151
|
van der Gulik PTS, Hoff WD. Anticodon Modifications in the tRNA Set of LUCA and the Fundamental Regularity in the Standard Genetic Code. PLoS One 2016; 11:e0158342. [PMID: 27454314 PMCID: PMC4959769 DOI: 10.1371/journal.pone.0158342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Based on (i) an analysis of the regularities in the standard genetic code and (ii) comparative genomics of the anticodon modification machinery in the three branches of life, we derive the tRNA set and its anticodon modifications as it was present in LUCA. Previously we proposed that an early ancestor of LUCA contained a set of 23 tRNAs with unmodified anticodons that was capable of translating all 20 amino acids while reading 55 of the 61 sense codons of the standard genetic code (SGC). Here we use biochemical and genomic evidence to derive that LUCA contained a set of 44 or 45 tRNAs containing 2 or 3 modifications while reading 59 or 60 of the 61 sense codons. Subsequent tRNA modifications occurred independently in the Bacteria and Eucarya, while the Archaea have remained quite close to the tRNA set as it was present in LUCA.
Collapse
Affiliation(s)
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
| |
Collapse
|
152
|
Wang R, Ranganathan SV, Basanta-Sanchez M, Shen F, Chen A, Sheng J. Synthesis and base pairing studies of geranylated 2-thiothymidine, a natural variant of thymidine. Chem Commun (Camb) 2016; 51:16369-72. [PMID: 26405057 DOI: 10.1039/c5cc07479g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis and base pairing of DNA duplexes containing the geranylated 2-thiothymidine have been investigated. This naturally existing hydrophobic modification could grant better base pairing stability to the T-G pair over normal T-A and other mismatched pairs in the duplex context. This study provides a potential explanation for the different codon recognition preferences of the geranylated tRNAs.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Srivathsan V Ranganathan
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Maria Basanta-Sanchez
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Fusheng Shen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Alan Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| |
Collapse
|
153
|
Katz A, Elgamal S, Rajkovic A, Ibba M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol Microbiol 2016; 101:545-58. [PMID: 27169680 DOI: 10.1111/mmi.13419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Abstract
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Andrei Rajkovic
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
154
|
Wang R, Vangaveti S, Ranganathan SV, Basanta-Sanchez M, Haruehanroengra P, Chen A, Sheng J. Synthesis, base pairing and structure studies of geranylated RNA. Nucleic Acids Res 2016; 44:6036-45. [PMID: 27307604 PMCID: PMC5291276 DOI: 10.1093/nar/gkw544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023] Open
Abstract
Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium. The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNAGluUUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon–anticodon interaction during ribosome binding.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | - Maria Basanta-Sanchez
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Phensinee Haruehanroengra
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alan Chen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
155
|
Laureano-Marín AM, Moreno I, Romero LC, Gotor C. Negative Regulation of Autophagy by Sulfide Is Independent of Reactive Oxygen Species. PLANT PHYSIOLOGY 2016; 171:1378-91. [PMID: 27208225 PMCID: PMC4902596 DOI: 10.1104/pp.16.00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 05/20/2023]
Abstract
Accumulating experimental evidence in mammalian, and recently plant, systems has led to a change in our understanding of the role played by hydrogen sulfide in life processes. In plants, hydrogen sulfide mitigates stress and regulates important plant processes such as photosynthesis, stomatal movement, and autophagy, although the underlying mechanism is not well known. In this study, we provide new experimental evidence that, together with our previous findings, demonstrates the role of hydrogen sulfide in regulating autophagy. We used green fluorescent protein fluorescence associated with autophagic bodies and immunoblot analysis of the ATG8 protein to show that sulfide (and no other molecules such as sulfur-containing molecules or ammonium) was able to inhibit the autophagy induced in Arabidopsis (Arabidopsis thaliana) roots under nitrogen deprivation. Our results showed that sulfide was unable to scavenge reactive oxygen species generated by nitrogen limitation, in contrast to well-established reducers. In addition, reducers were unable to inhibit the accumulation of autophagic bodies and ATG8 protein forms to the same extent as sulfide. Therefore, we conclude that sulfide represses autophagy via a mechanism that is independent of redox conditions.
