnesota, College of Veterinary Medicine and Masonic Cancer Center, United States
| | - Jennifer Chmura
- University of Minnesota, Medical Devices Center, United States
| | - Eric Ehler
- University of Minnesota Medical School, Department of Radiation Oncology, United States
| | - Clara Ferreira
- University of Minnesota Medical School, Department of Radiation Oncology, United States
| |
Collapse
|
161
|
Quiñones OG, Pierre MBR. Cutaneous Application of Celecoxib for Inflammatory and Cancer Diseases. Curr Cancer Drug Targets 2020; 19:5-16. [PMID: 29714143 DOI: 10.2174/1568009618666180430125201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) and particularly selective cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Cxb) are considered promising cancer chemopreventive for colon, breast, prostate, lung, and skin cancers. However, the clinical application to the prevention is limited by concerns about safety, potential to serious toxicity (mainly for healthy individuals), efficacy and optimal treatment regimen. Cxb exhibits advantages as potent antiinflammatory and gastrointestinal tolerance compared with conventional NSAID's. Recent researches suggest that dermatological formulations of Cxb are more suitable than oral administration in the treatment of cutaneous disease, including skin cancer. To date, optimism has been growing regarding the exploration of the topical application of Cxb (in the prevention of skin cancers and treatment of cutaneous inflammation) or transdermal route reducing risks of systemic side effects. OBJECTIVE This paper briefly summarizes our current knowledge of the development of the cutaneous formulations or delivery systems for Cxb as anti-inflammatory drug (for topical or transdermal application) as well its chemopreventive properties focused on skin cancer. CONCLUSION New perspectives emerge from the growing knowledge, bringing innovative techniques combining the action of Cxb with other substances or agents which act in a different way, but complementary, increasing the efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Oliesia Gonzalez Quiñones
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| | - Maria Bernadete Riemma Pierre
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
162
|
Cannabinoids in the Pathophysiology of Skin Inflammation. Molecules 2020; 25:molecules25030652. [PMID: 32033005 PMCID: PMC7037408 DOI: 10.3390/molecules25030652] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component. However, various studies cite conflicting results concerning the cellular mechanisms involved, while others suggest that cannabinoids may even exert pro-inflammatory behaviors. This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer. In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances. Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.
Collapse
|
163
|
Tran PHL, Duan W, Lee BJ, Tran TTD. Nanogels for Skin Cancer Therapy via Transdermal Delivery: Current Designs. Curr Drug Metab 2020; 20:575-582. [PMID: 31237201 DOI: 10.2174/1389200220666190618100030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/11/2019] [Accepted: 05/31/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Recently, several strategies have been proposed for skin cancer therapy by transdermal delivery, and particularly the use of nanotechnology. METHODS This process disrupts the stratum corneum to deliver a drug through the skin, allowing it to accumulate at the tumor site. RESULTS Nanogels are drug delivery systems that can be applied to many diseases. Nanogel engineering has been widely studied for use in drug delivery, particularly in cancer theranostics. This review summarizes specific strategies for using nanogels to treat skin cancer, a topic that is limited in recent literature. CONCLUSION Advanced techniques for effective skin cancer therapy based on the nanogel's penetration and cellular uptake abilities will be discussed. Moreover, techniques for penetrating the skin, as well as drug release, permeation studies, and microscopic observations, will also be discussed.
Collapse
Affiliation(s)
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, Australia
| | - Beom-Jin Lee
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
164
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
165
|
Sajadimajd S, Bahramsoltani R, Iranpanah A, Kumar Patra J, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F, Battino M, Tundis R, Campos MG, Farzaei MH, Xiao J. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol Res 2020; 151:104584. [PMID: 31809853 DOI: 10.1016/j.phrs.2019.104584] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
Abstract
Polyphenols are one of most important phytochemicals distributing in herb plants, vegetables and fruits, which known as important anticancer agents. Given the high incidence and mortality of skin cancer, this study aimed to uncover the chemopreventive effects of polyphenols against skin cancer metastasis. Electronic databases including Scopus, PubMed, and Cochrane library were used to compile the literature from 2000 to August 2019. Only in vivo mechanistic studies with English full-texts were chosen for this review. Polyphenols were included in this study if they were administered in purified form; while total extract and fractions were excluded. Among the 8254 primarily selected papers, only a final number of 34 studies were included. The chemopreventive effects of polyphenols as anthocyanins, ellagitanins, EGCG, oleuropeindihydroxy phenyl, punicalagin, quercetin, resveratrol and theaflavin, were mainly examined in treatment of melanoma as the highly metastatic form of this cutaneous cancer. Those properties are mediated by modulation of angiogenesis, apoptosis, inflammation, metastasis, proliferation, pathways such as EGFR/MAPK, mTOR/PI3K/Akt, JAK/STAT, FAK/RTK2, PGE-2/VEGF, PGE-1/ERK/HIIF-1α, and modulation of related signals including NF-κB, P21WAF/CIP1, Bim, Bax, Bcl2, Bclx, Bim, Puma, Noxa, ILs and MMPs. Chemopreventive effects of polyphenols are mediated by several signaling pathways against skin carcinogenesis and metastasis, implying the importance of polyphenols to open up new horizons in development of anti-skin cancer therapeutic strategies.
Collapse
Affiliation(s)
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sushanto Gouda
- Amity Institute of Forestry and Wildlife, Amity University, Noida, Uttar Pradesh, India.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Elnaz Rezaeiamiri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hui Cao
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong, 519031, China.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy.
