151
|
Abstract
Most cancers arise in individuals over the age of 60. As the world population is living longer and reaching older ages, cancer is becoming a substantial public health problem. It is estimated that, by 2050, more than 20% of the world's population will be over the age of 60 - the economic, healthcare and financial burdens this may place on society are far from trivial. In this Review, we address the role of the ageing microenvironment in the promotion of tumour progression. Specifically, we discuss the cellular and molecular changes in non-cancerous cells during ageing, and how these may contribute towards a tumour permissive microenvironment; these changes encompass biophysical alterations in the extracellular matrix, changes in secreted factors and changes in the immune system. We also discuss the contribution of these changes to responses to cancer therapy as ageing predicts outcomes of therapy, including survival. Yet, in preclinical studies, the contribution of the aged microenvironment to therapy response is largely ignored, with most studies designed in 8-week-old mice rather than older mice that reflect an age appropriate to the disease being modelled. This may explain, in part, the failure of many successful preclinical therapies upon their translation to the clinic. Overall, the intention of this Review is to provide an overview of the interplay that occurs between ageing cell types in the microenvironment and cancer cells and how this is likely to impact tumour metastasis and therapy response.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
152
|
Traditional serrated adenoma has two distinct genetic pathways for molecular tumorigenesis with potential neoplastic progression. J Gastroenterol 2020; 55:846-857. [PMID: 32535664 PMCID: PMC7452875 DOI: 10.1007/s00535-020-01697-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recent studies have shown that traditional serrated adenoma (TSA) can be classified into BRAF and KRAS subtypes. Here, we examined the clinicopathological and molecular findings of 73 TSAs. MATERIALS AND METHODS TSAs were subclassified into BRAF type (46 cases, type A) and KRAS type (27 cases, type B) and divided into polyp head (TSA component) and base (precursor component [PC]) to identify pathological and molecular differences between the two components. BRAF and KRAS mutations, microsatellite instability (MSI), and DNA methylation status of the TSA component and PC were analyzed. In addition, immunohistochemical expressions of annexin A10, MUC2, MUC5AC, MUC6, and CD10 were also examined. Finally, we compared endoscopic findings with histological features. RESULTS We classified type As into 31 type A1s with mutation of the corresponding PC (42.5%) and 15 type A2s without mutation of the PC (20.5%). None of the corresponding PCs without KRAS mutation were observed in type Bs. MSI was not detected in the TSAs examined. There were significant differences in the frequency of annexin A10 and MUC5AC expression between the three subtypes. Furthermore, we compared the TSA component with the corresponding PC to identify the progression mechanism between the two components. Methylation status played an important role in the progression of type A1 from the corresponding PC, unlike type A2 and type B. Finally, specific endoscopic findings were well correlated with distinct histological findings. CONCLUSION TSAs were heterogeneous tumors with two or three pathways to neoplastic progression.
Collapse
|
153
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
154
|
Loo TM, Miyata K, Tanaka Y, Takahashi A. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci 2019; 111:304-311. [PMID: 31799772 PMCID: PMC7004529 DOI: 10.1111/cas.14266] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is historically regarded as a tumor suppression mechanism to prevent damaged cells from aberrant proliferation in benign and premalignant tumors. However, recent findings have suggested that senescent cells contribute to tumorigenesis and age‐associated pathologies through the senescence‐associated secretory phenotype (SASP). Therefore, to control age‐associated cancer, it is important to understand the molecular mechanisms of the SASP in the cancer microenvironment. New findings have suggested that the cyclic GMP‐AMP synthase (cGAS)‐stimulator of interferon genes (STING) signaling pathway, a critical indicator of innate immune response, triggers the SASP in response to accumulation of cytoplasmic DNA (cytoplasmic chromatin fragments, mtDNA and cDNA) in senescent cells. Notably, the cGAS‐STING signaling pathway promotes or inhibits tumorigenesis depending on the biological context in vivo, indicating that it may be a potential therapeutic target for cancer. Herein, we review the regulatory machinery and biological function of the SASP via the cGAS‐STING signaling pathway in cancer.
Collapse
Affiliation(s)
- Tze Mun Loo
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichi Miyata
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Tanaka
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Takahashi
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,PRESTO, JST, Saitama, Japan.,PRIME, AMED, Tokyo, Japan
| |
Collapse
|
155
|
KOBASHIGAWA SHINKO, M. SAKAGUCHI YOSHIHIKO, MASUNAGA SHINICHIRO, MORI EIICHIRO. Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression. ACTA ACUST UNITED AC 2019. [DOI: 10.3191/thermalmed.35.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- SHINKO KOBASHIGAWA
- Department of Future Basic Medicine, Nara Medical University
- Kyoto University, Institute of Integrated Radiation and Nuclear Science
| | | | | | - EIICHIRO MORI
- Department of Future Basic Medicine, Nara Medical University
| |
Collapse
|
156
|
Verhagen HJMP, van Gils N, Martiañez T, van Rhenen A, Rutten A, Denkers F, de Leeuw DC, Smit MA, Tsui ML, de Vos Klootwijk LLE, Menezes RX, Çil M, Roemer MGM, Vermue E, Heukelom S, Zweegman S, Janssen JJWM, Ossenkoppele GJ, Schuurhuis GJ, Smit L. IGFBP7 Induces Differentiation and Loss of Survival of Human Acute Myeloid Leukemia Stem Cells without Affecting Normal Hematopoiesis. Cell Rep 2019; 25:3021-3035.e5. [PMID: 30540936 DOI: 10.1016/j.celrep.2018.11.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
Leukemic stem cells (LSCs) are thought to be the major cause of the recurrence of acute myeloid leukemia (AML) due to their potential for self-renewal. To identify therapeutic strategies targeting LSCs, while sparing healthy hematopoietic stem cells (HSCs), we performed gene expression profiling of LSCs, HSCs, and leukemic progenitors all residing within the same AML bone marrow and identified insulin-like growth factor-binding protein 7 (IGFBP7) as differentially expressed. Low IGFBP7 is a feature of LSCs and is associated with reduced chemotherapy sensitivity. Enhancing IGFBP7 by overexpression or addition of recombinant human IGFBP7 (rhIGFBP7) resulted in differentiation, inhibition of cell survival, and increased chemotherapy sensitivity of primary AML cells. Adding rhIGFBP7 reduced leukemic stem and/or progenitor survival and reversed a stem-like gene signature, but it had no influence on normal hematopoietic stem cell survival. Our data suggest a potential clinical utility of the addition of rhIGFBP7 to current chemotherapy regimens to decrease AML relapse rates.
