151
|
Chang SH, Lin YY, Wu GJ, Huang CH, Tsai GJ. Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int J Biol Macromol 2019; 131:167-175. [DOI: 10.1016/j.ijbiomac.2019.02.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
|
152
|
Chang SH, Wu GJ, Wu CH, Huang CH, Tsai GJ. Oral administration with chitosan hydrolytic products modulates mitogen-induced and antigen-specific immune responses in BALB/c mice. Int J Biol Macromol 2019; 131:158-166. [DOI: 10.1016/j.ijbiomac.2019.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
|
153
|
Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109830. [PMID: 31349502 DOI: 10.1016/j.msec.2019.109830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Among several bioactive peptides identified from the venom glands of the Tityus stigmurus scorpion, one peptide with hypotensive action (TistH, Tityus stigmurus Hypotensin) showed multifunctional and biotechnological applications. The maximum efficacy of this class of compounds can be achieved by immobilizing it in specific and suitable biomaterials or suitable carriers. In this study, distinct entrapment methods of TistH in chitosan nanoparticles was tested using its incorporation (CN-TistH-Inc) or adsorption (CN-TistH-Ads) methods by ionotropic gelification. Physico-chemical properties as well as biocompatibility and antifungal efficacy were assessed for different samples. Atomic force microscopy and field emission gun scanning electronic microscopy images associated with particle size measurements demonstrated that the two methods induced cationic spherical, small (< 160 nm), and narrow-sized (PdI about 0.3) nanoparticles, even after peptide loading greater than 96.5%, which was confirmed using Fourier transform infrared spectroscopy. The colloidal suspensions showed to be stable for 8 weeks and were able to induce the desired slow in vitro peptide release. Cytotoxicity assays performed in normal cells originated from murine macrophages (RAW 264.7) and kidneys of African green monkeys (Vero E6) suggested biocompatibility of samples. The CN-TistH-Inc and CN-TistH-Ads showed a minimal inhibitory concentration of 89.2 μg.mL-1 against Candida albicans, 11.1 μg.mL-1 for C. parapsilosis and C. tropicalis, confirmed by minimum fungicidal concentrations assay. Moreover, the TistH-loaded cross-linked chitosan nanoparticles significantly reduced the biofilm formation of clinical yeast sepsis of C. tropicalis and C. krusei, as well as clinical yeasts of vulvovaginal candidiasis of C. albicans. In this approach, biodegradable nanocarriers prepared using simple and reproducible methods demonstrated the ability to deliver the TistH peptide from T. stigmurus and improve its antifungal efficacy.
Collapse
|
154
|
Lin WJ, Lee SA. A novel iron-conjugated acid-modified chitosan derivatives as an oral phosphate binding agent to improve phosphorus adsorption efficacy in vitro and in vivo, synthesis and their characterization. Carbohydr Polym 2019; 212:378-386. [PMID: 30832870 DOI: 10.1016/j.carbpol.2019.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023]
Abstract
Current phosphate binders used for hyperphosphatemia treatment need large daily dose which make patients' compliance worse and the therapeutic efficacy may not conform the expectation. In this study, three polyacid modified iron-based chitosan derivatives were developed as an oral phosphate binding agent to improve phosphorus adsorption efficacy. The result showed that modification of chitosan by citric acid (CA) could facilitate the conjugation of iron by two folds (272.0 ± 12.1-315.3 ± 20.5 mg Fe/g vs. 141.0 ± 4.9-156.5 ± 8.3 mg Fe/g). All of these iron-based acid-modified chitosan had acceptable safety with cell viability >75% in the concentration up to 250 μg/mL. The stability in terms of iron release in pH 1.0 for 2 h was in the order of DPCS-NAc-CA-Fe (8.9 ± 2.3%) < DPCS-CA-Fe (19.1 ± 4.1%) < DADPCS-CA-Fe (24.6 ± 2.6%) indicating DPCS-NAc-CA-Fe was the most stable one. These iron-based acid-modified chitosan derivatives efficiently adsorbed 255.7 ± 11.3-271.2 ± 19.3 mg of phosphate especially in simulated gastro pH 1.0 in vitro. Furthermore, oral administration of DPCS-NAc-CA-Fe significantly lowered serum phosphorus level from 5.82 ± 0.45 mg/dL to 4.84 ± 0.56 mg/dL (p < 0.01) at 0.25% low feeding dose for 3 weeks without losing of weight, appetite, and activity of Wistar rats.
Collapse
Affiliation(s)
- Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shu An Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
155
|
Chandrasekharan A, Hwang YJ, Seong KY, Park S, Kim S, Yang SY. Acid-Treated Water-Soluble Chitosan Suitable for Microneedle-Assisted Intracutaneous Drug Delivery. Pharmaceutics 2019; 11:E209. [PMID: 31052596 PMCID: PMC6572209 DOI: 10.3390/pharmaceutics11050209] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Chitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery. The water-soluble chitosan was prepared by acid hydrolysis using trifluoroacetic acid followed by dialysis in 0.1 M NaCl solutions. We successfully fabricated bullet-shaped microneedle (MN) arrays by the single molding process with neutral aqueous chitosan solutions (pH 6.0). The chitosan MN showed sufficient mechanical properties for skin insertion and, interestingly, exhibited slow dissolving behavior in wet conditions, possibly resulting from a physical crosslinking of chitosan chains. Chitosan MN patches loading rhodamine B, a model hydrophilic drug, showed prolonged release kinetics in the course of the dissolving process for more than 72 h and they were found to be biocompatible to use. Since the water-soluble chitosan can be used for MN fabrication in the mild conditions (neutral pH and 25 °C) required for the loading of bioactive agents such as proteins and achieve a prolonged release, this biocompatible chitosan MN would be suitable for sustained transdermal drug delivery of a diverse range of drugs.