| | - Maria G Campos
- Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, Coimbra, Portugal; Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, Coimbra, Portugal.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
166
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
167
|
Csányi E, Bakonyi M, Kovács A, Budai-Szűcs M, Csóka I, Berkó S. Development of Topical Nanocarriers for Skin Cancer Treatment Using Quality by Design Approach. Curr Med Chem 2019; 26:6440-6458. [PMID: 30444194 DOI: 10.2174/0929867325666181116143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/04/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND One of the most compelling medical challenges of this century is the treatment of cancer and among them, skin cancer is the most common type. Thus, current treatments need to be renewed continuously to handle this challenge. OBJECTIVE This review presents considerations which can be employed during the development of nanosized formulations dedicated to the topical treatment of skin cancer. We aimed to collect and organize literature data on the treatment options for skin cancer in order to determine the required quality attributes of an effective dermal anticancer formulation. METHOD With the consideration of the Quality by Design (QbD) approach related to the development of new pharmaceutical formulations, a cost-saving process ensuring a high-quality product taking into account patient expectations, industrial and regulatory aspects can be achieved. Furthermore, this concept is highly recommended by regulatory agencies. RESULTS Our work discusses the current therapies, active agents, drug carrier systems, and evaluation methods in connection with the treatment of skin cancer and outlines Critical Quality Attributes which need to be considered during the development of a nanosized dermal anticancer formulation. CONCLUSION The first part of this review summarizes the most important topical treatment therapies for skin cancer and highlights the future therapeutic perspectives, focusing on the benefits of nanotechnology and dermal administration. The second part outlines the critical points of nanosized dermal anticancer formulation development in the view of QbD approach. Our research emphasizes the application of QbD method for a rationalized and more effective anticancer formulation development process.
Collapse
Affiliation(s)
- Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mónika Bakonyi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| |
Collapse
|
168
|
Madamsetty VS, Paul MK, Mukherjee A, Mukherjee S. Functionalization of Nanomaterials and Their Application in Melanoma Cancer Theranostics. ACS Biomater Sci Eng 2019; 6:167-181. [PMID: 33463233 DOI: 10.1021/acsbiomaterials.9b01426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Treatment and cure for melanoma, the most aggressive subcategory of skin cancer, still remains a daunting challenge to be circumvented. When metastasized, it requires radiotherapy, chemotherapy, targeted therapy, immunotherapy, etc. as its treatment, although it can be removed by surgical intervention if detected in its early stage. Development of upgraded therapeutic modalities for melanoma facilitating early diagnosis with subsequent excision before metastasis is, therefore, an urgent need. As we witnessed, nanotechnology has become instrumental with its far-reaching ramifications both in diagnosis and treatment of melanoma. In this review we are going to summarize the encouraging developments made in recent times for functionalization of nanoparticles (including liposomes, polymeric, metal, viral, protein nanoparticles) to create numerous theranostics (therapy plus diagnostics) for melanoma. We will also reflect on the melanoma statistics, molecular biology, conventional therapies, ongoing clinical trials, and future outlook.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville 32224, Florida, United States
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, The University of California, Los Angeles, Factor Building 621 Charles E. Young Drive, Los Angeles 90095, California, United States
| | - Anubhab Mukherjee
- Sealink Pharmaceuticals, Trendz Avenue, First floor, Plot Number 12, Gafoor Nagar, Madhapur, Hyderabad 500081, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston 77030, Texas, United States
| |
Collapse
|
169
|
Ma Y, Yu P, Lin S, Li Q, Fang Z, Huang Z. The association between nonsteroidal anti-inflammatory drugs and skin cancer: Different responses in American and European populations. Pharmacol Res 2019; 152:104499. [PMID: 31689521 DOI: 10.1016/j.phrs.2019.104499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To conduct a comprehensive systematic meta-analysis investigating the association of nonsteroidal anti-inflammatory drugs (NSAIDs) and their subtypes with skin cancer (SC) and its subclasses (basal cell carcinoma BCC; squamous cell carcinoma SCC; melanoma; nonmelanoma skin cancer NMSC) in general, American and European populations. METHODS PubMed, Embase, the Cochrane Library, the China National Knowledge Infrastructure and ClinicalTrials.gov were searched up to 24 February 2019. Pooled effect sizes and 95% confidence intervals were used to estimate associations. RESULTS Results based on 26 original studies including 223,619 cases and 1,398,507 controls showed both NSAIDs and nonselective Cyclooxygenase (COX) inhibitors to be statistically significantly associated with a reduced risk of SC, BCC, SCC and NMSC but not with melanoma. Conversely, no association was observed between selective Cyclooxygenase 2 (COX-2) inhibitors and SC or its subclasses. Further subgroup analysis showed that the results analyzed for American populations were almost the same as those for the general population. For European populations, neither NSAIDs nor its subtypes correlated significantly with susceptibility to SC or its subclasses. CONCLUSIONS The use of NSAIDs might reduce the risk of SC, but many factors including study population, drug subtype, and disease subclass affect the significance of the association.
Collapse
Affiliation(s)
- Yukun Ma
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Piaojian Yu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shuhuang Lin
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qiqun Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zijing Fang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
170
|
Discovering pH triggered charge rebound surface modulated topical nanotherapy against aggressive skin papilloma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110263. [PMID: 31761163 DOI: 10.1016/j.msec.2019.110263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023]
Abstract
A modified facile biomimetic Temozolomide Chitosan nanogel (TCNL) was developed offering pH responsive, charge attracted and microenvironment dependent tumor targeting nanotherapy. USFDA approved chemotherapeutic TMZ (Temozolomide) was encapsulated in a cationic biocompatible chitosan nanogel subsequently surface modified with nonionic Transcutol by inotropic gelation method and evaluated for its combined anti-metastatic and antitumor efficiency. The in-vitro results authenticated that TMZ encapsulated TCNL was effectively uptake and distributed in HaCaT cell line inducing high apoptosis and necrosis of tumor cells prior to the electron microscopic (TEM & SEM) and thermal evaluations (DSC, DTA & TG) suggesting spherical and thermo-stable nanogel system. An accelerated sustained release pattern of TMZ from TCNL was displayed in mildly acidic conditions (pH 6) signifying ultra-sensitivity of TCNL. In-vivo evaluation over 16 week DMBA/croton oil tumor induced mice model showed noteworthy tumor targeting with down regulation of overexpressed COX-2, cytokines and nuclear factors on western blot analysis. Moreover, advanced gamma scintigraphy analysis displayed significant drug accommodation and expressing potent tumor accumulation, suppression and metastasis effect on carcinogenic mice. The TCNL outcomes displayed effective tumor targeting on transdermal delivery for operative nanotherapy against skin cancer.