Collapse
Affiliation(s)
- Han J M P Verhagen
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Noortje van Gils
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Tania Martiañez
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Anna van Rhenen
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Arjo Rutten
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Fedor Denkers
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - David C de Leeuw
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Marjon A Smit
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Mei-Ling Tsui
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Louise L E de Vos Klootwijk
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Renee X Menezes
- Department of Epidemiology and Biostatistics, Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Meyram Çil
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Margaretha G M Roemer
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Eline Vermue
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Stan Heukelom
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Gerrit Jan Schuurhuis
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands
| | - Linda Smit
- Department of Hematology, Cancer Center Amsterdam (CCA), Amsterdam UMC, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
157
|
Sokolenko VL, Sokolenko SV. Manifestations of allostatic load in residents of radiation contaminated areas aged 18–24 years. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We studied the features of allostatic load (AL) in 100 students aged 18–24 years old who, from birth to adulthood, lived in the territories assigned to the IV radiation zone after the Chornobyl accident (density of soil contamination by isotopes 137Cs 3.7–18.5∙104 Bq/m2) and underwent prolonged exposure to small doses of ionizing radiation. The examined students did not have any clinical signs of the immune-neuroendocrine system dysfunction. 50 people had signs of vegetative-vascular dystonia syndrome (VVD), 48 had signs of moderate hyperthyroidism and 21 had signs of moderate hypothyroidism. During the examination session, as a factor of additional psycho-emotional load, in 66 of the examined the immunoregulatory index CD4+/CD8+ went below the lower limit of the homeostatic norm, in 62 of the examined low density lipoprotein cholesterol (LDL-C) exceeded the upper level. The relative risk (RR) and attributable risk (AR) of the participation of potential secondary factors of allostatic load formation in CD4+/CD8+ immunoregulatory index going below the lower limit were calculated. The presence of statistically significant relative risk of participation in the formation of suppression of the index CD4+/CD8+: the state of hyperthyroidism, state of hypothyroidism, vegetative-vascular dystonia syndrome, higher than normal LDL-C. When the examined students combined the signs of hyperthyroidism, vegetative-vascular dystonia syndrome and higher level of LDL-C; with combination of signs of hypothyroidism, vegetative-vascular dystonia syndrome and higher level of LDL-C. The attributable risk in all cases exceeded 0.10, which confirmed the importance of some of these factors and their complexes in the formation of the effect of reduced immunoregulatory index. The CD4+/CD8+ index can be considered an important biomarker of AL and premature age-related changes in the immune system in residents of radiation-contaminated areas. The risk of AL formation in the case of occurrence of a complex of mediated secondary biomarkers (vegetative-vascular dystonia syndrome, thyroid dysfunction, hypercholesterolemia) is higher compared to their individual significance.
Collapse
|
158
|
Gal H, Lysenko M, Stroganov S, Vadai E, Youssef SA, Tzadikevitch‐Geffen K, Rotkopf R, Biron‐Shental T, de Bruin A, Neeman M, Krizhanovsky V. Molecular pathways of senescence regulate placental structure and function. EMBO J 2019; 38:e100849. [PMID: 31424120 PMCID: PMC6745498 DOI: 10.15252/embj.2018100849] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
The placenta is an autonomous organ that maintains fetal growth and development. Its multinucleated syncytiotrophoblast layer, providing fetal nourishment during gestation, exhibits characteristics of cellular senescence. We show that in human placentas from pregnancies with intrauterine growth restriction, these characteristics are decreased. To elucidate the functions of pathways regulating senescence in syncytiotrophoblast, we used dynamic contrast-enhanced MRI in mice with attenuated senescence programs. This approach revealed an altered dynamics in placentas of p53-/- , Cdkn2a-/- , and Cdkn2a-/- ;p53-/- mice, accompanied by histopathological changes in placental labyrinths. Human primary syncytiotrophoblast upregulated senescence markers and molecular pathways associated with cell-cycle inhibition and senescence-associated secretory phenotype. The pathways and components of the secretory phenotype were compromised in mouse placentas with attenuated senescence and in human placentas from pregnancies with intrauterine growth restriction. We propose that molecular mediators of senescence regulate placental structure and function, through both cell-autonomous and non-autonomous mechanisms.
Collapse
Affiliation(s)
- Hilah Gal
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Marina Lysenko
- Department of Biological RegulationThe Weizmann Institute of ScienceRehovotIsrael
| | - Sima Stroganov
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Ezra Vadai
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sameh A Youssef
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtThe Netherlands
- Division of Molecular GeneticsDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Ron Rotkopf
- Bioinformatics and Biological Computing UnitDepartment of Biological ServicesThe Weizmann Institute of ScienceRehovotIsrael
| | - Tal Biron‐Shental
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Alain de Bruin
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtThe Netherlands
- Division of Molecular GeneticsDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Michal Neeman
- Department of Biological RegulationThe Weizmann Institute of ScienceRehovotIsrael
| | - Valery Krizhanovsky
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
159
|
Polderdijk MCE, Heron M, Kuipers S, Rijkers GT. Deciphering the genotype and phenotype of hairy cell leukemia: clues for diagnosis and treatment. Expert Rev Clin Immunol 2019; 15:857-867. [PMID: 31282776 DOI: 10.1080/1744666x.2019.1641405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Hairy cell leukemia (HCL) is a rare, indolent B-cell neoplasm. The classical variant of the disease is characterized by the BRAF V600E mutation, which is present in virtually all cases. How this mutation leads to the signs and symptoms of the disease is currently not known. Areas covered: This review explores the genetic background of HCL, especially the BRAF V600E driver mutation, but passenger mutations and their effects are also included. The clinical significance of BRAF mutations in other cancer types is discussed, as well as BRAF- induced senescence. An overview of the major forms of treatment of HCL (cytostatic drugs, specific BRAF inhibitors, B cell-specific antibodies) is given. Finally, possible mechanisms of the monocytopenia and hairy morphology so typical of this disease are discussed. Expert opinion: Although being a rare disease, HCL and its pathogenesis can yield important information about BRAF-related cancer metabolism. Many aspects of the disease are still unclear, but with the right resources, this could change. This can lead to a more efficient and specific treatment, thus leading to decreased morbidity.