Collapse
Affiliation(s)
- Ajeesh Chandrasekharan
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| | - Young Jun Hwang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
- SNvia Co., Ltd, Busan 46241, Korea.
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| | | | - Sodam Kim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| |
Collapse
|
156
|
Enhancing Saltiness Perception Using Chitin Nanomaterials. Polymers (Basel) 2019; 11:polym11040719. [PMID: 31010221 PMCID: PMC6523459 DOI: 10.3390/polym11040719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
In the present study, we prepared and characterized chitin nanomaterials with different diameters, lengths, and degree of deacetylation (DD), and investigated their capability for enhancing saltiness perception. Chitin was isolated from squid pens and transformed into chitin nanofiber (CNF), deacetylated chitin nanofiber (DACNF), and chitin nanocrystal (CNC) by ultrasonication, alkali treatment followed by ultrasonication and acid hydrolysis, respectively. The diameters of CNF, CNC and DACNF were 17.24 nm, 16.05 nm and 15.01 nm while the lengths were 1725.05 nm, 116.91 nm, and 1806.60 nm, respectively. The aspect ratios of CNF and DACNF were much higher than that of CNC. The crystalline indices of CNF and CNC were lower than that of original β-chitin, suggesting that ultrasonication and acid hydrolysis might change the molecular arrangement in crystalline region of chitin. The zeta-potentials were between 19.73 nV and 30.08 mV of chitin nanomaterials in distilled water. Concentrations of chitin nanomaterials (40–74 μg/mL) showed minimal effect on zeta-potential, whereas increasing the level of NaCl reduced the zeta-potential of solution. Moreover, NaCl solution (0.3%) with chitin nanomaterials addition produced significant higher saltiness perception than that of solution with NaCl alone. Therefore, chitin nanomaterials may be promising saltiness enhancers in the food industry.
Collapse
|
157
|
Sahariah P, Cibor D, Zielińska D, Hjálmarsdóttir MÁ, Stawski D, Másson M. The Effect of Molecular Weight on the Antibacterial Activity of N, N, N-Trimethyl Chitosan (TMC). Int J Mol Sci 2019; 20:E1743. [PMID: 30970552 PMCID: PMC6480509 DOI: 10.3390/ijms20071743] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
N,N,N-trimethyl chitosan (TMC) with 93% degree of trimethylation was synthesized. TMC and the chitosan starting material were subjected to acidic hydrolysis to produce 49 different samples with a reduced average molecular weight (Mw) ranging from 2 to 144 kDa. This was done to allow the investigation of the relationship between antibacterial activity and Mw over a wide Mw range. NMR investigation showed that hydrolysis did not affect the degree of trimethylation (DSTRI) or the structure of the polymer backbone. The activity of TMC against Staphylococcus aureus (S. aureus) increased sharply with Mw until a certain Mw value (critical Mw for high activity, CMW) was reached. After the CMW, the activity was not affected by a further increase in the Mw. A similar pattern of activity was observed for chitosan. The CMW was determined to be 20 kDa for TMC and 50 kDa for chitosan.
Collapse
Affiliation(s)
- Priyanka Sahariah
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| | - Dorota Cibor
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Dorota Zielińska
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland.
- Instiute of Security Technologies "MORATEX", Laboratory of Chemistry, 90-505 Lodz, Poland.
| | - Martha Á Hjálmarsdóttir
- Faculty of Medicine, Department of Biomedical Science, University of Iceland, Stapi, Hringbraut 31, 101 Reykjavík, Iceland.
| | - Dawid Stawski
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
158
|
Hamdi M, Nasri R, Li S, Nasri M. Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
159
|
Luo Q, Wang Y, Han Q, Ji L, Zhang H, Fei Z, Wang Y. Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydr Polym 2019; 209:266-275. [DOI: 10.1016/j.carbpol.2019.01.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
160
|
Zhang M, Zeng G, Wang Y, Zhao Z. MGF‐Ct24E‐modified piperazine polymer: A balance of antimicrobial activity and cytotoxicity. J Appl Polym Sci 2019. [DOI: 10.1002/app.47773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maolan Zhang
- Institute of Biomedical EngineeringChongqing University of Science and Technology Chongqing 401331 China
| | - Guoming Zeng
- School of Civil Engineering and ArchitectureChongqing University of Science and Technology Chongqing 401331 China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of EducationChongqing University Chongqing 400030 China
| | - Zhiping Zhao
- College of Chemical EngineeringSichuan University of Science & Engineering Zigong 643000 China
| |
Collapse
|
161
|
Willerth SM, Sakiyama-Elbert SE. Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/stj-180001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combining stem cells with biomaterial scaffolds serves as a promising strategy for engineering tissues for both in vitro and in vivo applications. This updated review details commonly used biomaterial scaffolds for engineering tissues from stem cells. We first define the different types of stem cells and their relevant properties and commonly used scaffold formulations. Next, we discuss natural and synthetic scaffold materials typically used when engineering tissues, along with their associated advantages and drawbacks and gives examples of target applications. New approaches to engineering tissues, such as 3D bioprinting, are described as they provide exciting opportunities for future work along with current challenges that must be addressed. Thus, this review provides an overview of the available biomaterials for directing stem cell differentiation as a means of producing replacements for diseased or damaged tissues.