Collapse
|
171
|
Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Nazia Tabassum
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- The University of Central Punjab Johar Town Lahore 54000 Pakistan
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
| |
Collapse
|
172
|
Abo Aasy NK, Ragab D, Sallam MA, Abdelmonsif DA, Aly RG, Elkhodairy KA. A comparative study: the prospective influence of nanovectors in leveraging the chemopreventive potential of COX-2 inhibitors against skin cancer. Int J Nanomedicine 2019; 14:7561-7581. [PMID: 31571864 PMCID: PMC6756578 DOI: 10.2147/ijn.s218905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
Introduction This study was conducted to elucidate the chemopreventive potential, cytotoxic, and suppression of cellular metastatic activity of etodolac (ETD)-loaded nanocarriers. Methods To esteem the effect of charge and composition of the nanovectors on their performance, four types of vectors namely, negative lipid nanovesicles; phosalosomes (N-Phsoms), positive phosalosomes (P-Phsoms), nanostructured lipid carriers (NLCs) and polymeric alginate polymer (AlgNPs) were prepared and compared. ETD was used as a model cyclo-oxygenase-2 (COX-2) inhibitor to evaluate the potency of these nanovectors to increase ETD permeation and retention through human skin and cytotoxicity against squamous cell carcinoma cell line (SCC). Moreover, the chemopreventive activity of ETD nanovector on mice skin cancer model was evaluated. Results Among the utilized nanovectors, ETD-loaded N-Phsoms depicted spherical vesicles with the smallest particle size (202.96±2.37 nm) and a high zeta potential of −24.8±4.16 mV. N-Phsoms exhibited 1.5, and 3.6 folds increase in the ETD amount deposited in stratum corneum, epidermis and dermis. Moreover, cytotoxicity studies revealed a significant cytotoxic potential of such nanovector with IC50=181.76 compared to free ETD (IC50=982.75), correlated to enhanced cellular internalization. Its efficacy extended to a reduction in the relative tumor weight with 1.70 and 1.51-fold compared to positive control and free ETD, that manifested by a 1.72-fold reduction in both COX-2 and proliferating cell nuclear antigen mRNA (PCNA-mRNA) levels and 2.63-fold elevation in caspase-3 level in skin tumors relative to the positive control group with no hepato-and nephrotoxicity. Conclusion Encapsulation of ETD in nanovector enhances its in-vitro and in-vivo anti-tumor activity and opens the door for encapsulation of more relevant drugs.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, Ontario, Canada
| | - Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research & Applications, University of Alexandria, Alexandria, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
173
|
Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8127362. [PMID: 31636809 PMCID: PMC6766104 DOI: 10.1155/2019/8127362] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Strategies to battle malignant tumors have always been a dynamic research endeavour. Although various vehicles (e.g., chemotherapeutic therapy, radiotherapy, surgical resection, etc.) are used for skin cancer management, they mostly remain unsatisfactory due to the complex mechanism of carcinogenesis. Increasing evidence indicates that redox imbalance and aberrant reactive oxygen species (ROS) are closely implicated in the oncogenesis of skin cancer. When ROS production goes beyond their clearance, excessive or accumulated ROS could disrupt redox balance, induce oxidative stress, and activate the altered ROS signals. These would damage cellular DNA, proteins, and lipids, further leading to gene mutation, cell hyperproliferation, and fatal lesions in cells that contribute to carcinogenesis in the skin. It has been known that ROS-mediated skin carcinogenesis involves multiple ways, including modulating related signaling pathways, changing cell metabolism, and causing the instability of the genome and epigenome. Nevertheless, the exact role of ROS in skin cancer has not been thoroughly elucidated. In spite of ROS inducing skin carcinogenesis, toxic-dose ROS could trigger cell death/apoptosis and, therefore, may be an efficient therapeutic tool to battle skin cancer. Considering the dual role of ROS in the carcinogenesis and treatment of skin cancer, it would be essential to clarify the relationship between ROS and skin cancer. Thus, in this review, we get the related data together to seek the connection between ROS and skin carcinogenesis. Besides, strategies basing on ROS to fight skin cancer are discussed.
Collapse
|
174
|
Arriagada F, Nonell S, Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine (Lond) 2019; 14:2243-2267. [PMID: 31411537 DOI: 10.2217/nnm-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging, exposure to oxidants, infectious pathogens, inflammogens, ultraviolet radiation and other environmental and genetic factors can result in the development of various skin disorders. Despite immense progress being made in dermatological treatments, many skin-associated problems still remain difficult to treat and various therapies have limitations. Progress in silica-based nanomaterials research provides an opportunity to overcome these drawbacks and improve therapies and is a promising tool for inclusion in clinical practice to treat skin diseases. This review focuses on the use of various types of silica nanoparticles with therapeutic applications in various skin disorders. These nanosystems improve treatment efficacy by maintaining or enhancing the effect of several drugs and are useful tools for nanomedicine, pharmaceutical sciences and future clinical applications.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
175
|
A Novel Marine Natural Product Derived Pyrroloiminoquinone with Potent Activity against Skin Cancer Cells. Mar Drugs 2019; 17:md17080443. [PMID: 31357586 PMCID: PMC6722685 DOI: 10.3390/md17080443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
Non-melanoma skin cancer is one of the major ailments in the United States. Effective drugs that can cure skin cancers are limited. Moreover, the available drugs have toxic side effects. Therefore, skin cancer drugs with less toxic side effects are urgently needed. To achieve this goal, we focused our work on identifying potent lead compounds from marine natural products. Five lead compounds identified from a class of pyrroloiminoquinone natural products were evaluated for their ability to selectively kill squamous cell carcinoma (SCC13) skin cancer cells using an MTT assay. The toxicity of these compounds was also evaluated against the normal human keratinocyte HaCaT cell line. The most potent compound identified from these studies, C278 was further evaluated for its ability to inhibit cancer cell migration and invasion using a wound-healing assay and a trans-well migration assay, respectively. To investigate the molecular mechanism of cell death, the expression of apoptotic and autophagy proteins was studied in C278 treated cells compared to untreated cells using western blot. Our results showed that all five compounds effectively killed the SCC13 cells, with compound C278 being the most effective. Compound C278 was more effective in killing the SCC13 cells compared to HaCaT cells with a two-fold selectivity. The migration and the invasion of the SCC13 cells were also inhibited upon treatment with compound C278. The expression of pro-apoptotic and autophagy proteins with concomitant downregulation in the expression of survival proteins were observed in C278 treated cells. In summary, the marine natural product analog compound C278 showed promising anticancer activity against human skin cancer cells and holds potential to be developed as an effective anticancer agent to combat skin cancer.