Collapse
Affiliation(s)
- Ana M Laureano-Marín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
156
|
Ranjan N, Rodnina MV. tRNA wobble modifications and protein homeostasis. ACTA ACUST UNITED AC 2016; 4:e1143076. [PMID: 27335723 DOI: 10.1080/21690731.2016.1143076] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| |
Collapse
|
157
|
Exploiting tRNAs to Boost Virulence. Life (Basel) 2016; 6:life6010004. [PMID: 26797637 PMCID: PMC4810235 DOI: 10.3390/life6010004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023] Open
Abstract
Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.
Collapse
|
158
|
Shigi N. Sulfur Modifications in tRNA: Function and Implications for Human Disease. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
159
|
Suganuma T, Swanson SK, Florens L, Washburn MP, Workman JL. Moco biosynthesis and the ATAC acetyltransferase engage translation initiation by inhibiting latent PKR activity. J Mol Cell Biol 2015; 8:44-50. [DOI: 10.1093/jmcb/mjv070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/20/2015] [Indexed: 11/14/2022] Open
|
160
|
El-Sayed ASA, Yassin MA, Ali GS. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS One 2015; 10:e0144304. [PMID: 26633307 PMCID: PMC4669086 DOI: 10.1371/journal.pone.0144304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| | - Marwa A. Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| |
Collapse
|
161
|
Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2015. [PMID: 26221021 DOI: 10.1073/pnas.1513033112] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ΔmetA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ΔmetA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ΔmetA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.
Collapse
|
162
|
Dégut C, Ponchon L, Folly-Klan M, Barraud P, Tisné C. The m1A(58) modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by TrmI. Biophys Chem 2015; 210:27-34. [PMID: 26189113 DOI: 10.1016/j.bpc.2015.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 06/27/2015] [Indexed: 01/23/2023]
Abstract
The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed.
Collapse
Affiliation(s)
- Clément Dégut
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Luc Ponchon
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Marcia Folly-Klan
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris.
| |
Collapse
|
163
|
Dutchak PA, Laxman S, Estill SJ, Wang C, Wang Y, Wang Y, Bulut GB, Gao J, Huang LJ, Tu BP. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Rep 2015; 12:371-9. [PMID: 26166573 DOI: 10.1016/j.celrep.2015.06.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/08/2015] [Accepted: 06/08/2015] [Indexed: 01/23/2023] Open
Abstract
Nitrogen permease regulator-like 2 (NPRL2) is a component of a conserved complex that inhibits mTORC1 (mammalian Target Of Rapamycin Complex 1) in response to amino acid insufficiency. Here, we show that NPRL2 is required for mouse viability and that its absence significantly compromises fetal liver hematopoiesis in developing embryos. Moreover, NPRL2 KO embryos have significantly reduced methionine levels and exhibit phenotypes reminiscent of cobalamin (vitamin B12) deficiency. Consistent with this idea, NPRL2 KO liver and mouse embryonic fibroblasts (MEFs) show defective processing of the cobalamin-transport protein transcobalamin 2, along with impaired lysosomal acidification and lysosomal gene expression. NPRL2 KO MEFs exhibit a significant defect in the cobalamin-dependent synthesis of methionine from homocysteine, which can be rescued by supplementation with cyanocobalamin. Taken together, these findings demonstrate a role for NPRL2 and mTORC1 in the regulation of lysosomal-dependent cobalamin processing, methionine synthesis, and maintenance of cellular re-methylation potential, which are important during hematopoiesis.