Collapse
Affiliation(s)
- Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, VIC, Canada
- Division of Medical Sciences, University of Victoria, VIC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
162
|
Interaction between carboxymethyl pachyman and lotus seedpod oligomeric procyanidins with superior synergistic antibacterial activity. Carbohydr Polym 2019; 212:11-20. [PMID: 30832837 DOI: 10.1016/j.carbpol.2019.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
The inhibitory effect of carboxymethyl pachyman (CMP) mixed with lotus seedpod oligomeric procyanidins (LSPC) in certain ratios against E. coli 10899 was determined. Added low concentration of LSPC could improve the antibacterial activity of CMP, and a significant synergistic effect could be observed between them, especially when the concentration of CMP was below its critical concentration (1.35 mg/mL). Then, the interaction between CMP and LSPC was characterized after mixing; the changes in spectral characteristics, thermal properties, crystallinity pattern, molecular weight, chain morphology and microrheological behaviour explained the influence of interaction on the structure of CMP and LSPC. The smaller molecular size, electrostatic interaction and stronger hydrophobic interaction might play important roles in improving the antibacterial activity of mixture. The dissociation constant (Kd) was determined to be 0.102±0.0008 mg/mL using MicroScale Thermophoresis (MST), and the micromorphology was observed by SEM. Therefore, this mixture might be an effective natural bacteriostat.
Collapse
|
163
|
Li Q, Ye L, Zhang A, Feng Z. The preparation and morphology control of heparin-based pH sensitive polyion complexes and their application as drug carriers. Carbohydr Polym 2019; 211:370-379. [PMID: 30824101 DOI: 10.1016/j.carbpol.2019.01.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Heparin as negative polysaccharide is a universal building block to form polyion complex with different cationic counterparts. In this paper, three different cations, including chitosan, benzyldodecyldimethyl ammonium bromide and doxorubicin hydrochloride, were used to prepare heparin-based polyion complexes (HPICs). Their morphologies could be tuned by heparin content in HPIC, and they also showed pH-sensitive decomposition. Doxorubicin was further encapsulated into micelle and vesicle carrier made from heparin-benzyldodecyl dimethyl ammonium bromide PIC, whereas heparin-doxorubicin PIC could be directly used as drug carrier. In vitro drug release proved the drug carriers exhibit obvious pH sensitive release behaviour. Cytotoxicity indicated the drug carrier possessed significant cytotoxicity to tumor cells. The cell uptake observed by CLSM showed the carrier was able to deliver antitumor drug into tumor cell's nucleus. Consequently, these results showed the promising potential of HPIC in drug carrier application.
Collapse
Affiliation(s)
- Qingxuan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China.
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| |
Collapse
|
164
|
Duan C, Meng X, Meng J, Khan MIH, Dai L, Khan A, An X, Zhang J, Huq T, Ni Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2019. [DOI: 10.21967/jbb.v4i1.189] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
165
|
Insights on the ultra high antibacterial activity of positionally substituted 2′-O-hydroxypropyl trimethyl ammonium chloride chitosan: A joint interaction of -NH2 and -N+(CH3)3 with bacterial cell wall. Colloids Surf B Biointerfaces 2019; 173:429-436. [DOI: 10.1016/j.colsurfb.2018.09.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 11/22/2022]
|
166
|
Li X, Sun J, Che Y, Lv Y, Liu F. Antibacterial properties of chitosan chloride-graphene oxide composites modified quartz sand filter media in water treatment. Int J Biol Macromol 2019; 121:760-773. [DOI: 10.1016/j.ijbiomac.2018.10.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
167
|
Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr Polym 2018; 202:382-396. [DOI: 10.1016/j.carbpol.2018.09.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
|
168
|
Influence of pH and ionic strength on the antibacterial effect of hyaluronic acid/chitosan films assembled layer-by-layer. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
169
|
Ribeiro M, Picascia S, Rhazi L, Gianfrani C, Carrillo JM, Rodriguez-Quijano M, Branlard G, Nunes FM. In Situ Gluten-Chitosan Interlocked Self-Assembled Supramolecular Architecture Reduces T-Cell-Mediated Immune Response to Gluten in Celiac Disease. Mol Nutr Food Res 2018; 62:e1800646. [PMID: 30289620 DOI: 10.1002/mnfr.201800646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Indexed: 12/14/2022]
Abstract
SCOPE The prevalence of celiac disease has increased since the last half of the 20th century and is now about 1% in most western populations. At present, people who suffer from celiac disease have to follow a gluten-exclusion diet throughout their lives. Compliance to this restrictive diet is demanding and the development of alternative strategies has become urgent. METHODS AND RESULTS In this context, it is found that the biocompatible aminopolysaccharide chitosan imposes a different gluten reorganization after gluten redox reaction producing in situ mechanically interlocked supramolecular assemblies between gluten and chitosan. These new structures result in the decrease of gluten digestibility, tissue transglutaminase deamidation activity, and interferon-γ production in intestinal T cell lines generated from biopsy specimens of celiac disease patients. CONCLUSION Overall, the results demonstrate the potential of this research avenue to celiac disease is problematic, as the reorganization of gluten proteins to a novel supramolecular architecture shows a positive impact on known pathogenesis mechanisms of the disease. At present, the only therapy for celiac disease is adherence to a gluten-free diet. Here, it is shown that chitosan-imposed gluten reorganization to an interlocked self-assembled supramolecular architecture reduces gluten digestibility, R5-reactivity, tissue transglutaminase deamidation activity, and its capacity to stimulate a T-cell-mediated immune response in celiac disease.