Collapse
|
176
|
Chmura J, Erdman A, Ehler E, Lawrence J, Wilke CT, Rogers B, Ferreira C. Novel design and development of a 3D-printed conformal superficial brachytherapy device for the treatment of non-melanoma skin cancer and keloids. 3D Print Med 2019; 5:10. [PMID: 31332545 PMCID: PMC6743259 DOI: 10.1186/s41205-019-0045-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
Background Skin tumors are the most predominant form of cancer in the United States. Radiation therapy, particularly high dose-rate (HDR) brachytherapy, provides an effective form of cancer control when surgery is not possible or when surgical margins are incomplete. The treatment of superficial skin cancers on irregular surfaces, such as the nose, lips or ears, present challenges for treatment. To address this issue, we designed and constructed a novel conformal superficial brachytherapy (CSBT) device prototype to improve patient-specific treatment for complex sites. The device is mounted on an automated remote after-loader, providing limited radiation exposure to operating personnel, is inexpensive to construct, and offers a unique method of conformal surface radiation therapy. Results A prototype of the CSBT device was successfully manufactured. A computed tomography (CT) scan of a Rando phantom was used to plan the target treatment area. The CSBT device has a hexagonal lattice array of retractable rods with radioactive seeds placed at the tip of each rod. A 3D-printed conformal shape insert with a hexagonal array of cylindrical projections of varying length is driven into the rods by a single linear actuator. The rods are displaced to conform to the patient’s skin. This elegant device design permits the delivery of radiation to complex targets using readily available beta-emitting radionuclides, such as Yttrium-90 (Y-90) or Strontium-90 (Sr-90). Conclusion A working prototype of a novel CSBT device was built using 3D-printing technology that provides a safe and economically attractive means of improving radiation delivery to complex treatment sites. Electronic supplementary material The online version of this article (10.1186/s41205-019-0045-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Chmura
- Biomedical Engineering Department, University of Minnesota, Minneapolis, MN, USA. .,Medical Devices Center, University of Minnesota, Minneapolis, MN, USA.
| | - Arthur Erdman
- Medical Devices Center, University of Minnesota, Minneapolis, MN, USA
| | - Eric Ehler
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota, St Paul, MN, USA
| | - Christopher T Wilke
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Brent Rogers
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
177
|
Amaral-Machado L, Oliveira WN, Alencar ÉN, Cruz AKM, Rocha HAO, Ebeid K, Salem AK, Egito EST. Bullfrog oil (Rana catesbeiana Shaw) induces apoptosis, in A2058 human melanoma cells by mitochondrial dysfunction triggered by oxidative stress. Biomed Pharmacother 2019; 117:109103. [PMID: 31203130 DOI: 10.1016/j.biopha.2019.109103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Bullfrog oil, an animal oil extracted from the adipose tissue of Rana catesbeiana Shaw, showed promising cytotoxic activity against melanoma cells and, therefore, has the potential to become a pharmaceutical active compound. However, there is a lack of information regarding the pathways involved in its pharmacological activity. Thus, the aim of this study was to investigate and elucidate the cytotoxic effect of this oil against A2058 human melanoma cells. The cytotoxic potential was evaluated by the MTT assay, the cell cycle analysis and the cell death assay. In addition, the apoptotic potential was investigated by (i) the DNA fragmentation using propidium iodide staining analysis, (ii) the evaluation of mitochondrial membrane potential and (iii) the determination of intracellular Reactive Oxygen Species (ROS) level. The results showed that the bullfrog oil was able to promote a time-dependent cytotoxic effect, decreasing cell viability to 38% after 72 h of treatment without affecting the cell cycle. Additionally, the bullfrog oil induced the apoptosis in A2058 cells, increasing up to 50 ± 13% of the intracellular ROS level, maintaining the DNA integrity and promoting an approximate decrease of 35 ± 5% in the mitochondrial membrane potential. It can be concluded that the in vitro cytotoxic effect of the bullfrog oil in A2058 human melanoma cells is mediated by oxidative stress that induces mitochondrial dysfunction, triggering the apoptosis. These unprecedented results highlight the pharmacological potential of bullfrog oil and provide important information to support studies on the development of new pharmaceutical products for complementary and alternative treatments for melanoma.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Graduation Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Éverton N Alencar
- Graduation Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Kareem Ebeid
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Eryvaldo Sócrates T Egito
- Graduation Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Graduation Program in Pharmaceutical Sciences, UFRN, Natal, Brazil.