Collapse
Affiliation(s)
- Margot C E Polderdijk
- a Department of Sciences, University College Roosevelt , Middelburg , The Netherlands.,b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands
| | - Michiel Heron
- b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands.,c Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital , Tilburg , The Netherlands
| | - Saskia Kuipers
- d Department of Hematology, Admiral de Ruyter Hospital , Goes , The Netherlands
| | - Ger T Rijkers
- a Department of Sciences, University College Roosevelt , Middelburg , The Netherlands.,b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands.,c Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital , Tilburg , The Netherlands
| |
Collapse
|
160
|
Slobodnyuk K, Radic N, Ivanova S, Llado A, Trempolec N, Zorzano A, Nebreda AR. Autophagy-induced senescence is regulated by p38α signaling. Cell Death Dis 2019; 10:376. [PMID: 31092814 PMCID: PMC6520338 DOI: 10.1038/s41419-019-1607-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
Apoptosis and senescence are two mutually exclusive cell fate programs that can be activated by stress. The factors that instruct cells to enter into senescence or apoptosis are not fully understood, but both programs can be regulated by the stress kinase p38α. Using an inducible system that specifically activates this pathway, we show that sustained p38α activation suffices to trigger massive autophagosome formation and to enhance the basal autophagic flux. This requires the concurrent effect of increased mitochondrial reactive oxygen species production and the phosphorylation of the ULK1 kinase on Ser-555 by p38α. Moreover, we demonstrate that macroautophagy induction by p38α signaling determines that cancer cells preferentially enter senescence instead of undergoing apoptosis. In agreement with these results, we present evidence that the induction of autophagy by p38α protects cancer cells from chemotherapy-induced apoptosis by promoting senescence. Our results identify a new mechanism of p38α-regulated basal autophagy that controls the fate of cancer cells in response to stress.
Collapse
Affiliation(s)
- Konstantin Slobodnyuk
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Nevenka Radic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Anna Llado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Natalia Trempolec
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain. .,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
161
|
Molecular background of skin melanoma development and progression: therapeutic implications. Postepy Dermatol Alergol 2019; 36:129-138. [PMID: 31320844 PMCID: PMC6627250 DOI: 10.5114/ada.2019.84590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/18/2018] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive skin cancer with an increasing number of cases worldwide and curable mostly in its early stage. The improvement in patients' survival in advanced melanoma has been achieved only recently, due to development of new biological drugs for targeted therapies and immunotherapy. Further progress in the treatment of melanoma is clearly dependent on the better understanding of its complex biology. This review describes the most important molecular mechanisms and genetic events underlying skin melanoma development and progression, depicts the way of action of newly developed drugs and indicates new potential therapeutic targets.
Collapse
|
162
|
León-Letelier RA, Bonifaz LC, Fuentes-Pananá EM. OMIC signatures to understand cancer immunosurveillance and immunoediting: Melanoma and immune cells interplay in immunotherapy. J Leukoc Biol 2019; 105:915-933. [PMID: 30698862 DOI: 10.1002/jlb.mr0618-241rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Cutaneous melanomas usually originate from exposure to the mutagenic effects of ultraviolet radiation, and as such they exhibit the highest rate of somatic mutations than any other human cancer, and an extensive expression of neoantigens concurrently with a dense infiltrate of immune cells. The coexistence of high immunogenicity and high immune cell infiltration may sound contradictory for cancers carrying a gloomy outcome. However, recent studies have unveiled a variety of immunosuppressive mechanisms that often permeate the tumor microenvironment and that are responsible for tumor escaping from immunosurveillance mechanisms. Nonetheless, this particular immune profile has opened a new window of treatments based on immunotherapy that have significantly improved the clinical outcome of melanoma patients. Still, positive and complete therapy responses have been limited, and this particular cancer continues to be a major clinical challenge. The transcriptomic signatures of those patients with clinical benefit and those with progressive disease have provided a more complete picture of the universe of interactions between the tumor and the immune system. In this review, we integrate the results of the immunotherapy clinical trials to discuss a novel understanding of the mechanisms guiding cancer immunosurveillance and immunoediting. A clear notion of the cellular and molecular processes shaping how the immune system and the tumor are continuously coevolving would result in the rational design of combinatory therapies aiming to counteract the signaling pathways and cellular processes responsible for immunoescape mechanisms and provide clinical benefit to immunotherapy nonresponsive patients.
Collapse
Affiliation(s)
- Ricardo A León-Letelier
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Ciudad de México, México
- Universidad Nacional Autónoma de México (UNAM), México Ciudad de México, México
| | - Laura C Bonifaz
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Ciudad de México, México
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| |
Collapse
|
163
|
Futami K, Maita M, Katagiri T. DNA demethylation with 5-aza-2′-deoxycytidine induces the senescence-associated secretory phenotype in the immortal fish cell line, EPC. Gene 2019; 697:194-200. [DOI: 10.1016/j.gene.2019.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
|
164
|
Datar I, Kalpana G, Choi J, Basuroy T, Trumbly R, Chaitanya Arudra SK, McPhee MD, de la Serna I, Yeung KC. Critical role of miR-10b in B-RafV600E dependent anchorage independent growth and invasion of melanoma cells. PLoS One 2019; 14:e0204387. [PMID: 30995246 PMCID: PMC6469749 DOI: 10.1371/journal.pone.0204387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Recent high-throughput-sequencing of cancer genomes has identified oncogenic mutations in the B-Raf genetic locus as one of the critical events in melanomagenesis. B-Raf encodes a serine/threonine kinase that regulates the MAPK/ERK kinase (MEK) and extracellular signal-regulated kinase (ERK) protein kinase cascade. In normal cells, the activity of B-Raf is tightly regulated and is required for cell growth and survival. B-Raf gain-of-function mutations in melanoma frequently lead to unrestrained growth, enhanced cell invasion and increased viability of cancer cells. Although it is clear that the invasive phenotypes of B-Raf mutated melanoma cells are stringently dependent on B-Raf-MEK-ERK activation, the downstream effector targets that are required for oncogenic B-Raf-mediated melanomagenesis are not well defined. miRNAs have regulatory functions towards the expression of genes that are important in carcinogenesis. We observed that miR-10b expression correlates with the presence of the oncogenic B-Raf (B-RafV600E) mutation in melanoma cells. While expression of miR-10b enhances anchorage-independent growth of B-Raf wild-type melanoma cells, miR-10b silencing decreases B-RafV600E cancer cell invasion in vitro. Importantly, the expression of miR-10b is required for B-RafV600E-mediated anchorage independent growth and invasion of melanoma cells in vitro. Taken together our results suggest that miR-10b is an important mediator of oncogenic B-RafV600E activity in melanoma.