Collapse
Affiliation(s)
- Paul A Dutchak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Sunil Laxman
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Sandi Jo Estill
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Chensu Wang
- Simmons Comprehensive Cancer Center and Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-8807, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yiguang Wang
- Simmons Comprehensive Cancer Center and Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-8807, USA
| | - Gamze B Bulut
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - Jinming Gao
- Simmons Comprehensive Cancer Center and Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-8807, USA
| | - Lily J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
164
|
Nedialkova DD, Leidel SA. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell 2015; 161:1606-18. [PMID: 26052047 PMCID: PMC4503807 DOI: 10.1016/j.cell.2015.05.022] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/15/2023]
Abstract
Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. tRNA anticodon modification loss slows translation at cognate codons in vivo Codon-specific translational pausing triggers protein misfolding in yeast and worms Codon translation rates and protein homeostasis are restored by tRNA overexpression
Collapse
Affiliation(s)
- Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
165
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
166
|
Pham ND, Fermaintt CS, Rodriguez AC, McCombs JE, Nischan N, Kohler JJ. Cellular metabolism of unnatural sialic acid precursors. Glycoconj J 2015; 32:515-29. [PMID: 25957566 DOI: 10.1007/s10719-015-9593-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE.
Collapse
Affiliation(s)
- Nam D Pham
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charles S Fermaintt
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrea C Rodriguez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Janet E McCombs
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
167
|
Dokudovskaya S, Rout MP. SEA you later alli-GATOR--a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128:2219-28. [PMID: 25934700 DOI: 10.1242/jcs.168922] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1--the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases.
Collapse
Affiliation(s)
- Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
168
|
Tyagi K, Pedrioli PGA. Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res 2015; 43:4701-12. [PMID: 25870413 PMCID: PMC4482078 DOI: 10.1093/nar/gkv322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/30/2015] [Indexed: 01/15/2023] Open
Abstract
Maintenance of protein quality control has implications in various processes such as neurodegeneration and ageing. To investigate how environmental insults affect this process, we analysed the proteome of yeast continuously exposed to mild heat stress. In agreement with previous transcriptomics studies, amongst the most marked changes, we found up-regulation of cytoprotective factors; a shift from oxidative phosphorylation to fermentation; and down-regulation of translation. Importantly, we also identified a novel, post-translationally controlled, component of the heat shock response. The abundance of Ncs2p and Ncs6p, two members of the URM1 pathway responsible for the thiolation of wobble uridines in cytoplasmic tRNAs tKUUU, tQUUG and tEUUC, is down-regulated in a proteasomal dependent fashion. Using random forests we show that this results in differential translation of transcripts with a biased content for the corresponding codons. We propose that the role of this pathway in promoting catabolic and inhibiting anabolic processes, affords cells with additional time and resources needed to attain proper protein folding under periods of stress.
Collapse
Affiliation(s)
- Kshitiz Tyagi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Patrick G A Pedrioli
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK The Swiss Federal Institute of Technology, The Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8092 Zurich, Switzerland
| |
Collapse
|
169
|
Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis. J Bacteriol 2015; 197:1952-62. [PMID: 25825430 DOI: 10.1128/jb.02625-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The 2-thiouridine (s(2)U) modification of the wobble position in glutamate, glutamine, and lysine tRNA molecules serves to stabilize the anticodon structure, improving ribosomal binding and overall efficiency of the translational process. Biosynthesis of s(2)U in Escherichia coli requires a cysteine desulfurase (IscS), a thiouridylase (MnmA), and five intermediate sulfur-relay enzymes (TusABCDE). The E. coli MnmA adenylates and subsequently thiolates tRNA to form the s(2)U modification. Bacillus subtilis lacks IscS and the intermediate sulfur relay proteins, yet its genome contains a cysteine desulfurase gene, yrvO, directly adjacent to mnmA. The genomic synteny of yrvO and mnmA combined with the absence of the Tus proteins indicated a potential functionality of these proteins in s(2)U formation. Here, we provide evidence that the B. subtilis YrvO and MnmA are sufficient for s(2)U biosynthesis. A conditional B. subtilis knockout strain showed that s(2)U abundance correlates with MnmA expression, and in vivo complementation studies in E. coli IscS- or MnmA-deficient strains revealed the competency of these proteins in s(2)U biosynthesis. In vitro experiments demonstrated s(2)U formation by YrvO and MnmA, and kinetic analysis established a partnership between the B. subtilis proteins that is contingent upon the presence of ATP. Furthermore, we observed that the slow-growth phenotype of E. coli ΔiscS and ΔmnmA strains associated with s(2)U depletion is recovered by B. subtilis yrvO and mnmA. These results support the proposal that the involvement of a devoted cysteine desulfurase, YrvO, in s(2)U synthesis bypasses the need for a complex biosynthetic pathway by direct sulfur transfer to MnmA. IMPORTANCE The 2-thiouridine (s(2)U) modification of the wobble position in glutamate, glutamine, and lysine tRNA is conserved in all three domains of life and stabilizes the anticodon structure, thus guaranteeing fidelity in translation. The biosynthesis of s(2)U in Escherichia coli requires seven proteins: the cysteine desulfurase IscS, the thiouridylase MnmA, and five intermediate sulfur-relay enzymes (TusABCDE). Bacillus subtilis and most Gram-positive bacteria lack a complete set of biosynthetic components. Interestingly, the mnmA coding sequence is located adjacent to yrvO, encoding a cysteine desulfurase. In this work, we provide evidence that the B. subtilis YrvO is able to transfer sulfur directly to MnmA. Both proteins are sufficient for s(2)U biosynthesis in a pathway independent of the one used in E. coli.
Collapse
|
170
|
Klassen R, Grunewald P, Thüring KL, Eichler C, Helm M, Schaffrath R. Loss of anticodon wobble uridine modifications affects tRNA(Lys) function and protein levels in Saccharomyces cerevisiae. PLoS One 2015; 10:e0119261. [PMID: 25747122 PMCID: PMC4352028 DOI: 10.1371/journal.pone.0119261] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
In eukaryotes, wobble uridines in the anticodons of tRNALysUUU, tRNAGluUUC and tRNAGlnUUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNALysUUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNALysUUU hypomodification and malfunction.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (RS)
| | - Pia Grunewald
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Kathrin L. Thüring
- Institut für Pharmazie und Biochemie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Christian Eichler
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Mark Helm
- Institut für Pharmazie und Biochemie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (RS)
| |
Collapse
|
171
|
Lee D, Hwang W, Artan M, Jeong DE, Lee SJ. Effects of nutritional components on aging. Aging Cell 2015; 14:8-16. [PMID: 25339542 PMCID: PMC4326908 DOI: 10.1111/acel.12277] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
Nutrients including carbohydrates, proteins, lipids, vitamins, and minerals regulate various physiological processes and are essential for the survival of organisms. Reduced overall caloric intake delays aging in various organisms. However, the role of each nutritional component in the regulation of lifespan is not well established. In this review, we describe recent studies focused on the regulatory role of each type of nutrient in aging. Moreover, we will discuss how the amount or composition of each nutritional component may influence longevity or health in humans.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Wooseon Hwang
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Murat Artan
- Information Technology Convergence Engineering; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Seung-Jae Lee
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
- Information Technology Convergence Engineering; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Gyeongbuk 790-784 South Korea
| |
Collapse
|
172
|
Alings F, Sarin LP, Fufezan C, Drexler HCA, Leidel SA. An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA (NEW YORK, N.Y.) 2015; 21:202-12. [PMID: 25505025 PMCID: PMC4338348 DOI: 10.1261/rna.048199.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s(2)U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s(2)U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s(2)U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms.