Collapse
Affiliation(s)
- Miguel Ribeiro
- CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Stefania Picascia
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino, 111, 80131, Naples, Italy
| | - Larbi Rhazi
- UniLaSalle, Unité de recherche "Transformations & Agro-Ressources", 19 rue Pierre Waguet - BP 30313, F-60026, Beauvais Cedex, France
| | - Carmen Gianfrani
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino, 111, 80131, Naples, Italy
| | - Jose Maria Carrillo
- Unit of Genetics, Department of Biotechnology - Plant Biology. UPM, Ciudad Universitaria, 28040, Madrid, Spain
| | - Marta Rodriguez-Quijano
- Unit of Genetics, Department of Biotechnology - Plant Biology. UPM, Ciudad Universitaria, 28040, Madrid, Spain
| | - Gérard Branlard
- Institut National de la Recherche Agronomique GDEC/UBP, UMR 1095, 63100, Clermont-Ferrand, France
| | - Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
170
|
Munteanu BS, Sacarescu L, Vasiliu AL, Hitruc GE, Pricope GM, Sivertsvik M, Rosnes JT, Vasile C. Antioxidant/Antibacterial Electrospun Nanocoatings Applied onto PLA Films. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1973. [PMID: 30322165 PMCID: PMC6213579 DOI: 10.3390/ma11101973] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/30/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
Polylactic acid (PLA) films were coated by coaxial electrospinning with essential and vegetable oils (clove and argan oils) and encapsulated into chitosan, in order to combine the biodegradability and mechanical properties of PLA substrates with the antimicrobial and antioxidant properties of the chitosan⁻oil nanocoatings. It has been established that the morphology of the electrospun nanocoatings mainly depend on the average molecular weight (MW) of chitosan. Oil beads, encapsulated into the main chitosan nanofibers, were obtained using high-MW chitosan (Chit-H). Oil encapsulated in chitosan naoparticles resulted when low-MW chitosan (Chit-L) was used. The coating layer, with a thickness of 100 ± 20 nm, had greater roughness for the samples containing Chit-H compared with the samples containing Chit-L. The coated PLA films had higher antibacterial activity when the nanocoating contained clove oil rather than when argan oil was used, for both types of chitosan. Nanocoatings containing Chit-H had higher antibacterial activity compared with those containing Chit-L, for both types of oil tested, due to the larger surface area of the rougher nanoscaled morphology of the coating layer that contained Chit-L. The chitosan⁻clove oil combination had higher antioxidant activity compared to the simple chitosan nanocoating, which confirmed their synergistic activities. The low activity of systems containing argan oil was explained by big differences between their chemical composition and viscosity.
Collapse
Affiliation(s)
| | - Liviu Sacarescu
- "P. Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
| | - Ana-Lavinia Vasiliu
- "P. Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
| | - Gabriela Elena Hitruc
- "P. Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
| | - Gina M Pricope
- Veterinary and the Food Safety Laboratory, Food Safety Department, 700489 Iasi, Romania.
| | - Morten Sivertsvik
- Nofima AS, Deptartment of Processing Technology, Muninbakken 9-13, Tromsø 9291, Norway.
| | - Jan Thomas Rosnes
- Nofima AS, Deptartment of Processing Technology, Muninbakken 9-13, Tromsø 9291, Norway.