Collapse
Affiliation(s)
- Ila Datar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Gardiyawasam Kalpana
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States of America
| | - Tupa Basuroy
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Robert Trumbly
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | | | | | - Ivana de la Serna
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Kam C. Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
165
|
Tano A, Kadota Y, Morimune T, Jam FA, Yukiue H, Bellier JP, Sokoda T, Maruo Y, Tooyama I, Mori M. The juvenility-associated long noncoding RNA Gm14230 maintains cellular juvenescence. J Cell Sci 2019; 132:jcs.227801. [PMID: 30872457 DOI: 10.1242/jcs.227801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile animals possess distinct properties that are missing in adults. These properties include capabilities for higher growth, faster wound healing, plasticity and regeneration. However, the molecular mechanisms underlying these juvenile physiological properties are not fully understood. To obtain insight into the distinctiveness of juveniles from adults at the molecular level, we assessed long noncoding RNAs (lncRNAs) that are highly expressed selectively in juvenile cells. The noncoding elements of the transcriptome were investigated in hepatocytes and cardiomyocytes isolated from juvenile and adult mice. Here, we identified 62 juvenility-associated lncRNAs (JAlncs), which are selectively expressed in both hepatocytes and cardiomyocytes from juvenile mice. Among these common (shared) JAlncs, Gm14230 is evolutionarily conserved and is essential for cellular juvenescence. Loss of Gm14230 impairs cell growth and causes cellular senescence. Gm14230 safeguards cellular juvenescence through recruiting the histone methyltransferase Ezh2 to Tgif2, thereby repressing the functional role of Tgif2 in cellular senescence. Thus, we identify Gm14230 as a juvenility-selective lncRNA required to maintain cellular juvenescence.
Collapse
Affiliation(s)
- Ayami Tano
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yosuke Kadota
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takao Morimune
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Faidruz Azura Jam
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Haruka Yukiue
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Tatsuyuki Sokoda
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
166
|
Morris VK. Systemic Therapy in BRAF V600E-Mutant Metastatic Colorectal Cancer: Recent Advances and Future Strategies. CURRENT COLORECTAL CANCER REPORTS 2019; 15:53-60. [PMID: 31762713 PMCID: PMC6874105 DOI: 10.1007/s11888-019-00429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review seeks to detail the clinical and pathologic features specific to BRAF V600E colorectal cancer. Application of novel preclinical findings translated into the clinic for the development of new therapeutic options for patients with BRAF V600E metastatic colorectal cancer will be detailed. RECENT FINDINGS While BRAF inhibitors in monotherapy do not have the same clinical activity for colorectal cancer relative to other solid tumors harboring an oncogenic BRAF V600E mutation, combination approaches targeting BRAF + MEK +EGFR hold promise for patients BRAF V600E colorectal cancer. SUMMARY Simultaneous targeting of multiple drivers along the MAPK pathway improve clinical outcomes for patients with BRAF V600E colorectal cancer. Targeted therapies and immunotherapy hold great promise in the years to come for patients with this subtype of colorectal cancer.
Collapse
Affiliation(s)
- Van K Morris
- Department of Gastrointestinal Medical Oncology, University of Texas - MD Anderson Cancer Center, Houston, TX 77008
| |
Collapse
|
167
|
Lujambio A, Banito A. Functional screening to identify senescence regulators in cancer. Curr Opin Genet Dev 2019; 54:17-24. [PMID: 30877988 DOI: 10.1016/j.gde.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Cellular senescence is implicated in numerous biological processes, and can play pleiotropic, sometimes opposing, roles in cancer. Several triggers, cell types, contexts, and senescence-associated phenotypes introduce a multitude of possibilities when studying this process and its biological consequences. Recent studies continue to characterize cellular senescence at different levels, using a combination of functional screens, in silico analysis, omics characterizations and more targeted studies. However, a comprehensive analysis of its context-dependent effects and multiple phenotypes is required. Application of state-of-the-art and emerging technologies will increase our understanding of this complex process and better guide future strategies to harness senescence to our advantage, or to target it when detrimental.
Collapse
Affiliation(s)
- Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ) and Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
168
|
Abstract
Originally thought of as a stress response end point, the view of cellular senescence has since evolved into one encompassing a wide range of physiological and pathological functions, including both protumorignic and antitumorigenic features. It has also become evident that senescence is a highly dynamic and heterogenous process. Efforts to reconcile the beneficial and detrimental features of senescence suggest that physiological functions require the transient presence of senescent cells in the tissue microenvironment. Here, we propose the concept of a physiological "senescence life cycle," which has pathological consequences if not executed in its entirety.
Collapse
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
169
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 782] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
170
|
Kumar R, Njauw CN, Reddy BY, Ji Z, Rajadurai A, Klebanov N, Tsao H. Growth suppression by dual BRAF(V600E) and NRAS(Q61) oncogene expression is mediated by SPRY4 in melanoma. Oncogene 2019; 38:3504-3520. [PMID: 30651601 PMCID: PMC6756020 DOI: 10.1038/s41388-018-0632-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/15/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023]
Abstract
The underlying forces that shape mutational patterns within any type of cancer have been poorly characterized. One of the best preserved exclusionary relationships is that between BRAF(V600E) and NRAS(Q61) in melanomas. To explore possible mechanisms which could explain this phenomenon, we overexpressed NRAS(Q61) in a set of BRAF(V600E) melanoma lines and vice versa. Controlled expression of a second activating oncogene led to growth arrest (“synthetic suppression”) in a subset of cells, which was accompanied by cell cycle arrest and senescence in several melanoma cell lines along with apoptosis. Through differential gene expression analysis, we identified SPRY4 as the potential mediator of this synthetic response to dual oncogene suppression. Ectopic introduction of SPRY4 recapitulated the growth arrest phenotype of dual BRAF(V600E)/NRAS(Q61) expression while SPRY4 depletion led to a partial rescue from oncogenic antagonism. This study thus defined SPRY4 as a potential mediator of synthetic suppression, which is likely to contribute to the observed exclusivity between BRAF(V600E) and NRAS(Q61R) mutations in melanoma. Further leverage of the SPRY4 pathway may also hold therapeutic promise for NRAS(Q61) melanomas.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching-Ni Njauw
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bobby Y Reddy
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Ji
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Edwards 211 50 Blossom Street, Boston, MA, USA
| | - Anpuchchelvi Rajadurai
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolai Klebanov
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Edwards 211 50 Blossom Street, Boston, MA, USA.
| |
Collapse
|
171
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
172
|
IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer. Cancers (Basel) 2019; 11:cancers11010036. [PMID: 30609749 PMCID: PMC6356910 DOI: 10.3390/cancers11010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer show a dramatic response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired drug resistance eventually develops. This study explored the novel mechanisms related to TKI resistance. To identify the genes associated with TKI resistance, an integrative approach was used to analyze public datasets. Molecular manipulations were performed to investigate the roles of insulin-like growth factor binding protein 7 (IGFBP7) in lung adenocarcinoma. Clinical specimens were collected to validate the impact of IGFBP7 on the efficacy of EGFR TKI treatment. IGFBP7 mRNA expression in cancer cells isolated from malignant pleural effusions after acquired resistance to EGFR-TKI was significantly higher than in cancer cells from treatment-naïve effusions. IGFBP7 expression was markedly increased in cells with long-term TKI-induced resistance compared to in TKI-sensitive parental cells. Reduced IGFBP7 in TKI-resistant cells reversed the resistance to EGFR-TKIs and increased EGFR-TKI-induced apoptosis by up-regulating B-cell lymphoma 2 interacting mediator of cell death (BIM) and activating caspases. Suppression of IGFBP7 attenuated the phosphorylation of insulin-like growth factor 1 receptor (IGF-IR) and downstream protein kinase B (AKT) in TKI-resistant cells. Clinically, higher serum IGFBP7 levels and tumors with positive IGFBP7-immunohistochemical staining were associated with poor TKI-treatment outcomes. IGFBP7 confers resistance to EGFR-TKIs and is a potential therapeutic target for treating EGFR-TKI-resistant cancers.
