151
|
Valenzuela N, Fan Q, Fa'ak F, Soibam B, Nagandla H, Liu Y, Schwartz RJ, McConnell BK, Stewart MD. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis. Dis Model Mech 2016; 9:335-45. [PMID: 26935106 PMCID: PMC4833330 DOI: 10.1242/dmm.022889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Qiying Fan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Faisal Fa'ak
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
152
|
A Molecular Prospective for HIRA Complex Assembly and H3.3-Specific Histone Chaperone Function. J Mol Biol 2016; 429:1924-1933. [PMID: 27871933 DOI: 10.1016/j.jmb.2016.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Incorporation of variant histone sequences, in addition to post-translational modification of histones, serves to modulate the chromatin environment. Different histone chaperone proteins mediate the storage and chromatin deposition of variant histones. Although the two non-centromeric histone H3 variants, H3.1 and H3.3, differ by only 5 aa, replacement of histone H3.1 with H3.3 can modulate the transcription for highly expressed and developmentally required genes, lead to the formation of repressive heterochromatin, or aid in DNA and chromatin repair. The human histone cell cycle regulator (HIRA) complex composed of HIRA, ubinuclein-1, CABIN1, and transiently anti-silencing function 1, forms one of the two complexes that bind and deposit H3.3/H4 into chromatin. A number of recent biochemical and structural studies have revealed important details underlying how these proteins assemble and function together as a multiprotein H3.3-specific histone chaperone complex. Here, we present a review of existing data and present a new model for the assembly of the HIRA complex and for the HIRA-mediated incorporation of H3.3/H4 into chromatin.
Collapse
|
153
|
Steurer B, Marteijn JA. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. J Mol Biol 2016; 429:3146-3155. [PMID: 27851891 DOI: 10.1016/j.jmb.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
154
|
Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 2016; 7:12914. [PMID: 27694942 PMCID: PMC5477500 DOI: 10.1038/ncomms12914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Although several somatic single nucleotide variations in histone H3.3 have been investigated as cancer drivers, other types of aberration have not been well studied. Here, we demonstrate that overexpression of H3F3A, encoding H3.3, is associated with lung cancer progression and promotes lung cancer cell migration by activating metastasis-related genes. H3.3 globally activates gene expression through the occupation of intronic regions in lung cancer cells. Moreover, H3.3 binding regions show characteristics of regulatory DNA elements. We show that H3.3 is deposited at a specific intronic region of GPR87, where it modifies the chromatin status and directly activates GPR87 transcription. The expression levels of H3F3A and GPR87, either alone or in combination, are robust prognostic markers for early-stage lung cancer, and may indicate potential for the development of treatments involving GPR87 antagonists. In summary, our results demonstrate that intronic regulation by H3F3A may be a target for the development of novel therapeutic strategies. Histone variants act as transcriptional activators and repressors and have been linked to cancer progression. Park and Choi et al. show that the histone H3.3 overexpression is associated with early-stage lung cancer, and promotes cancer cell migration by upregulating a G-protein-coupled receptor.
Collapse
|
155
|
BMI1-UBR5 axis regulates transcriptional repression at damaged chromatin. Proc Natl Acad Sci U S A 2016; 113:11243-11248. [PMID: 27647897 DOI: 10.1073/pnas.1610735113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BMI1 is a component of the Polycomb Repressive Complex 1 (PRC1), which plays a key role in maintaining epigenetic silencing during development. BMI1 also participates in gene silencing during DNA damage response, but the precise downstream function of BMI1 in gene silencing is unclear. Here we identified the UBR5 E3 ligase as a downstream factor of BMI1. We found that UBR5 forms damage-inducible nuclear foci in a manner dependent on the PRC1 components BMI1, RNF1 (RING1a), and RNF2 (RING1b). Whereas transcription is repressed at UV-induced lesions on chromatin, depletion of the PRC1 members or UBR5 alone derepressed transcription elongation at these sites, suggesting that UBR5 functions in a linear pathway with PRC1 in inducing gene silencing at lesions. Mass spectrometry (MS) analysis revealed that UBR5 associates with BMI1 as well as FACT components SPT16 and SSRP1. We found that UBR5 localizes to the UV-induced lesions along with SPT16. We show that UBR5 ubiquitinates SPT16, and depletion of UBR5 or BMI1 leads to an enlargement of SPT16 foci size at UV lesions, suggesting that UBR5 and BMI1 repress SPT16 enrichment at the damaged sites. Consistently, depletion of the FACT components effectively reversed the transcriptional derepression incurred in the UBR5 and BMI1 KO cells. Finally, UBR5 and BMI1 KO cells are hypersensitive to UV, which supports the notion that faulty RNA synthesis at damaged sites is harmful to the cell fitness. Altogether, these results suggest that BMI1 and UBR5 repress the polymerase II (Pol II)-mediated transcription at damaged sites, by negatively regulating the FACT-dependent Pol II elongation.