| |
Collapse
|
178
|
Zhou L, Xi Y, Xue Y, Wang M, Liu Y, Guo Y, Lei B. Injectable Self‐Healing Antibacterial Bioactive Polypeptide‐Based Hybrid Nanosystems for Efficiently Treating Multidrug Resistant Infection, Skin‐Tumor Therapy, and Enhancing Wound Healing. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201806883] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 01/27/2025]
Abstract
AbstractThe surgical procedure in skin‐tumor therapy usually results in cutaneous defects, and multidrug‐resistant bacterial infection could cause chronic wounds. Here, for the first time, an injectable self‐healing antibacterial bioactive polypeptide‐based hybrid nanosystem is developed for treating multidrug resistant infection, skin‐tumor therapy, and wound healing. The multifunctional hydrogel is successfully prepared through incorporating monodispersed polydopamine functionalized bioactive glass nanoparticles (BGN@PDA) into an antibacterial F127‐ε‐Poly‐L‐lysine hydrogel. The nanocomposites hydrogel displays excellent self‐healing and injectable ability, as well as robust antibacterial activity, especially against multidrug‐resistant bacteria in vitro and in vivo. The nanocomposites hydrogel also demonstrates outstanding photothermal performance with (near‐infrared laser irradiation) NIR irradiation, which could effectively kill the tumor cell (>90%) and inhibit tumor growth (inhibition rate up to 94%) in a subcutaneous skin‐tumor model. In addition, the nanocomposites hydrogel effectively accelerates wound healing in vivo. These results suggest that the BGN‐based nanocomposite hydrogel is a promising candidate for skin‐tumor therapy, wound healing, and anti‐infection. This work may offer a facile strategy to prepare multifunctional bioactive hydrogels for simultaneous tumor therapy, tissue regeneration, and anti‐infection.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Yuewei Xi
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Yumeng Xue
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Min Wang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Yanle Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
| | - Yi Guo
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Department of Biomedical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Instrument Analysis Center Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
179
|
Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art. Eur J Pharm Biopharm 2019; 137:95-111. [DOI: 10.1016/j.ejpb.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
|
180
|
Wang X, Ma B, Xue J, Wu J, Chang J, Wu C. Defective Black Nano-Titania Thermogels for Cutaneous Tumor-Induced Therapy and Healing. NANO LETTERS 2019; 19:2138-2147. [PMID: 30719923 DOI: 10.1021/acs.nanolett.9b00367] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current challenges in cutaneous tumor therapy are healing the skin wounds resulting from surgical resection and eliminating possible residual tumor cells to prevent recurrence. To address this issue, bifunctional biomaterials equipped with effective tumor therapeutic capacity for skin cancers and simultaneous tissue regenerative ability for wound closure are highly recommended. Herein, we report an injectable thermosensitive hydrogel (named BT-CTS thermogel) with the integration of nanosized black titania (B-TiO2- x, ∼50 nm) nanoparticles into a chitosan (CTS) matrix. The B-TiO2- x nanocrystal exhibits a crystalline/amorphous core-shell structure with abundant oxygen vacancies, which endows the BT-CTS thermogels with simultaneous photothermal therapy (PTT) and photodynamic therapy (PDT) effects under single-wavelength near-infrared laser irradiation, leading to an excellent therapeutic effect on skin tumors in vitro and in vivo. Moreover, the BT-CTS thermogel not only supports the adhesion, proliferation, and migration of normal skin cells but also facilitates skin tissue regeneration in a murine chronic wound model. Therefore, such BT-CTS thermogels with easy injectability, excellent thermostability, and simultaneous PTT and PDT efficacy as well as tissue regenerative activity offers a promising pathway for the healing of cutaneous tumor-induced wounds.
Collapse
Affiliation(s)
- Xiaocheng Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , People's Republic of China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , People's Republic of China
| | - Bing Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , People's Republic of China
| | - Jianmin Xue
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , People's Republic of China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , People's Republic of China
| | - JinFu Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , People's Republic of China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , People's Republic of China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , People's Republic of China
| |
Collapse
|
181
|
Mousavisani SZ, Raoof JB, Cheung KY, Camargo ARH, Ruzgas T, Turner AP, Mak WC. Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents. Biosens Bioelectron 2019; 128:159-165. [DOI: 10.1016/j.bios.2018.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 11/27/2022]
|
182
|
Kalailingam P, Tan HB, Pan JY, Tan SH, Thanabalu T. Overexpression of CDC42SE1 in A431 Cells Reduced Cell Proliferation by Inhibiting the Akt Pathway. Cells 2019; 8:cells8020117. [PMID: 30717410 PMCID: PMC6406378 DOI: 10.3390/cells8020117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cell division cycle 42 (CDC42), a small Rho GTPase, plays a critical role in many cellular processes, including cell proliferation and survival. CDC42 interacts with the CRIB (Cdc42- and Rac-interactive binding) domain of CDC42SE1, a small effector protein of 9 kDa. We found that the expression of CDC42SE1 was reduced in human skin cancer samples relative to matched perilesional control. Exogenous expression of CDC42SE1 but not CDC42SE1H38A (mutation within CRIB domain) in A431 cells (A431SE1, A431SE1-H38A) reduced cell proliferation. Antibody microarray analysis of A431Ctrl and A431SE1 lysate suggested that reduced A431SE1 cells proliferation was due to inhibition of Akt pathway, which was confirmed by the reduced P-Akt and P-mTOR levels in A431SE1 cells compared to A431Ctrl cells. This suggests that CDC42SE1 modulates the CDC42-mediated Akt pathway by competing with other effector proteins to bind CDC42. A431SE1 cells formed smaller colonies in soft agar compared to A431Ctrl and A431SE1-H38A cells. These findings correlate with nude mice xenograft assays, where A431SE1 cells formed tumors with significantly-reduced volume compared to the tumors formed by A431Ctrl cells. Our results suggest that CDC42SE1 is downregulated in skin cancer to promote tumorigenesis, and thus CDC42SE1 might be an important marker of skin cancer progression.
Collapse
Affiliation(s)
- Pazhanichamy Kalailingam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Hui Bing Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Jiun Yit Pan
- National Skin Centre, Singapore 308205, Singapore.
| | | | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
183
|
Pampaloni NP, Giugliano M, Scaini D, Ballerini L, Rauti R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front Neurosci 2019; 12:953. [PMID: 30697140 PMCID: PMC6341218 DOI: 10.3389/fnins.2018.00953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
| | - Michele Giugliano
- Department of Biomedical Sciences and Institute Born-Bunge, Molecular, Cellular, and Network Excitability, Universiteit Antwerpen, Antwerpen, Belgium
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- ELETTRA Synchrotron Light Source, Nanoinnovation Lab, Trieste, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Rossana Rauti
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
184
|
Siegel JA, Beatson M, Chren MM, Weinstock MA. Effects of new keratinocyte carcinomas on skin-related quality of life: Results from the Veterans Affairs Keratinocyte Carcinoma Chemoprevention Trial. J Am Acad Dermatol 2019; 80:1458-1459. [PMID: 30639882 DOI: 10.1016/j.jaad.2018.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Julia A Siegel
- Center for Dermatoepidemiology 111D, Veterans Affairs Medical Center, Providence, Rhode Island; Department of Dermatology, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Meghan Beatson
- Center for Dermatoepidemiology 111D, Veterans Affairs Medical Center, Providence, Rhode Island; Department of Dermatology, Alpert Medical School of Brown University, Providence, Rhode Island; George Washington University School of Medicine, Washington, DC.