Collapse
|
173
|
The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21:94-101. [PMID: 30602768 DOI: 10.1038/s41556-018-0249-2] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
Cellular senescence is implicated in physiological and pathological processes spanning development, wound healing, age-related decline in organ functions and cancer. Here, we discuss cell-autonomous and non-cell-autonomous properties of senescence in the context of tumour formation and anticancer therapy, and characterize these properties, such as reprogramming into stemness, tissue remodelling and immune crosstalk, as far more dynamic than suggested by the common view of senescence as an irreversible, static condition.
Collapse
|
174
|
Abstract
Acute kidney injury (AKI) is a frequent complication in hospitalised patients and is diagnosed by urinary output and serum creatinine. Serum creatinine is an indirect marker for renal glomerular filtration, but lacks specificity for damage to kidney tissue and the relatively late response to injury precludes early recognition of AKI. Timely diagnosis of kidney injury using biomarkers that provide information about the aetiology of kidney injury is an unmet clinical need. To overcome the suboptimal performance of serum creatinine, injury biomarkers have been proposed that predict AKI in diverse clinical settings. The clinical performance of these markers is considered moderate due to the lack of specificity for kidney tissue or the underlying injury mechanisms, poor test specificity and confounding by interventions or comorbidities. Hence, it is not unequivocally beneficial to implement current kidney injury biomarkers in the clinical laboratory for diagnostic purposes. In this article we review biomarkers that might fulfil AKI-related unmet clinical needs in the academic hospital setting.
Collapse
|
175
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
176
|
Zou J, Lei T, Guo P, Yu J, Xu Q, Luo Y, Ke R, Huang D. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol Med Rep 2018; 19:759-770. [PMID: 30535440 PMCID: PMC6323238 DOI: 10.3892/mmr.2018.9712] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023] Open
Abstract
Senescence is a result of cellular stress and is a potential mechanism for regulating cancer. As a member of the mitogen-activated protein kinase family, ERK1/2 (extracellular signal-regulated protein kinase) has an important role in delivering extracellular signals to the nucleus, and these signals regulate the cell cycle, cell proliferation and cell development. Previous studies demonstrated that ERK1/2 is closely associated with cell aging; however other previous studies suggested that ERK1/2 exerts an opposite effect on aging models and target proteins, even within the same cell model. Recent studies demonstrated that the effect of ERK1/2 on aging is likely associated with its target proteins and regulators, negative feedback loops, phosphorylated ERK1/2 factors and ERK1/2 translocation from the cytoplasm to the nucleus. The present review aims to examine the mechanism of ERK1/2 and discuss its role in cellular outcomes and novel drug development.
Collapse
Affiliation(s)
- Junrong Zou
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingting Lei
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518110, P.R. China
| | - Jason Yu
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Qichao Xu
- Department of Pharmacology, The People's Hospital of Xinyu City, Xinyu, Jiangxi 338025, P.R. China
| | - Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Ke
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Deqiang Huang
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
177
|
|
178
|
Chronic Infections: A Possible Scenario for Autophagy and Senescence Cross-Talk. Cells 2018; 7:cells7100162. [PMID: 30308990 PMCID: PMC6210027 DOI: 10.3390/cells7100162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple tissues and systems in the organism undergo modifications during aging due to an accumulation of damaged proteins, lipids, and genetic material. To counteract this process, the cells are equipped with specific mechanisms, such as autophagy and senescence. Particularly, the immune system undergoes a process called immunosenescence, giving rise to a chronic inflammatory status of the organism, with a decreased ability to counteract antigens. The obvious result of this process is a reduced defence capacity. Currently, there is evidence that some pathogens are able to accelerate the immunosenescence process for their own benefit. Although to date numerous reports show the autophagy–senescence relationship, or the connection between pathogens with autophagy or senescence, the link between the three actors remains unexplored. In this review, we have summarized current knowledge about important issues related to aging, senescence, and autophagy.
Collapse
|
179
|
Ask TF, Lugo RG, Sütterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci 2018; 12:726. [PMID: 30369866 PMCID: PMC6194361 DOI: 10.3389/fnins.2018.00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
There is evidence that accumulated senescent cells drive age-related pathologies, but the antecedents to the cellular stressors that induce senescence remain poorly understood. Previous research suggests that there is a relationship between shorter telomere length, an antecedent to cellular senescence, and psychological stress. Existing models do not sufficiently account for the specific pathways from which psychological stress regulation is converted into production of reactive oxygen species. We propose the neuro-immuno-senescence integrative model (NISIM) suggesting how vagally mediated heart rate variability (HRV) might be related to cellular senescence. Prefrontally modulated, and vagally mediated cortical influences on the autonomic nervous system, expressed as HRV, affects the immune system by adrenergic stimulation and cholinergic inhibition of cytokine production in macrophages and neutrophils. Previous findings indicate that low HRV is associated with increased production of the pro-inflammatory cytokines IL-6 and TNF-α. IL-6 and TNF-α can activate the NFκB pathway, increasing production of reactive oxygen species that can cause DNA damage. Vagally mediated HRV has been related to an individual's ability to regulate stress, and is lower in people with shorter telomeres. Based on these previous findings, the NISIM suggest that the main pathway from psychological stress to individual differences in oxidative telomere damage originates in the neuroanatomical components that modulate HRV, and culminates in the cytokine-induced activation of NFκB. Accumulated senescent cells in the brain is hypothesized to promote age-related neurodegenerative disease, and previous reports suggest an association between low HRV and onset of Alzheimer's and Parkinson's disease. Accumulating senescent cells in peripheral tissues secreting senescence-associated secretory phenotype factors can alter tissue structure and function which can induce cancer and promote tumor growth and metastasis in old age, and previous research suggested that ability to regulate psychological stress has a negative association with cancer onset. We therefore conclude that the NISIM can account for a large proportion of the individual differences in the psychological stress-related antecedents to cellular senescence, and suggest that it can be useful in providing a dynamic framework for understanding the pathways by which psychological stress induce pathologies in old age.