Collapse
|
156
|
Adam S, Dabin J, Chevallier O, Leroy O, Baldeyron C, Corpet A, Lomonte P, Renaud O, Almouzni G, Polo SE. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage. Mol Cell 2016; 64:65-78. [PMID: 27642047 PMCID: PMC5065526 DOI: 10.1016/j.molcel.2016.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/20/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Parental H3 histones redistribute to the periphery of UVC-damaged regions The redistribution involves histone mobilization on chromatin and chromatin opening Parental histones recover massively during repair progression Parental histone dynamics may help coordinate DNA repair with epigenome integrity
Collapse
Affiliation(s)
- Salomé Adam
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, F-75013 Paris, France; Laboratory of Nuclear Dynamics, UMR3664 CNRS, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Juliette Dabin
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, F-75013 Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, F-75013 Paris, France
| | - Olivier Leroy
- Plateforme Imagerie Cellulaire et Tissulaire-Infrastructure en Biologie Santé et Agronomie, UMR3215 CNRS/U934 INSERM, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Céline Baldeyron
- Laboratory of Nuclear Dynamics, UMR3664 CNRS, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Armelle Corpet
- Team Chromatin Assembly, Nuclear Domains, Virus, Institut NeuroMyoGène, LabEx DEVweCAN, Université Claude Bernard Lyon 1, UMR5310 CNRS/U1217 INSERM, F-69100 Lyon, France
| | - Patrick Lomonte
- Team Chromatin Assembly, Nuclear Domains, Virus, Institut NeuroMyoGène, LabEx DEVweCAN, Université Claude Bernard Lyon 1, UMR5310 CNRS/U1217 INSERM, F-69100 Lyon, France
| | - Olivier Renaud
- Plateforme Imagerie Cellulaire et Tissulaire-Infrastructure en Biologie Santé et Agronomie, UMR3215 CNRS/U934 INSERM, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Geneviève Almouzni
- Laboratory of Nuclear Dynamics, UMR3664 CNRS, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Sophie E Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, F-75013 Paris, France.
| |
Collapse
|
157
|
Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med 2016; 48:e252. [PMID: 27515126 PMCID: PMC5007640 DOI: 10.1038/emm.2016.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis.
Collapse
|
158
|
PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining. Mol Cell 2016; 61:547-562. [PMID: 26895424 PMCID: PMC4769320 DOI: 10.1016/j.molcel.2016.01.019] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 01/29/2023]
Abstract
The response to DNA double-strand breaks (DSBs) requires alterations in chromatin structure to promote the assembly of repair complexes on broken chromosomes. Non-homologous end-joining (NHEJ) is the dominant DSB repair pathway in human cells, but our understanding of how it operates in chromatin is limited. Here, we define a mechanism that plays a crucial role in regulating NHEJ in chromatin. This mechanism is initiated by DNA damage-associated poly(ADP-ribose) polymerase 1 (PARP1), which recruits the chromatin remodeler CHD2 through a poly(ADP-ribose)-binding domain. CHD2 in turn triggers rapid chromatin expansion and the deposition of histone variant H3.3 at sites of DNA damage. Importantly, we find that PARP1, CHD2, and H3.3 regulate the assembly of NHEJ complexes at broken chromosomes to promote efficient DNA repair. Together, these findings reveal a PARP1-dependent process that couples ATP-dependent chromatin remodeling with histone variant deposition at DSBs to facilitate NHEJ and safeguard genomic stability. PARP1 recruits the chromatin remodeler CHD2 to DNA damage CHD2 promotes chromatin expansion and H3.3 deposition at DNA breaks CHD2 promotes the assembly of NHEJ repair complexes at DNA breaks PARP1 drives CHD2- and H3.3-dependent DNA repair by NHEJ
Collapse
|
159
|
Li X, Tyler JK. Nucleosome disassembly during human non-homologous end joining followed by concerted HIRA- and CAF-1-dependent reassembly. eLife 2016; 5. [PMID: 27269284 PMCID: PMC4915809 DOI: 10.7554/elife.15129] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
The cell achieves DNA double-strand break (DSB) repair in the context of chromatin structure. However, the mechanisms used to expose DSBs to the repair machinery and to restore the chromatin organization after repair remain elusive. Here we show that induction of a DSB in human cells causes local nucleosome disassembly, apparently independently from DNA end resection. This efficient removal of histone H3 from the genome during non-homologous end joining was promoted by both ATM and the ATP-dependent nucleosome remodeler INO80. Chromatin reassembly during DSB repair was dependent on the HIRA histone chaperone that is specific to the replication-independent histone variant H3.3 and on CAF-1 that is specific to the replication-dependent canonical histones H3.1/H3.2. Our data suggest that the epigenetic information is re-established after DSB repair by the concerted and interdependent action of replication-independent and replication-dependent chromatin assembly pathways. DOI:http://dx.doi.org/10.7554/eLife.15129.001
Collapse
Affiliation(s)
- Xuan Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| |
Collapse
|
160
|
Abstract
Organism viability relies on the stable maintenance of specific chromatin landscapes, established during development, that shape cell functions and identities by driving distinct gene expression programs. Yet epigenome maintenance is challenged during transcription, replication, and repair of DNA damage, all of which elicit dynamic changes in chromatin organization. Here, we review recent advances that have shed light on the specialized mechanisms contributing to the restoration of epigenome structure and function after DNA damage in the mammalian cell nucleus. By drawing a parallel with epigenome maintenance during replication, we explore emerging concepts and highlight open issues in this rapidly growing field. In particular, we present our current knowledge of molecular players that support the coordinated maintenance of genome and epigenome integrity in response to DNA damage, and we highlight how nuclear organization impacts genome stability. Finally, we discuss possible functional implications of epigenome plasticity in response to genotoxic stress.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenome Integrity Group, UMR 7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, 75013 Paris Cedex 13, France
| | - Anna Fortuny
- Epigenome Integrity Group, UMR 7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, 75013 Paris Cedex 13, France
| | - Sophie E Polo
- Epigenome Integrity Group, UMR 7216 CNRS, Paris Diderot University, Sorbonne Paris Cité, 75013 Paris Cedex 13, France.