| | - Cornelia Vasile
- "P. Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
| |
Collapse
|
171
|
López-Iglesias C, Barros J, Ardao I, Monteiro FJ, Alvarez-Lorenzo C, Gómez-Amoza JL, García-González CA. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr Polym 2018; 204:223-231. [PMID: 30366534 DOI: 10.1016/j.carbpol.2018.10.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/14/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Chronic wounds are a prevailing cause of decreased quality of life, being microbial burden a factor hindering the normal wound healing process. Aerogels are nanostructured materials with large surface area (>250 m2/g) and high porosity (>96%). In this work, vancomycin-loaded chitosan aerogel beads were tested as a potential formulation to treat and prevent infections at the wound site. Processing of chitosan in the form of aerogels endowed this polysaccharide with enhanced water sorption capacity and air permeability. The morphological and textural properties of the particles were studied by image and N2 adsorption-desorption analysis and scanning electron microscopy. Vancomycin content and release profiles from aerogel carriers showed a fast drug release that permitted to efficiently achieve local therapeutic levels. Cell studies with fibroblasts and antimicrobial tests against S. aureus showed that the vancomycin-loaded aerogel particles were cytocompatible and effective in preventing high bacterial loads at the wound site.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Joana Barros
- FEUP-Faculdade de Engenharia, Universidade do Porto, I3S-Instituto de Investigação e Inovação em Saúde, and INEB-Instituto de Engenharia Biomédica, 4200-135 Porto, Portugal
| | - Inés Ardao
- BioFarma Research group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Fernando J Monteiro
- FEUP-Faculdade de Engenharia, Universidade do Porto, I3S-Instituto de Investigação e Inovação em Saúde, and INEB-Instituto de Engenharia Biomédica, 4200-135 Porto, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José L Gómez-Amoza
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
172
|
Mawad A, Helmy YA, Shalkami AG, Kathayat D, Rajashekara G. E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro. Appl Microbiol Biotechnol 2018; 102:10675-10690. [DOI: 10.1007/s00253-018-9417-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
|
173
|
Varlamov VP, Mysyakina IS. Chitosan in Biology, Microbiology, Medicine, and Agriculture. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
174
|
Sullivan DJ, Cruz-Romero M, Collins T, Cummins E, Kerry JP, Morris MA. Synthesis of monodisperse chitosan nanoparticles. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
175
|
Ban Z, Horev B, Rutenberg R, Danay O, Bilbao C, McHugh T, Rodov V, Poverenov E. Efficient production of fungal chitosan utilizing an advanced freeze-thawing method; quality and activity studies. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
176
|
A novel strategy for probiotic bacteria: Ensuring microbial stability of fish fillets using characterized probiotic bacteria-loaded nanofibers. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
177
|
Karsli B, Caglak E, Li D, Rubio NK, Janes M, Prinyawiwatkul W. Inhibition of selected pathogens inoculated on the surface of catfish fillets by high molecular weight chitosan coating. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Baris Karsli
- Faculty of Fisheries Department of Seafood Processing Technology Recep Tayyip Erdogan University 53100 Rize Turkey
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| | - Emre Caglak
- Faculty of Fisheries Department of Seafood Processing Technology Recep Tayyip Erdogan University 53100 Rize Turkey
| | - Dapeng Li
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
- College of Food Science and Nutritional Engineering China Agricultural University 100083 Beijing China
| | - Nancy K. Rubio
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| | - Marlene Janes
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| |
Collapse
|
178
|
Narayan S. Lithium entrapped chitosan nanoparticles to reduce toxicity and increase cellular uptake of lithium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:79-86. [PMID: 29852373 DOI: 10.1016/j.etap.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Lithium carbonate is an effective drug against bipolar disorders. Direct use of lithium carbonate has been reported to result in lithium toxication and pulmonary complications. With chitosan micro and nanoparticles gaining attention for their protein absorption, drug targeting and improved dissolution rate of sparingly water-soluble drugs, this work has focused on chitosan loaded Li as a possible alternative to Li alone for cellular uptake. Well standardized ionic gelation technique employed in this study resulted in Li loaded chitosan nanoparticles with hydrodynamic diameter below 300 nm and zeta potential of + 30 mV and oval morphology. Through various techniques electrostatic interaction as well as Claritin dependent endocytic pathway is suggested as facilitating 1.3 times increase in cell proliferation in lithium carbonate loaded chitosan nanoparticles treated PC12 cells. A controlled Li release to the extent of less than 50% in 48 h from the nanoparticle was observed. This observation has very high significance as it ensures that the lithium toxicity can be avoided. These results indicated that chitosan is a promising carrier for lithium carbonate and may improve its therapeutic efficacy and also overcome toxicity during its use in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
179
|
Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
180
|
Mehrabani MG, Karimian R, Rakhshaei R, Pakdel F, Eslami H, Fakhrzadeh V, Rahimi M, Salehi R, Kafil HS. Chitin/silk fibroin/TiO 2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity. Int J Biol Macromol 2018; 116:966-976. [PMID: 29782987 DOI: 10.1016/j.ijbiomac.2018.05.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