Collapse
Affiliation(s)
- Torvald F. Ask
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ricardo G. Lugo
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty of Health and Welfare Sciences, Østfold University College, Halden, Norway
- Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
180
|
Liu XL, Ding J, Meng LH. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin 2018; 39:1553-1558. [PMID: 29620049 DOI: 10.1038/aps.2017.198] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Oncogene-induced cellular senescence (OIS) is a complex program that is triggered in response to aberrant activation of oncogenic signaling. Initially, OIS was thought to be a barrier to malignant transformation because of its suppression on cell proliferation. Later studies showed that senescence induced by oncogenes can also promote the initiation and development of cancer. The opposing effects of OIS occur through different combinations of downstream effectors as well as the interplay of senescent cells and the microenvironment, such as senescence-associated inflammation. Here, we review the common features and molecular mechanisms underlying OIS and the interaction between senescent cells and the microenvironment. We propose that targeting senescent cells may have a beneficial therapeutic effect during the treatment of cancer.
Collapse
|
181
|
Felley-Bosco E, MacFarlane M. Asbestos: Modern Insights for Toxicology in the Era of Engineered Nanomaterials. Chem Res Toxicol 2018; 31:994-1008. [PMID: 30156102 DOI: 10.1021/acs.chemrestox.8b00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asbestos fibers are naturally occurring silicates that have been extensively used in the past, including house construction, but because of their toxicity, their use has been banned in 63 countries. Despite this, more than one million metric tons of asbestos are still consumed annually in countries where asbestos use has not been banned. Asbestos-related disease incidence is still increasing in several countries, including those countries that banned the use of asbestos more than 30 years ago. We highlight here recent knowledge obtained in experimental models about the mechanisms leading to tumor development following asbestos exposure, including genetic and epigenetic changes. Importantly, the landscape of alterations observed experimentally in tumor samples is consistent with alterations observed in clinical tumor samples; therefore, studies performed on early/precancer stages should help inform secondary prevention, which remains crucial in the absence of an efficient primary prevention. Knowledge gathered on asbestos should also help address future challenges, especially in view of the increased production of new materials that may behave similarly to asbestos fibers.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology , University Hospital Zurich , Sternwartstrasse 14 , 8091 Zürich , Switzerland
| | - Marion MacFarlane
- MRC Toxicology Unit , University of Cambridge , Hodgkin Building, Leicester LE1 9HN , United Kingdom
| |
Collapse
|
182
|
Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell 2018; 34:361-378. [PMID: 30216189 DOI: 10.1016/j.ccell.2018.05.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Besides constituting a first layer of defense against microbial challenges, the detection of cytosolic DNA is fundamental for mammalian organisms to control malignant transformation and tumor progression. The accumulation of DNA in the cytoplasm can initiate the proliferative inactivation (via cellular senescence) or elimination (via regulated cell death) of neoplastic cell precursors. Moreover, cytosolic DNA sensing is intimately connected to the secretion of cytokines that support innate and adaptive antitumor immunity. Here, we discuss the molecular mechanisms whereby cytosolic DNA enables cell-intrinsic and -extrinsic oncosuppression, and their relevance for the development of novel therapeutic approaches that reinstate anticancer immunosurveillance.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
183
|
Choppara S, Ganga S, Manne R, Dutta P, Singh S, Santra MK. The SCF FBXO46 ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. J Biol Chem 2018; 293:16291-16306. [PMID: 30171069 DOI: 10.1074/jbc.ra118.005354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor F-box protein 31 (FBXO31) is indispensable for maintaining genomic stability. Its levels drastically increase following DNA damage, leading to cyclin D1 and MDM2 degradation and G1 and G2/M arrest. Prolonged arrest in these phases leads to cellular senescence. Accordingly, FBXO31 needs to be kept at low basal levels in unstressed conditions for normal cell cycle progression during growth and development. However, the molecular mechanism maintaining these basal FBXO31 levels has remained unclear. Here, we identified the F-box family SCF-E3 ubiquitin ligase FBXO46 (SCFFBXO46) as an important proteasomal regulator of FBXO31 and found that FBXO46 helps maintain basal FBXO31 levels under unstressed conditions and thereby prevents premature senescence. Using molecular docking and mutational studies, we showed that FBXO46 recognizes an RXXR motif located at the FBXO31 C terminus to direct its polyubiquitination and thereby proteasomal degradation. Furthermore, FBXO46 depletion enhanced the basal levels of FBXO31, resulting in senescence induction. In response to genotoxic stress, ATM (ataxia telangiectasia-mutated) Ser/Thr kinase-mediated phosphorylation of FBXO31 at Ser-278 maintained FBXO31 levels. In contrast, activated ATM phosphorylated FBXO46 at Ser-21/Ser-67, leading to its degradation via FBXO31. Thus, ATM-catalyzed phosphorylation after DNA damage governs FBXO31 levels and FBXO46 degradation via a negative feedback loop. Collectively, our findings reveal that FBXO46 is a crucial proteasomal regulator of FBXO31 and thereby prevents senescence in normal growth conditions. They further indicate that FBXO46-mediated regulation of FBXO31 is abrogated following genotoxic stress to promote increased FBXO31 levels for maintenance of genomic stability.
Collapse
Affiliation(s)
- Srinadh Choppara
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sankaran Ganga
- From the National Centre for Cell Science, NCCS Complex and
| | - Rajeshkumar Manne
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Parul Dutta
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shailza Singh
- From the National Centre for Cell Science, NCCS Complex and
| | | |
Collapse
|
184
|
Sun Y, Coppé JP, Lam EWF. Cellular Senescence: The Sought or the Unwanted? Trends Mol Med 2018; 24:871-885. [PMID: 30153969 DOI: 10.1016/j.molmed.2018.08.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a process that results in irreversible cell-cycle arrest, and is thought to be an autonomous tumor-suppressor mechanism. During senescence, cells develop distinctive metabolic and signaling features, together referred to as the senescence-associated secretory phenotype (SASP). The SASP is implicated in several aging-related pathologies, including various malignancies. Accumulating evidence argues that cellular senescence acts as a double-edged sword in human cancer, and new agents and innovative strategies to tackle senescent cells are in development pipelines to counter the adverse effects of cellular senescence in the clinic. We focus on recent discoveries in senescence research and SASP biology, and highlight the potential of SASP suppression and senescent cell clearance in advancing precision medicine.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Medicine and Veterans Affairs Puget Sound Health Care Systems (VAPSHCS), University of Washington, Seattle, WA 98195, USA.
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
185
|
Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front Genet 2018; 9:247. [PMID: 30190724 PMCID: PMC6115505 DOI: 10.3389/fgene.2018.00247] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.