| |
Collapse
|
161
|
Clément C, Vassias I, Ray-Gallet D, Almouzni G. Functional Characterization of Histone Chaperones Using SNAP-Tag-Based Imaging to Assess De Novo Histone Deposition. Methods Enzymol 2016; 573:97-117. [PMID: 27372750 DOI: 10.1016/bs.mie.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone chaperones-key actors in the dynamic organization of chromatin-interact with the various histone variants to ensure their transfer in and out of chromatin. In vitro chromatin assembly assays and isolation of protein complexes using tagged histone variants provided first clues concerning their binding specificities and mode of action. Here, we describe an in vivo method using SNAP-tag-based imaging to assess the de novo deposition of histones and the role of histone chaperones. This method exploits cells expressing SNAP-tagged histones combined with individual cell imaging to visualize directly de novo histone deposition in vivo. We show how, by combining this method with siRNA-based depletion, we could assess the function of two distinct histone chaperones. For this, we provide the details of the method as applied in two examples to characterize the function of the histone chaperones CAF-1 and HIRA. In both cases, we document the impact of their depletion on the de novo deposition of the histone variants H3.1 and H3.3, first in a normal context and second in response to DNA damage. We discuss how this cellular assay offers means to define in a systematic manner the function of any chosen chaperone with respect to the deposition of a given histone variant.
Collapse
Affiliation(s)
- C Clément
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - I Vassias
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - D Ray-Gallet
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - G Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France.
| |
Collapse
|
162
|
Ribeyre C, Zellweger R, Chauvin M, Bec N, Larroque C, Lopes M, Constantinou A. Nascent DNA Proteomics Reveals a Chromatin Remodeler Required for Topoisomerase I Loading at Replication Forks. Cell Rep 2016; 15:300-9. [PMID: 27050524 DOI: 10.1016/j.celrep.2016.03.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/18/2016] [Accepted: 03/06/2016] [Indexed: 11/28/2022] Open
Abstract
During transcription and DNA replication, the DNA template is overwound ahead of RNA and DNA polymerases and relaxed by DNA topoisomerases. Inhibitors of topoisomerases are potent anti-cancer agents. Camptothecin traps topoisomerase I on DNA and exerts preferential cytotoxicity toward cancer cells by way of its interference with the progression of replication forks. Starting with an unbiased proteomic analysis, we find that the chromatin remodeling complex BAZ1B-SMARCA5 accumulates near replication forks in camptothecin-exposed cells. We report that BAZ1B associates with topoisomerase I and facilitates its access to replication forks. Single-molecule analyses of replication structures show that BAZ1B contributes to replication interference by camptothecin. A lack of BAZ1B confers increased cellular tolerance of camptothecin. These findings reveal BAZ1B as a key facilitator of topoisomerase I function during DNA replication that affects the response of cancer cells to topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Cyril Ribeyre
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS) UPR 1142, University of Montpellier, 34396 Montpellier, France.
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Maeva Chauvin
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS) UPR 1142, University of Montpellier, 34396 Montpellier, France
| | - Nicole Bec
- Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, University of Montpellier, 34298 Montpellier, France
| | - Christian Larroque
- Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, University of Montpellier, 34298 Montpellier, France
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Angelos Constantinou
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS) UPR 1142, University of Montpellier, 34396 Montpellier, France.