Collapse
Affiliation(s)
- Fiona Alings
- RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - L Peter Sarin
- RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Hannes C A Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Sebastian A Leidel
- RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
173
|
Thiaville PC, de Crécy-Lagard V. The emerging role of complex modifications of tRNA LysUUU in signaling pathways. MICROBIAL CELL 2015; 2:1-4. [PMID: 25821779 PMCID: PMC4374736 DOI: 10.15698/mic2015.01.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Coordination of cell growth with nutrient availability, in particular amino acids, is a central problem that has been solved by the implementation of complex regulatory cascades. Although the specific regulatory mechanisms differ between kingdoms and species, a common theme is the use of tRNA molecules as sensors and transducers of amino acid starvation. In many bacteria, amino acid starvation leads to high levels of uncharged tRNAs, a signal for the synthesis of the stringent response’s alarmones, halting transcription of stable RNAs and inducing the synthesis of amino acid synthesis pathways 1. In gram-positive Bacteria (as well as the Deinococcus-Thermus clade), uncharged tRNAs bind structures (T-boxes) in the leader sequences of mRNA encoding gene, activating the expression of genes involved in amino acid metabolism 2. In eukaryotes, the conserved General Amino Acid Control (GAAC) response is triggered by shortage of amino acids that leads to the binding of uncharged tRNAs to Gcn2 kinase and, through a cascade of events, to the activation of the central activator of amino acid synthesis genes, Gcn4 3. As the study by Scheidt et al. 4 and several other recent studies in this field reveal, variations in charging levels are not the only mechanism by which tRNAs play a role in amino acid starvation responses; levels of post-transcriptional modifications also seem to play major roles.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, Florida, USA. ; University of Florida Genetics Institute, Gainesville, Florida, USA. ; Institut de Génétique et Microbiologie, Université of Paris-Sud, Orsay, France. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- University of Florida Genetics Institute, Gainesville, Florida, USA. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
174
|
Glatt S, Zabel R, Vonkova I, Kumar A, Netz DJ, Pierik AJ, Rybin V, Lill R, Gavin AC, Balbach J, Breunig KD, Müller CW. Structure of the Kti11/Kti13 heterodimer and its double role in modifications of tRNA and eukaryotic elongation factor 2. Structure 2014; 23:149-160. [PMID: 25543256 DOI: 10.1016/j.str.2014.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/14/2022]
Abstract
The small, highly conserved Kti11 alias Dph3 protein encoded by the Kluyveromyces lactis killer toxin insensitive gene KTI11/DPH3 is involved in the diphthamide modification of eukaryotic elongation factor 2 and, together with Kti13, in Elongator-dependent tRNA wobble base modifications, thereby affecting the speed and accuracy of protein biosynthesis through two distinct mechanisms. We have solved the crystal structures of Saccharomyces cerevisiae Kti13 and the Kti11/Kti13 heterodimer at 2.4 and 2.9 Å resolution, respectively, and validated interacting residues through mutational analysis in vitro and in vivo. We show that metal coordination by Kti11 and its heterodimerization with Kti13 are essential for both translational control mechanisms. Our structural and functional analyses identify Kti13 as an additional component of the diphthamide modification pathway and provide insight into the molecular mechanisms that allow the Kti11/Kti13 heterodimer to coregulate two consecutive steps in ribosomal protein synthesis.
Collapse
Affiliation(s)
- Sebastian Glatt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Rene Zabel
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Ivana Vonkova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Amit Kumar
- Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, Betty-Heimann-Straße 7, 06120 Halle (Saale), Germany
| | - Daili J Netz
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Straße 6, 35037 Marburg, Germany
| | - Antonio J Pierik
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Straße 6, 35037 Marburg, Germany
| | - Vladimir Rybin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Straße 6, 35037 Marburg, Germany; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jochen Balbach
- Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, Betty-Heimann-Straße 7, 06120 Halle (Saale), Germany
| | - Karin D Breunig
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Weinbergweg 10, 06120 Halle (Saale), Germany.