| | - Mary-Margaret Chren
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Martin A Weinstock
- Center for Dermatoepidemiology 111D, Veterans Affairs Medical Center, Providence, Rhode Island; Department of Dermatology, Alpert Medical School of Brown University, Providence, Rhode Island
| | | |
Collapse
|
185
|
Tham HP, Xu K, Lim WQ, Chen H, Zheng M, Thng TGS, Venkatraman SS, Xu C, Zhao Y. Microneedle-Assisted Topical Delivery of Photodynamically Active Mesoporous Formulation for Combination Therapy of Deep-Seated Melanoma. ACS NANO 2018; 12:11936-11948. [PMID: 30444343 DOI: 10.1021/acsnano.8b03007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Topical treatment using photodynamic therapy (PDT) for many types of skin cancers has largely been limited by the inability of existing photosensitizers to penetrate into the deep skin tissue. To overcome these problems, we developed a mesoporous nanovehicle with dual loading of photosensitizers and clinically relevant drugs for combination therapy, while utilizing microneedle technology to facilitate their penetration into deep skin tissue. Sub-50 nm photodynamically active mesoporous organosilica nanoparticles were synthesized with photosensitizers covalently bonded to the silica matrix, which dramatically increased the quantum yield and photostability of these photosensitizers. The mesopores of the nanoparticles were further loaded with small-molecule inhibitors, i. e., dabrafenib and trametinib, that target the hyperactive mitogen-activated protein kinase (MAPK) pathway for melanoma treatment. As-prepared empty nanovehicle was cytocompatible with normal skin cells in the dark, while NIR-irradiated drug-loaded nanovehicle showed a synergistic killing effect on skin cancer cells mainly through reactive oxygen species and caspase-activated apoptosis. The nanovehicle could significantly inhibit the proliferation of tumor cells in a 3D spheroid model in vitro. Porcine skin fluorescence imaging demonstrated that microneedles could facilitate the penetration of nanovehicle across the epidermis layer of skin to reach deep-seated melanoma sites. Tumor regression studies in a xenografted melanoma mouse model confirmed superior therapeutic efficacy of the nanovehicle through combinational PDT and targeted therapy.
Collapse
Affiliation(s)
- Huijun Phoebe Tham
- Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Keming Xu
- Department of Analytical Chemistry , China Pharmaceutical University , 24 Tongjia Alley , Nanjing 210008 , China
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Wei Qi Lim
- Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Tien Guan Steven Thng
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Subramanian S Venkatraman
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
186
|
Dendisová M, Jeništová A, Parchaňská-Kokaislová A, Matějka P, Prokopec V, Švecová M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal Chim Acta 2018; 1031:1-14. [DOI: 10.1016/j.aca.2018.05.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023]
|
187
|
Feehan RP, Nelson AM, Shantz LM. Inhibition of mTORC2 enhances UVB-induced apoptosis in keratinocytes through a mechanism dependent on the FOXO3a transcriptional target NOXA but independent of TRAIL. Cell Signal 2018; 52:35-47. [PMID: 30172026 DOI: 10.1016/j.cellsig.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Abstract
The primary cause of non-melanoma skin cancer (NMSC) is ultraviolet B (UVB) radiation. We have shown previously that mTORC2 inhibition sensitizes keratinocytes to UVB-induced apoptosis mediated by the transcription factor FOXO3a. FOXO3a is a key regulator of apoptosis and a tumor suppressor in several cancer types. Activation of FOXO3a promotes apoptosis through the coordinated expression of a variety of target genes, including TRAIL and NOXA. We hypothesized that in the setting of mTORC2 inhibition, the UVB-induced expression of these factors would lead to apoptosis in a FOXO3a-dependent manner. Using spontaneously immortalized human keratinocytes (HaCaT cells), we observed that both TRAIL and NOXA expression increased in cells exposed to UVB and the TOR kinase inhibitor Torin 2. Similar to knockdown of FOXO3a, NOXA knockdown reversed the sensitization to UVB-induced apoptosis caused by mTORC2 inhibition. In contrast, loss of TRAIL by either knockdown or knockout actually enhanced expression of nuclear FOXO3a, which maintained apoptosis. These surprising results are not due to faulty death receptor signaling in HaCaT cells, as we found that the cells undergo extrinsic apoptosis in response to treatment with recombinant TRAIL. Even more striking, TRAIL knockout cells were sensitized to recombinant TRAIL-induced apoptosis compared to wild-type HaCaT cells, with the largest increase occurring in the presence of mTORC2 inhibition. Taken together, these studies provide strong evidence that mTORC2 controls UVB-induced apoptosis by regulating NOXA expression downstream of FOXO3a. Moreover, FOXO3a transcriptional activation by mTORC2 inhibitors may be a valuable target for prevention or therapy of NMSC, especially in cases with low endogenous TRAIL.
Collapse
Affiliation(s)
- Robert P Feehan
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Amanda M Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Lisa M Shantz
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
188
|
Sobolev AS. Modular Nanotransporters for Nuclear-Targeted Delivery of Auger Electron Emitters. Front Pharmacol 2018; 9:952. [PMID: 30210340 PMCID: PMC6119715 DOI: 10.3389/fphar.2018.00952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
This review describes artificial modular nanotransporters (MNTs) delivering their cargos into target cells and then into the nuclei – the most vulnerable cell compartment for most anticancer agents and especially for radionuclides emitting short-range particles. The MNT strategy uses natural subcellular transport processes inherent in practically all cells including cancer cells. The MNTs use these processes just as a passenger who purchased tickets for a multiple-transfer trip making use of different kinds of public transport to reach the desired destination. The MNTs are fusion polypeptides consisting of several parts, replaceable modules, accomplishing binding to a specific receptor on the cell and subsequent internalization, endosomal escape and transport into the cell nucleus. Radionuclides emitting short-range particles, like Auger electron emitters, acquire cell specificity and significantly higher cytotoxicity both in vitro and in vivo when delivered by the MNTs into the nuclei of cancer cells. MNT modules are interchangeable, allowing replacement of receptor recognition modules, which permits their use for different types of cancer cells and, as a cocktail of several MNTs, for targeting several tumor-specific molecules for personalized medicine.