| |
Collapse
|
163
|
Bruinsma W, van den Berg J, Aprelia M, Medema RH. Tousled-like kinase 2 regulates recovery from a DNA damage-induced G2 arrest. EMBO Rep 2016; 17:659-70. [PMID: 26931568 DOI: 10.15252/embr.201540767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/04/2016] [Indexed: 11/09/2022] Open
Abstract
In order to maintain a stable genome, cells need to detect and repair DNA damage before they complete the division cycle. To this end, cell cycle checkpoints prevent entry into the next cell cycle phase until the damage is fully repaired. Proper reentry into the cell cycle, known as checkpoint recovery, requires that a cell retains its original cell cycle state during the arrest. Here, we have identified Tousled-like kinase 2 (Tlk2) as an important regulator of recovery after DNA damage in G2. We show that Tlk2 regulates the Asf1A histone chaperone in response to DNA damage and that depletion of Asf1A also produces a recovery defect. Both Tlk2 and Asf1A are required to restore histone H3 incorporation into damaged chromatin. Failure to do so affects expression of pro-mitotic genes and compromises the cellular competence to recover from damage-induced cell cycle arrests. Our results demonstrate that Tlk2 promotes Asf1A function during the DNA damage response in G2 to allow for proper restoration of chromatin structure at the break site and subsequent recovery from the arrest.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen van den Berg
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Melinda Aprelia
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René H Medema
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
164
|
Zhang K, Gao Y, Li J, Burgess R, Han J, Liang H, Zhang Z, Liu Y. A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res 2016; 44:5083-94. [PMID: 26908650 PMCID: PMC4914081 DOI: 10.1093/nar/gkw106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/15/2016] [Indexed: 02/05/2023] Open
Abstract
Chromatin assembly factor 1 (CAF-1) is a histone H3–H4 chaperone that deposits newly synthesized histone (H3–H4)2 tetramers during replication-coupled nucleosome assembly. However, how CAF-1 functions in this process is not yet well understood. Here, we report the crystal structure of C terminus of Cac1 (Cac1C), a subunit of yeast CAF-1, and the function of this domain in stabilizing CAF-1 at replication forks. We show that Cac1C forms a winged helix domain (WHD) and binds DNA in a sequence-independent manner. Mutations in Cac1C that abolish DNA binding result in defects in transcriptional silencing and increased sensitivity to DNA damaging agents, and these defects are exacerbated when combined with Cac1 mutations deficient in PCNA binding. Similar phenotypes are observed for corresponding mutations in mouse CAF-1. These results reveal a mechanism conserved in eukaryotic cells whereby the ability of CAF-1 to bind DNA is important for its association with the DNA replication forks and subsequent nucleosome assembly.
Collapse
Affiliation(s)
- Kuo Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jingjing Li
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Rebecca Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Division of Abdominal Cancer, West China Hospital, Sichuan University, and National Collaborative innovation Center for Biotherapy, Chengdu 610041, China
| | - Huanhuan Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yingfang Liu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
165
|
Histone Variant H3.3: A versatile H3 variant in health and in disease. SCIENCE CHINA-LIFE SCIENCES 2016; 59:245-56. [DOI: 10.1007/s11427-016-5006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 01/24/2023]
|
166
|
Solarczyk KJ, Kordon M, Berniak K, Dobrucki JW. Two stages of XRCC1 recruitment and two classes of XRCC1 foci formed in response to low level DNA damage induced by visible light, or stress triggered by heat shock. DNA Repair (Amst) 2016; 37:12-21. [PMID: 26630398 DOI: 10.1016/j.dnarep.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 12/18/2022]
Abstract
Induction of local photosensitised DNA damage has been used to study recruitment of repair factors, spatial organisation and subsequent stages of the repair processes. However, the damage induced by a focused laser beam interacting with a photosensitiser may not fully reflect the types of damage and repair encountered in cells of an animal under typical conditions in vivo. We report on two characteristic stages of recruitment of XRCC1 (a protein engaged in BER and SSB repair pathways), in response to low level DNA damage induced by visible light. We demonstrate that, when just a few DNA breaks are induced in a small region of the nucleus, the recruited XRCC1 is initially distributed uniformly throughout this region, and rearranges into several small stationary foci within minutes. In contrast, when heavy damage of various types (including oxidative damage) is induced in cells pre-sensitized with a DNA-binding drug ethidium bromide, XRCC1 is also recruited but fails to rearrange from the stage of the uniform distribution to the stage of several small foci, indicating that this heavy damage interferes with the progress and completion of the repair processes. We hypothesize that that first stage may reflect recruitment of XRCC1 to poly(ADP-ribose) moieties in the region surrounding the single-strand break, while the second-binding directly to the DNA lesions. We also show that moderate damage or stress induces formation of two types of XRCC1-containing foci differing in their mobility. A large subset of DNA damage-induced XRCC1 foci is associated with a major component of PML nuclear bodies--the Sp100 protein.
Collapse
Affiliation(s)
- Kamil J Solarczyk
- Division of Cell Biophysics Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Kordon
- Division of Cell Biophysics Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Krzysztof Berniak
- Division of Cell Biophysics Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Jurek W Dobrucki
- Division of Cell Biophysics Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University ul. Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
167
|
Pradhan SK, Su T, Yen L, Jacquet K, Huang C, Côté J, Kurdistani SK, Carey MF. EP400 Deposits H3.3 into Promoters and Enhancers during Gene Activation. Mol Cell 2015; 61:27-38. [PMID: 26669263 DOI: 10.1016/j.molcel.2015.10.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Gene activation in metazoans is accompanied by the presence of histone variants H2AZ and H3.3 within promoters and enhancers. It is not known, however, what protein deposits H3.3 into chromatin or whether variant chromatin plays a direct role in gene activation. Here we show that chromatin containing acetylated H2AZ and H3.3 stimulates transcription in vitro. Analysis of the Pol II pre-initiation complex on immobilized chromatin templates revealed that the E1A binding protein p400 (EP400) was bound preferentially to and required for transcription stimulation by acetylated double-variant chromatin. EP400 also stimulated H2AZ/H3.3 deposition into promoters and enhancers and influenced transcription in vivo at a step downstream of the Mediator complex. EP400 efficiently exchanged recombinant histones H2A and H3.1 with H2AZ and H3.3, respectively, in a chromatin- and ATP-stimulated manner in vitro. Our data reveal that EP400 deposits H3.3 into chromatin alongside H2AZ and contributes to gene regulation after PIC assembly.