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
175
|
Laxman S, Sutter BM, Shi L, Tu BP. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal 2014; 7:ra120. [PMID: 25515537 DOI: 10.1126/scisignal.2005948] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells must be capable of switching between growth and autophagy in unpredictable nutrient environments. The conserved Npr2 protein complex (comprising Iml1, Npr2, and Npr3; also called SEACIT) inhibits target of rapamycin complex 1 (TORC1) kinase signaling, which inhibits autophagy in nutrient-rich conditions. In yeast cultured in media with nutrient limitations that promote autophagy and inhibit growth, loss of Npr2 enables cells to bypass autophagy and proliferate. We determined that Npr2-deficient yeast had a metabolic state distinct from that of wild-type yeast when grown in minimal media containing ammonium as a nitrogen source and a nonfermentable carbon source (lactate). Unlike wild-type yeast, which accumulated glutamine, Npr2-deficient yeast metabolized glutamine into nitrogen-containing metabolites and maintained a high concentration of S-adenosyl methionine (SAM). Moreover, in wild-type yeast grown in these nutrient-limited conditions, supplementation with methionine stimulated glutamine consumption for synthesis of nitrogenous metabolites, demonstrating integration of a sulfur-containing amino acid cue and nitrogen utilization. These data revealed the metabolic basis by which the Npr2 complex regulates cellular homeostasis and demonstrated a key function for TORC1 in regulating the synthesis and utilization of glutamine as a nitrogen source.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
176
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
177
|
Scheidt V, Jüdes A, Bär C, Klassen R, Schaffrath R. Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling. MICROBIAL CELL 2014; 1:416-424. [PMID: 28357221 PMCID: PMC5349137 DOI: 10.15698/mic2014.12.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous work in yeast has suggested that modification of tRNAs, in particular uridine bases in the anticodon wobble position (U34), is linked to TOR (target of rapamycin) signaling. Hence, U34 modification mutants were found to be hypersensitive to TOR inhibition by rapamycin. To study whether this involves inappropriate TOR signaling, we examined interaction between mutations in TOR pathway genes (tip41∆, sap190∆, ppm1∆, rrd1∆) and U34 modification defects (elp3∆, kti12∆, urm1∆, ncs2∆) and found the rapamycin hypersensitivity in the latter is epistatic to drug resistance of the former. Epistasis, however, is abolished in tandem with a gln3∆ deletion, which inactivates transcription factor Gln3 required for TOR-sensitive activation of NCR (nitrogen catabolite repression) genes. In line with nuclear import of Gln3 being under control of TOR and dephosphorylation by the Sit4 phosphatase, we identify novel TOR-sensitive sit4 mutations that confer rapamycin resistance and importantly, mislocalise Gln3 when TOR is inhibited. This is similar to gln3∆ cells, which abolish the rapamycin hypersensitivity of U34 modification mutants, and suggests TOR deregulation due to tRNA undermodification operates through Gln3. In line with this, loss of U34 modifications (elp3∆, urm1∆) enhances nuclear import of and NCR gene activation (MEP2, GAP1) by Gln3 when TOR activity is low. Strikingly, this stimulatory effect onto Gln3 is suppressed by overexpression of tRNAs that usually carry the U34 modifications. Collectively, our data suggest that proper TOR signaling requires intact tRNA modifications and that loss of U34 modifications impinges on the TOR-sensitive NCR branch via Gln3 misregulation.
Collapse
Affiliation(s)
- Viktor Scheidt
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| | - André Jüdes
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| | - Christian Bär
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany. ; Present address: Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, Spain
| | - Roland Klassen
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| |
Collapse
|
178
|
Damon JR, Pincus D, Ploegh HL. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2014; 26:270-82. [PMID: 25392298 PMCID: PMC4294674 DOI: 10.1091/mbc.e14-06-1145] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The URM1 pathway functions in a tRNA thiolation reaction that is required for synthesis of the mcm5s2U34 nucleoside found in tRNAs. Growth of Saccharomyces cerevisiae cells at an elevated temperature results in altered levels of modification enzymes, and this leads to decreased levels of tRNA thiolation. tRNA thiolation is tied to cellular stress responses. Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGluUUC, tGlnUUG, and tLysUUU in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.