Interconnected microporous biodegradable and biocompatible chitin/silk fibroin/TiO2 nanocomposite wound dressing with high antibacterial, blood clotting and mechanical strength properties were synthesized using freeze-drying method. The prepared nanocomposite dressings were characterized using SEM, FTIR, and XRD analysis. The prepared nanocomposite dressings showed high porosity above 90% with well-defined interconnected porous construction. Swelling and water uptake of the dressing were 93%, which is great for wound dressing applications. Haemostatic potential of the prepared dressings was studied and the results proved the higher blood clotting ability of the nanocomposites compared to pure components and commercially available products. Besides, cell viability, attachment and proliferation by MTT assay and DAPI staining on HFFF2 cell as a Human Caucasian Foetal Foreskin Fibroblast proved the cytocompatibility nature of the nanocomposite scaffolds with well improved proliferation and cell attachment. To determine the antimicrobial efficiencies, both disc diffusion method and colony counts were performed and results imply that nanocomposite scaffolds have high antimicrobial activity and could successfully inhibit the growth of E. coli, S. aureus, and C. albicans. Moreover, based on these results, the prepared chitin/silk fibroin/TiO2 nanocomposite dressing could serve as a kind of promising wound dressing with great antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Mojtaba Ghanbari Mehrabani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramin Karimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Rasul Rakhshaei
- Faculty of Chemistry, Department of Organic and Biochemistry, Tabriz University, Tabriz, Iran
| | - Farzaneh Pakdel
- Connective tissues Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Eslami
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Fakhrzadeh
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Rahimi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Chemistry, Department of Organic and Biochemistry, Tabriz University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
181
|
Hamdi M, Hajji S, Affes S, Taktak W, Maâlej H, Nasri M, Nasri R. Development of a controlled bioconversion process for the recovery of chitosan from blue crab (Portunus segnis) exoskeleton. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
182
|
Tsai LC, Tsai ML, Lu KY, Mi FL. Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3341-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
183
|
Evaluation of nisin-loaded chitosan-monomethyl fumaric acid nanoparticles as a direct food additive. Carbohydr Polym 2018; 184:100-107. [DOI: 10.1016/j.carbpol.2017.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 01/12/2023]
|
184
|
Antibacterial Effects of Chitosan/Cationic Peptide Nanoparticles. NANOMATERIALS 2018; 8:nano8020088. [PMID: 29401728 PMCID: PMC5853720 DOI: 10.3390/nano8020088] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
Abstract
This study attempted to develop chitosan-based nanoparticles with increased stability and antibacterial activity. The chitosan/protamine hybrid nanoparticles were formed based on an ionic gelation method by mixing chitosan with protamine and subsequently cross-linking the mixtures with sodium tripolyphosphate (TPP). The effects of protamine on the chemical structures, physical properties, and antibacterial activities of the hybrid nanoparticles were investigated. The antibacterial experiments demonstrated that the addition of protamine (125 µg/mL) in the hybrid nanoparticles (500 µg/mL chitosan and 166.67 µg/mL TPP) improved the antimicrobial specificity with the minimum inhibitory concentration (MIC) value of 31.25 µg/mL towards Escherichia coli (E. coli), while the MIC value was higher than 250 µg/mL towards Bacillus cereus. The chitosan/protamine hybrid nanoparticles induced the formation of biofilm-like structure in B. cereus and non-motile-like structure in E. coli. The detection of bacterial cell ruptures showed that the inclusion of protamine in the hybrid nanoparticles caused different membrane permeability compared to chitosan nanoparticles and chitosan alone. The chitosan/protamine nanoparticles also exhibited lower binding affinity towards B. cereus than E. coli. The results suggested that the hybridization of chitosan with protamine improved the antibacterial activity of chitosan nanoparticles towards pathogenic E. coli, but the inhibitory effect against probiotic B. cereus was significantly reduced.
Collapse
|
185
|
Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym 2018; 181:1026-1032. [DOI: 10.1016/j.carbpol.2017.11.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/21/2017] [Accepted: 11/14/2017] [Indexed: 01/26/2023]
|
186
|
García-González CA, Barros J, Rey-Rico A, Redondo P, Gómez-Amoza JL, Concheiro A, Alvarez-Lorenzo C, Monteiro FJ. Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3349-3360. [PMID: 29313664 DOI: 10.1021/acsami.7b17375] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Advanced porous synthetic scaffolds are particularly suitable for regeneration of damaged tissues, but there is the risk of infections due to the colonization of microorganisms, forming biofilms. Supercritical foaming is an attractive processing method to prepare bone scaffolds, regulating simultaneously the porosity and loading of bioactive compounds without loss of activity. In this work, scaffolds made of poly-ε-caprolactone (50 kDa), containing chitosan and an antimicrobial agent (vancomycin), were processed by supercritical CO2 foaming for bone regeneration purposes. The obtained scaffolds showed a suitable combination of morphological (porosity, pore size distribution, and interconnectivity), time-dependent in vitro vancomycin release behavior and biological properties (cell viability and proliferation, osteodifferentiation, and tissue-scaffold integration). The scaffolds sustained vancomycin release for more than 2 weeks. Finally, the antimicrobial activity of the scaffolds was tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria after 24 h of incubation with full growth inhibition for S. aureus.