Collapse
Affiliation(s)
- Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Linda Yen
- The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA
| | - Karine Jacquet
- Laval University Cancer Research Center, CHU de Québec Research Center-Oncology, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC G1R 2J6, Canada
| | - Chengyang Huang
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec Research Center-Oncology, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC G1R 2J6, Canada
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA; The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA; The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
168
|
|
169
|
Nashun B, Hill PWS, Smallwood SA, Dharmalingam G, Amouroux R, Clark SJ, Sharma V, Ndjetehe E, Pelczar P, Festenstein RJ, Kelsey G, Hajkova P. Continuous Histone Replacement by Hira Is Essential for Normal Transcriptional Regulation and De Novo DNA Methylation during Mouse Oogenesis. Mol Cell 2015; 60:611-25. [PMID: 26549683 PMCID: PMC4672152 DOI: 10.1016/j.molcel.2015.10.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/07/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023]
Abstract
The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.
Collapse
Affiliation(s)
- Buhe Nashun
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Peter W S Hill
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | | | - Gopuraja Dharmalingam
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Rachel Amouroux
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Stephen J Clark
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Vineet Sharma
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK; Department of Medicine, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Elodie Ndjetehe
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Pawel Pelczar
- Transgenic and Reproductive Techniques Laboratory, Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | - Richard J Festenstein
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK; Department of Medicine, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB22 3AT, UK
| | - Petra Hajkova
- Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
170
|
Mattiroli F, D'Arcy S, Luger K. The right place at the right time: chaperoning core histone variants. EMBO Rep 2015; 16:1454-66. [PMID: 26459557 DOI: 10.15252/embr.201540840] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Sheena D'Arcy
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
171
|
Abstract
Eukaryotic genomes are packaged into chromatin, which is the physiological substrate for all DNA transactions, including DNA damage and repair. Chromatin organization imposes major constraints on DNA damage repair and thus undergoes critical rearrangements during the repair process. These rearrangements have been integrated into the "access-repair-restore" (ARR) model, which provides a molecular framework for chromatin dynamics in response to DNA damage. Here, we take a historical perspective on the elaboration of this model and describe the molecular players involved in damaged chromatin reorganization in human cells. In particular, we present our current knowledge of chromatin assembly coupled to DNA damage repair, focusing on the role of histone variants and their dedicated chaperones. Finally, we discuss the impact of chromatin rearrangements after DNA damage on chromatin function and epigenome maintenance.
Collapse
|
172
|
Udugama M, M Chang FT, Chan FL, Tang MC, Pickett HA, R McGhie JD, Mayne L, Collas P, Mann JR, Wong LH. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res 2015; 43:10227-37. [PMID: 26304540 PMCID: PMC4666390 DOI: 10.1093/nar/gkv847] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/11/2015] [Indexed: 11/15/2022] Open
Abstract
In addition to being a hallmark at active genes, histone variant H3.3 is deposited by ATRX at repressive chromatin regions, including the telomeres. It is unclear how H3.3 promotes heterochromatin assembly. We show that H3.3 is targeted for K9 trimethylation to establish a heterochromatic state enriched in trimethylated H3.3K9 at telomeres. In H3f3a−/− and H3f3b−/− mouse embryonic stem cells (ESCs), H3.3 deficiency results in reduced levels of H3K9me3, H4K20me3 and ATRX at telomeres. The H3f3b−/− cells show increased levels of telomeric damage and sister chromatid exchange (t-SCE) activity when telomeres are compromised by treatment with a G-quadruplex (G4) DNA binding ligand or by ASF1 depletion. Overexpression of wild-type H3.3 (but not a H3.3K9 mutant) in H3f3b−/− cells increases H3K9 trimethylation level at telomeres and represses t-SCE activity induced by a G4 ligand. This study demonstrates the importance of H3.3K9 trimethylation in heterochromatin formation at telomeres. It provides insights into H3.3 function in maintaining integrity of mammalian constitutive heterochromatin, adding to its role in mediating transcription memory in the genome.
Collapse
Affiliation(s)
- Maheshi Udugama
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Fiona T M Chang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - F Lyn Chan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle C Tang
- Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - James D R McGhie
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lynne Mayne
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Jeffrey R Mann
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
173
|
Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c. Proc Natl Acad Sci U S A 2015. [PMID: 26216969 DOI: 10.1073/pnas.1508040112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity.