Collapse
Affiliation(s)
- Audrey S Wang
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
186
|
Wicklein D, Otto B, Suling A, Elies E, Lüers G, Lange T, Feldhaus S, Maar H, Schröder-Schwarz J, Brunner G, Wagener C, Schumacher U. CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells. Sci Rep 2018; 8:11893. [PMID: 30089785 PMCID: PMC6082866 DOI: 10.1038/s41598-018-30338-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals' survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.
Collapse
Affiliation(s)
- Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Benjamin Otto
- Eppendorf AG, Hamburg, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Suling
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Elies
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Lüers
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Brunner
- Department of Cancer Research, Fachklinik Hornheide, Münster, Germany
- NeraCare GmbH, Bönen, Germany
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
187
|
Krayem M, Najem A, Journe F, Morandini R, Sales F, Awada A, Ghanem GE. Acquired resistance to BRAFi reverses senescence-like phenotype in mutant BRAF melanoma. Oncotarget 2018; 9:31888-31903. [PMID: 30159130 PMCID: PMC6112757 DOI: 10.18632/oncotarget.25879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Targeting MAPK pathway in mutant BRAF melanoma with the specific BRAF inhibitor vemurafenib showed robust initial responses in the majority of patients followed by relapses due to acquired resistance to the drug. In V600EBRAF melanoma cell lines, senescence-associated β-galactosidase activity is often encountered in a constitutive manner or induced after MAPK inhibition. However, the link between the senescence-like phenotype and the resistance to BRAF inhibition is not fully understood yet. Our data validate a senescence-like phenotype (low cell proliferation, high cell volume, and high β-Gal activity) in mutant BRAF cells. Vemurafenib increased β-Gal activity in 4 out of 5 sensitive lines and in 2 out of 5 lines with intrinsic resistance to the drug. Interestingly, the 3 lines with acquired resistance to vemurafenib became depending on the drug for proliferation. In absence of drug, these lines showed a lower cell proliferation rate together with a substantial increase of β-Gal activity both in vitro and in vivo. In all settings, the senescence-like phenotype was significantly associated with an inhibition of pRB and cyclin D1, explaining the inhibition of cell proliferation. In conclusion, β-Gal activity is increased by V600EBRAF inhibition in the majority of sensitive and intrinsically resistant melanoma cells. Acquired resistance to vemurafenib is associated with a dependence to the drug for cell proliferation and tumor growth, and, in this case, drug removal stimulate β-Gal activity suggesting that the senescence-like phenotype could contribute to the acquired resistance to BRAF inhibition.
Collapse
Affiliation(s)
- Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Service d'Anatomie Humaine et d'Oncologie Expérimentale, Université de Mons, Mons, Belgium
| | - Renato Morandini
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - François Sales
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Department of Internal Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
188
|
Amair-Pinedo F, Matos I, Saurí T, Hernando J, Capdevila J. The Treatment Landscape and New Opportunities of Molecular Targeted Therapies in Gastroenteropancreatic Neuroendocrine Tumors. Target Oncol 2018; 12:757-774. [PMID: 29143176 DOI: 10.1007/s11523-017-0532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms that originate from neuroendocrine stem cells and express both neural and endocrine markers. They are found in almost every organ, and while NENs are mostly associated with slow growth, complications due to the uncontrolled secretion of active peptides, and metastatic disease, may significantly impair the quality of life and can ultimately lead to the death of affected individuals. Expanding knowledge of the genetic, epigenetic, and proteomic landscapes of NENs has led to a better understanding of their molecular pathology and consequently increased treatment options for patients. Here, we review the principal breakthroughs in NEN treatment management, owing largely to omics technologies over the last few years, current recommendations of systemic treatment, and ongoing research into the identification of predictive and response biomarkers based on molecular targeted therapies.
Collapse
Affiliation(s)
| | - Ignacio Matos
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Tamara Saurí
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Hernando
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jaume Capdevila
- Vall d'Hebron University Hospital, Barcelona, Spain. .,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
189
|
Vasconcelos ZS, Ralph ACL, Calcagno DQ, dos Santos Barbosa G, do Nascimento Pedrosa T, Antony LP, de Arruda Cardoso Smith M, de Lucas Chazin E, Vasconcelos TRA, Montenegro RC, de Vasconcellos MC. Anticancer potential of benzothiazolic derivative (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol against melanoma cells. Toxicol In Vitro 2018; 50:225-235. [DOI: 10.1016/j.tiv.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
|
190
|
Wandrer F, Han B, Liebig S, Schlue J, Manns MP, Schulze-Osthoff K, Bantel H. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment Pharmacol Ther 2018; 48:270-280. [PMID: 29863282 DOI: 10.1111/apt.14802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic viral hepatitis is linked to fibrotic liver injury that can progress to liver cirrhosis with its associated complications. Recent evidence suggests a role of senescence in liver fibrosis, although the senescence regulators contributing to fibrosis progression remain unclear. AIM To investigate the role of senescence and different senescence markers for fibrosis progression in patients with chronic hepatitis C virus (HCV) infection. METHODS The expression of the cell cycle inhibitors p21, p27 and p16 as well as the senescence markers p-HP1γ and γ-H2AX was analysed in liver tissue with different fibrosis stages. Senescence-associated chitotriosidase activity was measured in sera of HCV patients (n = 61) and age-matched healthy individuals (n = 22). RESULTS We found a remarkable up-regulation of the cell cycle inhibitors and senescence markers in chronic HCV infection compared to healthy liver tissue. Liver tissue with relevant fibrosis stages (F2-3) or cirrhosis (F4) revealed a significant increase in senescent cells compared to livers with no or minimal fibrosis (F0-1). In cirrhotic livers, a significantly higher number of p-HP1γ, p21 and p27 positive cells was detected compared to liver tissue with F2-3 fibrosis. Importantly, we identified T-cells as the dominant cell type contributing to increased senescence during fibrosis progression. Compared to healthy individuals, serum chitotriosidase was significantly elevated and correlated with histological fibrosis stages and liver stiffness as assessed by transient elastography. CONCLUSIONS Senescence of hepatic T-cells is enhanced in chronic viral hepatitis and increases with fibrosis progression. Serological detection of senescence-associated chitotriosidase might allow for the non-invasive detection of relevant fibrosis stages.