Collapse
Affiliation(s)
- Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , E-15782 Santiago de Compostela, Spain
| | - Joana Barros
- FEUP-Faculdade de Engenharia, Universidade do Porto, I3S-Instituto de Investigação e Inovação em Saúde, and INEB-Instituto de Engenharia Biomédica , Porto 4200-135, Portugal
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg 66421, Germany
| | - Pablo Redondo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , E-15782 Santiago de Compostela, Spain
| | - José L Gómez-Amoza
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , E-15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , E-15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , E-15782 Santiago de Compostela, Spain
| | - Fernando J Monteiro
- FEUP-Faculdade de Engenharia, Universidade do Porto, I3S-Instituto de Investigação e Inovação em Saúde, and INEB-Instituto de Engenharia Biomédica , Porto 4200-135, Portugal
| |
Collapse
|
187
|
Bösiger P, Richard IMT, Le Gat L, Michen B, Schubert M, Rossi RM, Fortunato G. Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydr Polym 2018; 186:122-131. [PMID: 29455969 DOI: 10.1016/j.carbpol.2018.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
Chitosan is a promising biocompatible polymer for regenerative engineering applications, but its processing remains challenging due to limited solubility and rigid crystalline structure. This work represents the development of electrospun chitosan/poly(ethylene oxide) blend nanofibrous membranes by means of a numerical analysis in order to identify and tailor the main influencing parameters with respect to accessible surface nitrogen functionalities which are of importance for the biological activity as well as for further functionalization. Depending on the solution composition, both gradient fibers and homogenous blended fiber structures could be obtained with surface nitrogen concentrations varying between 0 and 6.4%. Response surface methodology (RSM) revealed chitosan/poly(ethylene oxide) ratio and chitosan molecular weight as the main influencing factors with respect to accessible nitrogen surface atoms and respective concentrations. The model showed good adequacy hence providing a tool to tailor the surface properties of chitosan/poly(ethylene oxide) blends by addressing the amount of accessible chitosan.
Collapse
Affiliation(s)
- Peter Bösiger
- Empa, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland; University of Freiburg, Faculty of Environment & Natural Resources, Chair of Forest Botany, Bertoldstrasse 17, DE-79085 Freiburg, Germany
| | - Isabelle M T Richard
- Empa, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland; École européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 Rue Becquerel, FR-67087 Strasbourg, France
| | - Luce Le Gat
- Empa, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland; CBMN (UMR 5248, CNRS), 3BIO's Team, University of Bordeaux, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Benjamin Michen
- Empa, Laboratory for Applied Wood Materials, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland; Wood Materials Science, Institute for Building Materials, ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland
| | - Mark Schubert
- Empa, Laboratory for Applied Wood Materials, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - René M Rossi
- Empa, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Empa, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
188
|
Luan L, Wu C, Wang L, Li Y, Ishimura G, Yuan C, Ding T, Hu Y. Protein denaturation and oxidation in chilled hairtail (Trichiutus haumela) as affected by electrolyzed oxidizing water and chitosan treatment. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1397693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lanlan Luan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liping Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Yuan Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Gakushi Ishimura
- Department of Food Production and Environmental management, Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Chunhong Yuan
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan, China
| |
Collapse
|
189
|
Zhang X, Xu G, Gadora K, Cheng H, Peng J, Ma Y, Guo Y, Chi C, Zhou J, Ding Y. Dual-sensitive chitosan derivative micelles for site-specific drug release in the treatment of chicken coccidiosis. RSC Adv 2018; 8:14515-14526. [PMID: 35540782 PMCID: PMC9079931 DOI: 10.1039/c8ra02144a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022] Open
Abstract
Here, we report a “dual-sensitive” drug delivery platform packaged with anti-coccidia drug diclazuril (DIC) applied in the field of intestinal-targeted administration.
Collapse
|
190
|
Chitosan oligosaccharide-N-chlorokojic acid mannich base polymer as a potential antibacterial material. Carbohydr Polym 2017; 182:225-234. [PMID: 29279119 DOI: 10.1016/j.carbpol.2017.11.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 01/12/2023]
Abstract
Here, a nontoxic antibacterial material based on Chitosan Oligosaccharide-N-Chlorokojic acid Mannich base (COS-N-MB) that was synthesized by using the selective partial alkylation reaction displaying excellent activity against bacterial infection. The proposed mechanism of the action of COS-N-MB is that this antibacterial material with positive charge and synergistic antibacterial effects can promote it's adsorption to bacterial cell wall through electrostatic interaction and chelating metal cations. It changed the permeability of the membrane, caused cellular leakage, and destroyed the membrane integrity, leading to complete membrane disruption and eventually death of the bacteria. Besides, COS-N-MB can interact with membrane proteins, causing deformation in the structure and functionality. The good biocompatibility, noncytotoxic, and low hemolysis made this novel material a promising and effective compound for antibacterial applications.
Collapse
|
191
|
Soares SF, Rodrigues MI, Trindade T, Daniel-da-Silva AL. Chitosan-silica hybrid nanosorbents for oil removal from water. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
192
|
Murakami Y, Shimoyama Y. Production of nanosuspension functionalized by chitosan using supercritical fluid extraction of emulsion. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
193
|
Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr Polym 2017; 174:421-431. [DOI: 10.1016/j.carbpol.2017.06.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
|
194
|
Flores C, Lopez M, Tabary N, Neut C, Chai F, Betbeder D, Herkt C, Cazaux F, Gaucher V, Martel B, Blanchemain N. Preparation and characterization of novel chitosan and β-cyclodextrin polymer sponges for wound dressing applications. Carbohydr Polym 2017; 173:535-546. [PMID: 28732897 DOI: 10.1016/j.carbpol.2017.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
Chitosan (CS) presents antibacterial, mucoadhesive and hemostatic properties and is an ideal candidate for wound dressing applications. This work reports the development of sponge-like materials obtained from physical hydrogels after the interaction between CS and a β-cyclodextrin polymer (PCD) in acidic conditions to provoke immediate gelation. Characterization consisted of zeta potential (ZP) measurements, rheology analysis, Fourier transform infrared (FTIR), Raman spectroscopy, wide angle X-ray scattering (WAXS) and scanning electron microscopy (SEM). Swelling behavior, cytotoxicity, drug sorption and drug delivery properties of sponges were assessed. ZP indicated that CS and PCD presented opposite charges needed for physical crosslinking. Rheology, swelling, and cytotoxicity of sponges depended on their CS:PCD weight ratios. Increasing PCD in the mixture delayed the gel time, reduced the swelling and increased the cytotoxicity. FTIR and Raman confirmed the physical crosslinking between CS and PCD through ionic interactions, and WAXS showed the amorphous state of the sponges. Finally, the efficiency of chlorhexidine loaded sponge against S. aureus bacteria was proved for up to 30days in agar diffusion tests.