Collapse
|
174
|
Nguyen PK, Lee WH, Li YF, Hong WX, Hu S, Chan C, Liang G, Nguyen I, Ong SG, Churko J, Wang J, Altman RB, Fleischmann D, Wu JC. Assessment of the Radiation Effects of Cardiac CT Angiography Using Protein and Genetic Biomarkers. JACC Cardiovasc Imaging 2015. [PMID: 26210695 DOI: 10.1016/j.jcmg.2015.04.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate whether radiation exposure from cardiac computed tomographic angiography (CTA) is associated with deoxyribonucleic acid (DNA) damage and whether damage leads to programmed cell death and activation of genes involved in apoptosis and DNA repair. BACKGROUND Exposure to radiation from medical imaging has become a public health concern, but whether it causes significant cell damage remains unclear. METHODS We conducted a prospective cohort study in 67 patients undergoing cardiac CTA between January 2012 and December 2013 in 2 U.S. medical centers. Median blood radiation exposure was estimated using phantom dosimetry. Biomarkers of DNA damage and apoptosis were measured by flow cytometry, whole genome sequencing, and single cell polymerase chain reaction. RESULTS The median dose length product was 1,535.3 mGy·cm (969.7 to 2,674.0 mGy·cm). The median radiation dose to the blood was 29.8 mSv (18.8 to 48.8 mSv). Median DNA damage increased 3.39% (1.29% to 8.04%, p < 0.0001) and median apoptosis increased 3.1-fold (interquartile range [IQR]: 1.4- to 5.1-fold, p < 0.0001) post-radiation. Whole genome sequencing revealed changes in the expression of 39 transcription factors involved in the regulation of apoptosis, cell cycle, and DNA repair. Genes involved in mediating apoptosis and DNA repair were significantly changed post-radiation, including DDB2 (1.9-fold [IQR: 1.5- to 3.0-fold], p < 0.001), XRCC4 (3.0-fold [IQR: 1.1- to 5.4-fold], p = 0.005), and BAX (1.6-fold [IQR: 0.9- to 2.6-fold], p < 0.001). Exposure to radiation was associated with DNA damage (odds ratio [OR]: 1.8 [1.2 to 2.6], p = 0.003). DNA damage was associated with apoptosis (OR: 1.9 [1.2 to 5.1], p < 0.0001) and gene activation (OR: 2.8 [1.2 to 6.2], p = 0.002). CONCLUSIONS Patients exposed to >7.5 mSv of radiation from cardiac CTA had evidence of DNA damage, which was associated with programmed cell death and activation of genes involved in apoptosis and DNA repair.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Veterans Administration Palo Alto, Palo Alto, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| | - Won Hee Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Yong Fuga Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Shijun Hu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Charles Chan
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Grace Liang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
| | - Ivy Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Jared Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Jia Wang
- Environmental Health and Safety, Stanford University School of Medicine, Stanford, California
| | - Russ B Altman
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Dominik Fleischmann
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California; Department of Radiology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
175
|
Abstract
Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes.
Collapse
|
176
|
Ricketts MD, Frederick B, Hoff H, Tang Y, Schultz DC, Singh Rai T, Grazia Vizioli M, Adams PD, Marmorstein R. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat Commun 2015; 6:7711. [PMID: 26159857 PMCID: PMC4510971 DOI: 10.1038/ncomms8711] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023] Open
Abstract
Histone chaperones bind specific histones to mediate their storage, eviction or deposition from/or into chromatin. The HIRA histone chaperone complex, composed of HIRA, ubinuclein-1 (UBN1) and CABIN1, cooperates with the histone chaperone ASF1a to mediate H3.3-specific binding and chromatin deposition. Here we demonstrate that the conserved UBN1 Hpc2-related domain (HRD) is a novel H3.3-specific-binding domain. Biochemical and biophysical studies show the UBN1-HRD preferentially binds H3.3/H4 over H3.1/H4. X-ray crystallographic and mutational studies reveal that conserved residues within the UBN1-HRD and H3.3 G90 as key determinants of UBN1–H3.3-binding specificity. Comparison of the structure with the unrelated H3.3-specific chaperone DAXX reveals nearly identical points of contact between the chaperone and histone in the proximity of H3.3 G90, although the mechanism for H3.3 G90 recognition appears to be distinct. This study points to UBN1 as the determinant of H3.3-specific binding and deposition by the HIRA complex. Ubinuclein-1 (UBN1) is a subunit of the HIRA histone chaperone complex that deposits histone H3.3 into chromatin. Here the authors use structural and biochemical studies to show that a conserved domain in UBN1 mediates H3.3-specific binding by the HIRA complex.
Collapse
Affiliation(s)
- M Daniel Ricketts
- 1] Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian Frederick
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Henry Hoff
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Yong Tang
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - David C Schultz
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Taranjit Singh Rai
- 1] Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK [2] Institute of Biomedical and Environmental Health Research, University of West of Scotland, Paisley PA1 2BE, UK
| | - Maria Grazia Vizioli
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK
| | - Peter D Adams
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK
| | - Ronen Marmorstein
- 1] Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
177
|
Clynes D, Jelinska C, Xella B, Ayyub H, Scott C, Mitson M, Taylor S, Higgs DR, Gibbons RJ. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun 2015; 6:7538. [PMID: 26143912 PMCID: PMC4501375 DOI: 10.1038/ncomms8538] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023] Open
Abstract
Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers. ATRX, a chromatin remodelling factor, is mutated in cancers that maintain telomere length by alternative lengthening of telomeres (ALT). Here, the authors show that ectopic expression of ATRX triggers telomere shortening, ALT suppression and reduced replication fork stalling.