Collapse
Affiliation(s)
- Jadyn R Damon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| |
Collapse
|
179
|
Schwabe A, Bruggeman FJ. Single yeast cells vary in transcription activity not in delay time after a metabolic shift. Nat Commun 2014; 5:4798. [DOI: 10.1038/ncomms5798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022] Open
|
180
|
Toohey JI, Cooper AJL. Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory roles in biology. Molecules 2014; 19:12789-813. [PMID: 25153879 PMCID: PMC4170951 DOI: 10.3390/molecules190812789] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022] Open
Abstract
The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters), sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione). A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide.
Collapse
Affiliation(s)
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
181
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
182
|
Ruckenstuhl C, Netzberger C, Entfellner I, Carmona-Gutierrez D, Kickenweiz T, Stekovic S, Gleixner C, Schmid C, Klug L, Sorgo AG, Eisenberg T, Büttner S, Mariño G, Koziel R, Jansen-Dürr P, Fröhlich KU, Kroemer G, Madeo F. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet 2014; 10:e1004347. [PMID: 24785424 PMCID: PMC4006742 DOI: 10.1371/journal.pgen.1004347] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.
Collapse
Affiliation(s)
| | | | - Iryna Entfellner
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Thomas Kickenweiz
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Slaven Stekovic
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Christian Schmid
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Klug
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Alice G. Sorgo
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Sabrina Büttner
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Guillermo Mariño
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud, Paris 11, Villejuif, France
| | - Rafal Koziel
- Institute for Biomedical Aging Research (IBA), Austrian Academy of Sciences, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research (IBA), Austrian Academy of Sciences, Innsbruck, Austria
| | - Kai-Uwe Fröhlich
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Paris 5, Paris, France
| | - Frank Madeo
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
183
|
Shigi N. Biosynthesis and functions of sulfur modifications in tRNA. Front Genet 2014; 5:67. [PMID: 24765101 PMCID: PMC3980101 DOI: 10.3389/fgene.2014.00067] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific “modification enzymes” activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes.
Collapse
Affiliation(s)
- Naoki Shigi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tokyo, Japan
| |
Collapse
|
184
|
Liu B, Zhang Y, Zhang W. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene. PLoS One 2014; 9:e93289. [PMID: 24667527 PMCID: PMC3965559 DOI: 10.1371/journal.pone.0093289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC), can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic and molecular mechanisms associated with cold shock and acclimation at low temperature.
Collapse
Affiliation(s)
- Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
185
|
Liu Y, Long F, Wang L, Söll D, Whitman WB. The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis. FEBS Lett 2014; 588:873-7. [PMID: 24530533 DOI: 10.1016/j.febslet.2014.01.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 11/16/2022]
Abstract
Thiolation of carbon-2 of uridine located in the first position of the anticodons of tRNAUUG(Gln), tRNAUUC(Glu), and tRNAUUU(Lys) is a conserved RNA modification event requiring the 2-thiouridine synthetase Ncs6/Ctu1 in archaea and eukaryotes. Ncs6/Ctu1 activates uridine by adenylation, but its role in sulfur transfer is unclear. Here we show that Mmp1356, the Ncs6/Ctu1 homolog in the archaeon Methanococcus maripaludis, forms a persulfide enzyme adduct with an active site cysteine; this suggests that Mmp1356 directly participates in sulfur transfer as a persulfide carrier. Transposon mutagenesis shows that Mmp1356 is likely to be an essential protein.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - Feng Long
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Liangliang Wang
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| |
Collapse
|
186
|
Breitenbach M, Rinnerthaler M, Hartl J, Stincone A, Vowinckel J, Breitenbach-Koller H, Ralser M. Mitochondria in ageing: there is metabolism beyond the ROS. FEMS Yeast Res 2014; 14:198-212. [PMID: 24373480 DOI: 10.1111/1567-1364.12134] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are responsible for a series of metabolic functions. Superoxide leakage from the respiratory chain and the resulting cascade of reactive oxygen species-induced damage, as well as mitochondrial metabolism in programmed cell death, have been intensively studied during ageing in single-cellular and higher organisms. Changes in mitochondrial physiology and metabolism resulting in ROS are thus considered to be hallmarks of ageing. In this review, we address 'other' metabolic activities of mitochondria, carbon metabolism (the TCA cycle and related underground metabolism), the synthesis of Fe/S clusters and the metabolic consequences of mitophagy. These important mitochondrial activities are hitherto less well-studied in the context of cellular and organismic ageing. In budding yeast, they strongly influence replicative, chronological and hibernating lifespan, connecting the diverse ageing phenotypes studied in this single-cellular model organism. Moreover, there is evidence that similar processes equally contribute to ageing of higher organisms as well. In this scenario, increasing loss of metabolic integrity would be one driving force that contributes to the ageing process. Understanding mitochondrial metabolism may thus be required for achieving a unifying theory of eukaryotic ageing.