Collapse
Affiliation(s)
- Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
189
|
Bagde A, Mondal A, Singh M. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:60-68. [PMID: 29150967 DOI: 10.1111/phpp.12368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 02/01/2023]
Abstract
Annually, more skin cancer cases are diagnosed than the collective incidence of the colon, lung, breast, and prostate cancer. Persistent contact with sunlight is a primary cause for all the skin malignancies. UVB radiation induces reactive oxygen species (ROS) production in the skin which eventually leads to DNA damage and mutation. Various delivery approaches for the skin cancer treatment/prevention have been evolving and are directed toward improvements in terms of delivery modes, therapeutic agents, and site-specificity of therapeutics delivery. The effective chemoprevention activity achieved is based on the efficiency of the delivery system used and the amount of the therapeutic molecule deposited in the skin. In this article, we have discussed different studies performed specifically for the chemoprevention of UVB-induced skin cancer. Ultra-flexible nanocarriers, transethosomes nanocarriers, silica nanoparticles, silver nanoparticles, nanocapsule suspensions, microemulsion, nanoemulsion, and polymeric nanoparticles which have been used so far to deliver the desired drug molecule for preventing the UVB-induced skin cancer.
Collapse
Affiliation(s)
- Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
190
|
Shende P, Vaidya J, Gaud RS. Pharmacotherapeutic approaches for transportation of anticancer agents via skin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S423-S433. [PMID: 30095010 DOI: 10.1080/21691401.2018.1498349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is the largest family of diseases that involve abnormal uncontrolled cell growth which metastasizes to other parts of the body. The most common type of cancers includes lung, liver, colorectal, prostate, stomach, breast and cervical cancer with skin cancer excluding melanoma (contribute up to 40% of the cases). The conventional treatment approaches like surgery, chemotherapy, etc., have several side effects such as severe inflammation and pain. Hence, pharmacotherapeutic approaches of antineoplastic agents can be advantageous for treating various forms of cancer through the skin. Novel transdermal techniques and preparations have been emerged to overcome the limitations of skin and to penetrate inside the cancerous cells by transporting through the deeper tissues of the skin. The transdermal penetration of drugs using different formulations such as nanocarriers, physical penetration enhancement techniques, chemical penetration enhancers and newer technologies such as gels, dendrimers, needle-free injection jet etc., show improved patient compliance, abolition of scars and economic value. The topical delivery of antineoplastic agents is an attractive choice for increasing site-specific delivery, reducing side effects and improving therapeutic effects. The objective of this review is to present insights into pharmacotherapeutic techniques, which can be used for transdermal delivery of anticancer agents through skin due to its potential to create a new frontier in treatment of cancer.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , V. L. Mehta Road, Vile Parle (West) , Mumbai , India
| | - Jai Vaidya
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , V. L. Mehta Road, Vile Parle (West) , Mumbai , India
| | - R S Gaud
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , V. L. Mehta Road, Vile Parle (West) , Mumbai , India
| |
Collapse
|
191
|
Zhang F, Jin T, Hu Q, He P. Distinguishing skin cancer cells and normal cells using electrical impedance spectroscopy. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
192
|
Ding LT, Zhao P, Yang ML, Lv GZ, Zhao TL. GDC-0084 inhibits cutaneous squamous cell carcinoma cell growth. Biochem Biophys Res Commun 2018; 503:1941-1948. [PMID: 30072096 DOI: 10.1016/j.bbrc.2018.07.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
GDC-0084 is a novel and potent small-molecule PI3K-mTOR dual inhibitor. The present study examined its potential activity in cutaneous squamous cell carcinoma (cSCC) cells. Our results show that GDC-0084 treatment at nanomole concentrations potently inhibited survival and proliferation of established (A431, SCC-13 and SCL-1 lines) and primary human cSCC cells. GDC-0084 induced apoptosis activation and cell cycle arrest in the cSCC cells. It was more efficient than other known PI3K-Akt-mTOR inhibitors in killing cSCC cells, but was non-cytotoxic to the normal human skin fibroblasts/keratinocytes. In A431 cells and primary cSCC cells, GDC-0084 blocked phosphorylation of key PI3K-Akt-mTOR components, including p85, Akt, S6K1 and S6. GDC-0084 also inhibited DNA-PKcs activation in cSCC cells. Significantly, restoring DNA-PKcs activation by a constitutively active-DNA-PKcs (S2056D) partially inhibited GDC-0084-induced cell death and apoptosis in A431 cells. In vivo, GDC-0084 daily gavage potently inhibited A431 xenograft tumor growth in mice. In GDC-0084-treated tumor tissues PI3K-Akt-mTOR and DNA-PKcs activation were significantly inhibited. In summary, GDC-0084 inhibits human cSCC cell growth in vitro and in vivo through blocking PI3K-Akt-mTOR and DNA-PKcs signalings.
Collapse
Affiliation(s)
- Ling-Tao Ding
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu, China
| | - Peng Zhao
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu, China
| | - Min-Lie Yang
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu, China
| | - Guo-Zhong Lv
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu, China.