Collapse
Affiliation(s)
- David Clynes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Clare Jelinska
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Barbara Xella
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helena Ayyub
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Caroline Scott
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthew Mitson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
178
|
Jang CW, Shibata Y, Starmer J, Yee D, Magnuson T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev 2015; 29:1377-92. [PMID: 26159997 PMCID: PMC4511213 DOI: 10.1101/gad.264150.115] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development.
Collapse
Affiliation(s)
- Chuan-Wei Jang
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Yoichiro Shibata
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Joshua Starmer
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Della Yee
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| |
Collapse
|
179
|
Saade E, Pirozhkova I, Aimbetov R, Lipinski M, Ogryzko V. Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis). Aging Cell 2015; 14:322-33. [PMID: 25720734 PMCID: PMC4406661 DOI: 10.1111/acel.12332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 12/22/2022] Open
Abstract
The H3.3 histone variant has been a subject of increasing interest in the field of chromatin studies due to its two distinguishing features. First, its incorporation into chromatin is replication independent unlike the replication-coupled deposition of its canonical counterparts H3.1/2. Second, H3.3 has been consistently associated with an active state of chromatin. In accordance, this histone variant should be expected to be causally involved in the regulation of gene expression, or more generally, its incorporation should have downstream consequences for the structure and function of chromatin. This, however, leads to an apparent paradox: In cells that slowly replicate in the organism, H3.3 will accumulate with time, opening the way to aberrant effects on heterochromatin. Here, we review the indications that H3.3 is expected both to be incorporated in the heterochromatin of slowly replicating cells and to retain its functional downstream effects. Implications for organismal aging are discussed.
Collapse
Affiliation(s)
- Evelyne Saade
- Faculty of Public Health Lebanese University LU Beirut Lebanon
| | - Iryna Pirozhkova
- Institute Gustave Roussy University Paris SUD 114, rue Edouard Vaillant Villejuif 94805France
| | - Rakhan Aimbetov
- Institute Gustave Roussy University Paris SUD 114, rue Edouard Vaillant Villejuif 94805France
| | - Marc Lipinski
- Institute Gustave Roussy University Paris SUD 114, rue Edouard Vaillant Villejuif 94805France
| | - Vasily Ogryzko
- Institute Gustave Roussy University Paris SUD 114, rue Edouard Vaillant Villejuif 94805France
| |
Collapse
|
180
|
Li W, Calder RB, Mar JC, Vijg J. Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles. Mutat Res 2015; 772:55-62. [PMID: 25733965 DOI: 10.1016/j.mrfmmm.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, great progress has been made in single cell genomics and transcriptomics. Here, we present an integrative method, termed single-cell transcriptogenomics (SCTG), in which whole exome sequencing and RNA-seq is performed concurrently on single cells. This methodology enables one to track germline and somatic variants directly from the genome to the transcriptome in individual cells. Mouse embryonic fibroblasts were treated with the powerful mutagen ethylnitrosourea (ENU) and subjected to SCTG. Interestingly, while germline variants were found to be transcribed in an allelically balanced fashion, a significantly different pattern of allelic exclusion was observed for ENU-mutant variants. These results suggest that the adverse effects of induced mutations, in contrast to germline variants, may be mitigated by allelically biased transcription. They also illustrate how SCTG can be instrumental in the direct assessment of phenotypic consequences of genomic variants.
Collapse
|
181
|
Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 2015; 522:240-244. [PMID: 25938714 PMCID: PMC4509593 DOI: 10.1038/nature14345] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements comprise roughly 40% of mammalian genomes. They have an active role in genetic variation, adaptation and evolution through the duplication or deletion of genes or their regulatory elements, and transposable elements themselves can act as alternative promoters for nearby genes, resulting in non-canonical regulation of transcription. However, transposable element activity can lead to detrimental genome instability, and hosts have evolved mechanisms to silence transposable element mobility appropriately. Recent studies have demonstrated that a subset of transposable elements, endogenous retroviral elements (ERVs) containing long terminal repeats (LTRs), are silenced through trimethylation of histone H3 on lysine 9 (H3K9me3) by ESET (also known as SETDB1 or KMT1E) and a co-repressor complex containing KRAB-associated protein 1 (KAP1; also known as TRIM28) in mouse embryonic stem cells. Here we show that the replacement histone variant H3.3 is enriched at class I and class II ERVs, notably those of the early transposon (ETn)/MusD family and intracisternal A-type particles (IAPs). Deposition at a subset of these elements is dependent upon the H3.3 chaperone complex containing α-thalassaemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX). We demonstrate that recruitment of DAXX, H3.3 and KAP1 to ERVs is co-dependent and occurs upstream of ESET, linking H3.3 to ERV-associated H3K9me3. Importantly, H3K9me3 is reduced at ERVs upon H3.3 deletion, resulting in derepression and dysregulation of adjacent, endogenous genes, along with increased retrotransposition of IAPs. Our study identifies a unique heterochromatin state marked by the presence of both H3.3 and H3K9me3, and establishes an important role for H3.3 in control of ERV retrotransposition in embryonic stem cells.