Collapse
|
187
|
Abstract
The editorial staff and distinguished scientists in the field of cell signaling nominated diverse research as advances for 2013. Breakthroughs in understanding how spatial and temporal signals control cellular behavior ranged from filtering high-frequency stimuli to interpreting circadian inputs. This year's nominations also highlight the importance of understanding cell signaling in the context of physiology and disease, such as links between the nervous system and cancer. Furthermore, the application of new techniques to study cell signaling--such as optogenetics, DNA editing with CRISPR-Cas9, and sequencing untranslated regions of transcripts--continues to expand the realm and impact of signaling research.
Collapse
Affiliation(s)
- Jason D Berndt
- 1Associate Editor of Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
| | | |
Collapse
|
188
|
Liu B, Qian SB. Translational reprogramming in cellular stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:301-15. [PMID: 24375939 DOI: 10.1002/wrna.1212] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 01/19/2023]
Abstract
Cell survival in changing environments requires appropriate regulation of gene expression, including translational control. Multiple stress signaling pathways converge on several key translation factors, such as eIF4F and eIF2, and rapidly modulate messenger RNA (mRNA) translation at both the initiation and the elongation stages. Repression of global protein synthesis is often accompanied with selective translation of mRNAs encoding proteins that are vital for cell survival and stress recovery. The past decade has seen significant progress in our understanding of translational reprogramming in part due to the development of technologies that allow the dissection of the interplay between mRNA elements and corresponding binding proteins. Recent genome-wide studies using ribosome profiling have revealed unprecedented proteome complexity and flexibility through alternative translation, raising intriguing questions about stress-induced translational reprogramming. Many surprises emerged from these studies, including wide-spread alternative translation initiation, ribosome pausing during elongation, and reversible modification of mRNAs. Elucidation of the regulatory mechanisms underlying translational reprogramming will ultimately lead to the development of novel therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Botao Liu
- Graduate Field of Genetics, Genomics, and Development, Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
189
|
Sutter BM, Wu X, Laxman S, Tu BP. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 2013; 154:403-15. [PMID: 23870128 DOI: 10.1016/j.cell.2013.06.041] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 04/26/2013] [Accepted: 06/24/2013] [Indexed: 11/24/2022]
Abstract
Autophagy is a process of cellular self-digestion induced by various forms of starvation. Although nitrogen deficit is a common trigger, some yeast cells induce autophagy upon switch from a rich to minimal media without nitrogen starvation. We show that the amino acid methionine is sufficient to inhibit such non-nitrogen-starvation (NNS)-induced autophagy. Methionine boosts synthesis of the methyl donor, S-adenosylmethionine (SAM). SAM inhibits autophagy and promotes growth through the action of the methyltransferase Ppm1p, which modifies the catalytic subunit of PP2A in tune with SAM levels. Methylated PP2A promotes dephosphorylation of Npr2p, a component of a conserved complex that regulates NNS autophagy and other growth-related processes. Thus, methionine and SAM levels represent a critical gauge of amino acid availability that is sensed via the methylation of PP2A to reciprocally regulate cell growth and autophagy.
Collapse
Affiliation(s)
- Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | | | | | | |
Collapse
|
190
|
Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome. Mol Cell Biol 2013; 33:4241-54. [PMID: 23979602 DOI: 10.1128/mcb.00785-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis.
Collapse
|