| | - Tian-Lan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
193
|
Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, Arshad MA, Ali S, Asrar M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed Pharmacother 2018; 103:1643-1651. [DOI: 10.1016/j.biopha.2018.04.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
|
194
|
Targeted Delivery of Cell Penetrating Peptide Virus-like Nanoparticles to Skin Cancer Cells. Sci Rep 2018; 8:8499. [PMID: 29855618 PMCID: PMC5981617 DOI: 10.1038/s41598-018-26749-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient’s appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
Collapse
|
195
|
Hao Y, Chen Y, Lei M, Zhang T, Cao Y, Peng J, Chen L, Qian Z. Near-Infrared Responsive PEGylated Gold Nanorod and Doxorubicin Loaded Dissolvable Hyaluronic Acid Microneedles for Human Epidermoid Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu 610041 P. R. China
| | - YuWen Chen
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu 610041 P. R. China
| | - MinYi Lei
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu 610041 P. R. China
| | - TaoYe Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Jianghan University; Wuhan 430056 P. R. China
| | - YiPing Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Jianghan University; Wuhan 430056 P. R. China
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu 610041 P. R. China
| | - LiJuan Chen
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu 610041 P. R. China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu 610041 P. R. China
| |
Collapse
|
196
|
Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: Development, in Vitro Characterization, and in Vivo Evaluation in a Mouse Skin Cancer Xenograft Model. Mol Pharm 2018; 15:2194-2205. [PMID: 29701979 DOI: 10.1021/acs.molpharmaceut.8b00047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorouracil (5-FU) is an antimetabolite drug used in the treatment of various malignancies, such as colon and skin cancers. However, its systemic administration results in severe side effects. Topical 5-FU delivery for the treatment of skin cancer could circumvent these shortcomings, but it is limited by the drug poor permeability through the skin. To enhance 5-FU efficacy against skin cancer and reduce its systemic side effects, it was loaded into a gold nanoparticle (GNP)-based topical delivery system. 5-FU was loaded onto GNPs capped with CTAB through ionic interactions between 5-FU and CTAB. GNPs were prepared at different 5-FU/CTAB molar ratios and evaluated using different techniques. GNP stability and drug release were studied as a function of salt concentration and solution pH. Optimum 5-FU/CTAB-GNPs were incorporated into gel and cream bases, and their ex vivo permeability was evaluated in mice dorsal skin. The in vivo anticancer efficacy of the same preparations was evaluated in A431 tumor-bearing mice. The GNPs had spherical shape and a size of ∼16-150 nm. Maximum 5-FU entrapment was achieved at 5-FU/CTAB molar ratio of 1:1 and pH 11.5. Drug release from GNPs was sustained and pH-dependent. 5-FU GNP gel and cream had around 2-fold higher permeability through mice skin compared with free 5-FU gel and cream formulations. Further, in vivo studies in a mouse model having A431 skin cancer cells implanted in the subcutaneous space showed that the GNP gel and cream achieved 6.8- and 18.4-fold lower tumor volume compared with the untreated control, respectively. These results confirm the potential of topical 5-FU/CTAB-GNPs to enhance drug efficacy against skin cancer.
Collapse
Affiliation(s)
- Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut 71526 , Egypt.,Department of Pharmaceutics, Faculty of Pharmacy , South Valley University , Qena 83523 , Egypt
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut 71526 , Egypt.,Department of Pharmaceutics, Faculty of Pharmacy , University of Tabuk , Tabuk , Saudi Arabia
| | - Douaa Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute , Assiut University , Assiut 71526 , Egypt
| | - Mohamed A Attia
- Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut 71526 , Egypt
| |
Collapse
|
197
|
Kong YH, Xu SP. Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncol Rep 2018; 39:2513-2526. [PMID: 29693192 PMCID: PMC5983924 DOI: 10.3892/or.2018.6381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Salidroside (SR) is a main component of Rhodiola rosea L. and exhibits a variety of pharmacologic properties. The present study was carried out to explore the potential effect of SR against skin cancer induced by 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13‑acetate (TPA) in female Institute for Cancer Research (ICR) mice and to reveal the underlying molecular targets regulated by SR. The mice were randomly divided into 4 groups: control, DMBA/TPA, DMBA/TPA+SR (20 mg/kg) and DMBA/TPA+SR (40 mg/kg). SR was administered to mice five times a week after DMBA treatments. In our study, we found that SR dose-dependently ameliorated skin cancer incidence and the multiplicity in the animal models by reducing the release of inflammation-related cytokines, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), cyclooxygenase 2 (COX2) and transforming growth factor β-1 (TGF-β1). Suppression of the nuclear factor (NF)-κB signaling pathway by SR was effective to prevent skin carcinogenesis. Furthermore, TUNEL analysis indicated that compared to the DMBA/TPA group, enhanced apoptosis was observed in the DMBA/TPA+SR group. In addition, p53 expression levels were increased by SR in the DMBA/TPA-induced mice. Therefore, SR was effective for inducing apoptosis during skin cancer progression triggered by DMBA/TPA. Consistently, p21, p53 upregulated modulator of apoptosis (PUMA), Bax and caspase-3 were highly induced by SR to enhance the apoptotic response for preventing skin cancer. Moreover, in vitro, we found that SR dramatically reduced the inflammatory response, while enhancing the aoptotic response by blocking NF-κB and activating caspase-3 pathways, respectively. In addition, flow cytometric analysis further confirmed the induction of apoptosis by SR in DMBA-treated cells in vitro. Taken together, the in vivo and in vitro studies illustrated that SR might be a promising compound to reduce skin cancer risk.
Collapse
Affiliation(s)
- Ying-Hui Kong
- Department of Dermatology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Ping Xu
- Department of Dermatology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
198
|
Rheological effect of gamma radiation on gel-like formulation: Appraisal for the construction of radiopharmaceuticals for cutaneous application. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
199
|
Zhang C, Zhang J, Qin Y, Song H, Huang P, Wang W, Wang C, Li C, Wang Y, Kong D. Co-delivery of doxorubicin and pheophorbide A by pluronic F127 micelles for chemo-photodynamic combination therapy of melanoma. J Mater Chem B 2018; 6:3305-3314. [DOI: 10.1039/c7tb03179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, doxorubicin (DOX)-loaded pheophorbide A (PheoA) modified Pluronic F127 (F127) micelles (DOX/F127-PheoA micelles) were developed for combined chemo-photodynamic therapy of melanoma.
Collapse
|
200
|
Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy. Ther Deliv 2017; 7:521-44. [PMID: 27444493 DOI: 10.4155/tde-2016-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Parvifloron D is a natural diterpene with a broad and not selective cytotoxicity toward human tumor cells. In order to develop a targeted antimelanoma drug delivery platform for Parvifloron D, hybrid nanoparticles were prepared with biopolymers and functionalized with α-melanocyte stimulating hormone. Results/methodology: Nanoparticles were produced according to a solvent displacement method and the physicochemical properties were assessed. It was shown that Parvifloron D is cytotoxic and can induce, both as free and as encapsulated drug, cell death in melanoma cells (human A375 and mouse B16V5). Parvifloron D-loaded nanoparticles showed a high encapsulation efficiency (87%) and a sustained release profile. In vitro experiments showed the nanoparticles' uptake and cell internalization. CONCLUSION Hybrid nanoparticles appear to be a promising platform for long-term drug release, presenting the desired structure and a robust performance for targeted anticancer therapy.
Collapse
|