Collapse
Affiliation(s)
- Claudia Flores
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Marco Lopez
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Nicolas Tabary
- Univ. Lille, CNRS, INRA, ENSCL UMR8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Centre, Lille, France
| | - Feng Chai
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Didier Betbeder
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Centre, Lille, France
| | - Clément Herkt
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Centre, Lille, France
| | - Frederic Cazaux
- Univ. Lille, CNRS, INRA, ENSCL UMR8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Valerie Gaucher
- Univ. Lille, CNRS, INRA, ENSCL UMR8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Bernard Martel
- Univ. Lille, CNRS, INRA, ENSCL UMR8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Nicolas Blanchemain
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France.
| |
Collapse
|
195
|
Alnoman M, Udompijitkul P, Sarker MR. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat. Food Microbiol 2017; 64:15-22. [DOI: 10.1016/j.fm.2016.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 10/18/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
|
196
|
Costa EM, Silva S, Vicente S, Neto C, Castro PM, Veiga M, Madureira R, Tavaria F, Pintado MM. Chitosan nanoparticles as alternative anti-staphylococci agents: Bactericidal, antibiofilm and antiadhesive effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629011 DOI: 10.1016/j.msec.2017.05.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chitosan is a biocompatible, bioactive, non-toxic polymer that due to these characteristics has been widely used as a carrier for targeted delivery of bioactive molecules. In recent years, and considering that chitosan has a strong antimicrobial potential, the scientific community's focus has shifted onto the possible antimicrobial activity of chitosan nanoparticles. With this in mind, the aim of this work was to produce low molecular weight chitosan nanoparticles, through the ionic gelation method and characterize their potential biological activity against three staphylococci (MSSA, MRSA and MRSE) in planktonic and sessile environments. The chitosan nanoparticles produced had an average size of 244±12nm, an average charge of 17.3±1.4mV and had a MIC of 1.25mg/mL for all tested microorganisms. Bactericidal activity was only registered for MSSA and MRSA with the time-inhibition curves showing bactericidal activity within 1h. Assays regarding chitosan nanoparticles' impact upon sessile populations showed that they were effective in preventing MRSE adhesion and highly effective in reducing MRSA and MSSA biofilm formation.
Collapse
Affiliation(s)
- E M Costa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - S Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - S Vicente
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - C Neto
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - P M Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - M Veiga
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - R Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - F Tavaria
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - M M Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
197
|
Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 2017; 164:268-283. [DOI: 10.1016/j.carbpol.2017.02.001] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023]
|
198
|
Blagodatskikh IV, Kulikov SN, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE. N-Reacetylated Oligochitosan: pH Dependence of Self-Assembly Properties and Antibacterial Activity. Biomacromolecules 2017; 18:1491-1498. [DOI: 10.1021/acs.biomac.7b00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Inesa V. Blagodatskikh
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Sergey N. Kulikov
- Kazan Federal University, Kremlyovskaya
street 18, Kazan, 420008 Russia
- Kazan Scientific
Research Institute of Epidemiology and Microbiology, Bolshaya Krasnaya street 67, Kazan, 420015 Russia
| | - Oxana V. Vyshivannaya
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Evgeniya A. Bezrodnykh
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Vladimir E. Tikhonov
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| |
Collapse
|
199
|
Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Baños S, Corona-Rangel M. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.022] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
200
|
Ceylan Z, Sengor GFU, Yilmaz MT. A Novel Approach to Limit Chemical Deterioration of Gilthead Sea Bream (Sparus aurata) Fillets: Coating with Electrospun Nanofibers as Characterized by Molecular, Thermal, and Microstructural Properties. J Food Sci 2017; 82:1163-1170. [DOI: 10.1111/1750-3841.13688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Zafer Ceylan
- Dept. of Seafood Processing Technology; Istanbul Univ., Faculty of Fisheries; İstanbul Turkey
| | - Gulgun F. Unal Sengor
- Dept. of Seafood Processing Technology; Istanbul Univ., Faculty of Fisheries; İstanbul Turkey
| | - Mustafa Tahsin Yilmaz
- Dept. of Food Engineering; Yıldız Technical Univ., Chemical and Metallurgical Engineering Faculty; 34210 İstanbul Turkey
| |
Collapse
|