Collapse
Affiliation(s)
- F Wandrer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - B Han
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - S Liebig
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - J Schlue
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - M P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | - K Schulze-Osthoff
- German Cancer Consortium (DKTK) and German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - H Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| |
Collapse
|
191
|
Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol 2018; 28:595-607. [DOI: 10.1016/j.tcb.2018.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
192
|
The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19072139. [PMID: 30041449 PMCID: PMC6073138 DOI: 10.3390/ijms19072139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aging has been associated with a series of pathophysiological processes causing general decline in the overall health of the afflicted population. The cumulative line of evidence suggests an important role of oxidative stress in the development and progression of the aging process and metabolic abnormalities, exacerbating adipocyte dysfunction, cardiovascular diseases, and associated complications at the same time. In recent years, robust have established the implication of Na/K-ATPase signaling in causing oxidative stress and alterations in cellular mechanisms, in addition to its distinct pumping function. Understanding the underlying molecular mechanisms and exploring the possible sources of pro-oxidants may allow for developing therapeutic targets in these processes and formulate novel intervention strategies for patients susceptible to aging and associated complications, such as obesity and cardiovascular disease. The attenuation of oxidative stress with targeted treatment options can improve patient outcomes and significantly reduce economic burden.
Collapse
|
193
|
Yue C, Yang M, Tian Q, Mo F, Peng J, Ma Y, Huang Y, Wang D, Wang Y, Hu Z. IGFBP7 is associated to prognosis and could suppress cell survival in cholangiocarcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:817-825. [PMID: 29991293 DOI: 10.1080/21691401.2018.1470524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunyan Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Manyi Yang
- National Key Laboratory of Nanobiological Technology, Xiangya hospital, Central South University, Changsha, China
| | - Qinggang Tian
- Department of General Surgery, Baotou Eighth Hospital, Baotou, China
| | - Fongming Mo
- National Key Laboratory of Nanobiological Technology, Xiangya hospital, Central South University, Changsha, China
| | - Jian Peng
- National Key Laboratory of Nanobiological Technology, Xiangya hospital, Central South University, Changsha, China
| | - Yan Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yanning Huang
- National Key Laboratory of Nanobiological Technology, Xiangya hospital, Central South University, Changsha, China
| | - Dongcui Wang
- National Key Laboratory of Nanobiological Technology, Xiangya hospital, Central South University, Changsha, China
| | - Yuehua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
194
|
Cazzola M, Matera MG, Rogliani P, Calzetta L. Senolytic drugs in respiratory medicine: is it an appropriate therapeutic approach? Expert Opin Investig Drugs 2018; 27:573-581. [DOI: 10.1080/13543784.2018.1492548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Gakriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Luigino Calzetta
- Chair of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
195
|
Abstract
Senescence is a double-edged sword that can function in opposite directions. It is a potential mechanism for a cell to avoid malignant transformation. However, senescence can also promote cancer development by altering the cellular microenvironment through a senescence-associated secretory phenotype (SASP). At least, three types of cellular stress such as activation of oncogenes, loss of tumor suppressor genes, and chemo/radiotherapy can induce cell senescence. Oncogene-induced senescence can be intertwiningly associated with the replicative senescence. Early-stage senescence may protect cell from transformation, while prolonged senescence often promotes cancer development. This review will focus on the characteristics of senescence, discuss the regulation of senescence during cancer development, and highlight the complexity of senescence that makes cancer treatment challenging.
Collapse
Affiliation(s)
- Sulin Zeng
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Li Liu
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
196
|
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018; 9:706. [PMID: 29988615 PMCID: PMC6026810 DOI: 10.3389/fphys.2018.00706] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease causing chronic disability in adults. Studying cartilage aging, chondrocyte senescence, inflammation, and autophagy mechanisms have identified promising targets and pathways with clinical translatability potential. In this review, we highlight the most recent mechanistic and therapeutic preclinical models of aging with particular relevance in the context of articular cartilage and OA. Evidence supporting the role of metabolism, nuclear receptors and transcription factors, cell senescence, and circadian rhythms in the development of musculoskeletal system degeneration assure further translational efforts. This information might be useful not only to propose hypothesis and advanced models to study the molecular mechanisms underlying joint degeneration, but also to translate our knowledge into novel disease-modifying therapies for OA.
Collapse
Affiliation(s)
- Claire Vinatier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jerome Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France.,CHU Nantes, PHU4 OTONN, Nantes, France
| | - Beatriz Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| |
Collapse
|
197
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
198
|
Huang CK, Iwagami Y, Zou J, Casulli S, Lu S, Nagaoka K, Ji C, Ogawa K, Cao KY, Gao JS, Carlson RI, Wands JR. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett 2018; 429:1-10. [PMID: 29733964 DOI: 10.1016/j.canlet.2018.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/19/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal and aggressive disease. Recently, IDH1/2 mutations have been identified in approximately 20% of CCAs which suggests an involvement of 2-oxoglutarate (2-OG) -dependent dioxygenases in oncogenesis. We investigated if the 2-OG dependent dioxygenase, aspartate beta-hydroxylase (ASPH) was important in tumor development and growth. Immunoassays were used to clarify how ASPH modulates CCA progression by promoting phosphorylation of the retinoblastoma protein (RB1). A xenograft model was employed to determine the role of ASPH on CCA growth. Knockdown of ASPH expression inhibited CCA development and growth by reducing RB1 phosphorylation. Expression of ASPH promoted direct protein interaction between RB1, cyclin-dependent kinases, and cyclins. Treatment with 2-OG-dependent dioxygenase and ASPH inhibitors suppressed the interaction between RB1 and CDK4 as well as RB1 phosphorylation. Knockdown of ASPH expression inhibited CCA progression and RB1 phosphorylation in vivo and they were found to be highly expressed in human CCAs. Knockdown of ASPH expression altered CCA development by modulating RB1 phosphorylation, as one of the major factors regulating the growth of these tumors.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Yoshifumi Iwagami
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jing Zou
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Sarah Casulli
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chengcheng Ji
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kousuke Ogawa
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kevin Y Cao
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jin-Song Gao
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Rolf I Carlson
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jack R Wands
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA.
| |
Collapse
|
199
|
Abstract
Cellular senescence is a highly stable cell cycle arrest that is elicited in response to different stresses. By imposing a growth arrest, senescence limits the replication of old or damaged cells. Besides exiting the cell cycle, senescent cells undergo many other phenotypic alterations such as metabolic reprogramming, chromatin rearrangement, or autophagy modulation. In addition, senescent cells produce and secrete a complex combination of factors, collectively referred as the senescence-associated secretory phenotype, that mediate most of their non-cell-autonomous effects. Because senescent cells influence the outcome of a variety of physiological and pathological processes, including cancer and age-related diseases, pro-senescent and anti-senescent therapies are actively being explored. In this Review, we discuss the mechanisms regulating different aspects of the senescence phenotype and their functional implications. This knowledge is essential to improve the identification and characterization of senescent cells in vivo and will help to develop rational strategies to modulate the senescence program for therapeutic benefit.
Collapse
Affiliation(s)
- Nicolás Herranz
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jesús Gil
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
200
|
Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, Ochiya T. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Mol Aspects Med 2018; 60:92-103. [DOI: 10.1016/j.mam.2017.11.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022]
|