Collapse
|
182
|
Brachet E, Béneut C, Serrentino ME, Borde V. The CAF-1 and Hir Histone Chaperones Associate with Sites of Meiotic Double-Strand Breaks in Budding Yeast. PLoS One 2015; 10:e0125965. [PMID: 25938567 PMCID: PMC4418760 DOI: 10.1371/journal.pone.0125965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
In the meiotic prophase, programmed DNA double-strand breaks (DSB) are introduced along chromosomes to promote homolog pairing and recombination. Although meiotic DSBs usually occur in nucleosome-depleted, accessible regions of chromatin, their repair by homologous recombination takes place in a nucleosomal environment. Nucleosomes may represent an obstacle for the recombination machinery and their timely eviction and reincorporation into chromatin may influence the outcome of recombination, for instance by stabilizing recombination intermediates. Here we show in budding yeast that nucleosomes flanking a meiotic DSB are transiently lost during recombination, and that specific histone H3 chaperones, CAF-1 and Hir, are mobilized at meiotic DSBs. However, the absence of these chaperones has no effect on meiotic recombination, suggesting that timely histone reincorporation following their eviction has no influence on the recombination outcome, or that redundant pathways are activated. This study is the first example of the involvement of histone H3 chaperones at naturally occurring, developmentally programmed DNA double-strand breaks.
Collapse
Affiliation(s)
- Elsa Brachet
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 3664, Paris, France
| | - Claire Béneut
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 3664, Paris, France
| | | | - Valérie Borde
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 3664, Paris, France
- * E-mail:
| |
Collapse
|
183
|
Abstract
DNA damage poses a major threat to cell function and viability by compromising both genome and epigenome integrity. The DNA damage response indeed operates in the context of chromatin and relies on dynamic changes in chromatin organization. Here, we review the molecular bases of chromatin alterations in response to DNA damage, focusing on core histone mobilization in mammalian cells. Building on our current view of nucleosome dynamics in response to DNA damage, we highlight open challenges and avenues for future development. In particular, we discuss the different levels of regulation of chromatin plasticity during the DNA damage response and their potential impact on cell function and epigenome maintenance.
Collapse
|
184
|
Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 2015; 124:177-89. [PMID: 25773741 PMCID: PMC4446520 DOI: 10.1007/s00412-015-0510-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
Brain tumors are the most common solid tumors in children. Pediatric high-grade glioma (HGG) accounts for ∼8–12 % of these brain tumors and is a devastating disease as 70–90 % of patients die within 2 years of diagnosis. The failure to advance therapy for these children over the last 30 years is largely due to limited knowledge of the molecular basis for these tumors and a lack of disease models. Recently, sequencing of tumor cells revealed that histone H3 is frequently mutated in pediatric HGG, with up to 78 % of diffuse intrinsic pontine gliomas (DIPGs) carrying K27M and 36 % of non-brainstem gliomas carrying either K27M or G34R/V mutations. Although mutations in many chromatin modifiers have been identified in cancer, this was the first demonstration that histone mutations may be drivers of disease. Subsequent studies have identified high-frequency mutation of histone H3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Interestingly, the G34 mutations, the K36M mutations, and the majority of K27M mutations occur in genes encoding the replacement histone H3.3. Here, we review the peculiar characteristics of histone H3.3 and use this information as a backdrop to highlight current thinking about how the identified mutations may contribute to disease development.
Collapse
Affiliation(s)
- Satish Kallappagoudar
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | | | | | | |
Collapse
|
185
|
Gong F, Chiu LY, Cox B, Aymard F, Clouaire T, Leung JW, Cammarata M, Perez M, Agarwal P, Brodbelt JS, Legube G, Miller KM. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev 2015; 29:197-211. [PMID: 25593309 PMCID: PMC4298138 DOI: 10.1101/gad.252189.114] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gong et al. report that more than one-third of human bromodomain (BRD)-containing proteins change localization in response to DNA damage. They identified ZMYND8 as a novel DNA damage response factor that recruits the nucleosome remodeling and histone deacetylation (NuRD) complex to damaged chromatin to repress transcription and promote repair by homologous recombination. How chromatin shapes pathways that promote genome–epigenome integrity in response to DNA damage is an issue of crucial importance. We report that human bromodomain (BRD)-containing proteins, the primary “readers” of acetylated chromatin, are vital for the DNA damage response (DDR). We discovered that more than one-third of all human BRD proteins change localization in response to DNA damage. We identified ZMYND8 (zinc finger and MYND [myeloid, Nervy, and DEAF-1] domain containing 8) as a novel DDR factor that recruits the nucleosome remodeling and histone deacetylation (NuRD) complex to damaged chromatin. Our data define a transcription-associated DDR pathway mediated by ZMYND8 and the NuRD complex that targets DNA damage, including when it occurs within transcriptionally active chromatin, to repress transcription and promote repair by homologous recombination. Thus, our data identify human BRD proteins as key chromatin modulators of the DDR and provide novel insights into how DNA damage within actively transcribed regions requires chromatin-binding proteins to orchestrate the appropriate response in concordance with the damage-associated chromatin context.
Collapse
Affiliation(s)
- Fade Gong
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Li-Ya Chiu
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ben Cox
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - François Aymard
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse/Université Paul Sabatier, 31062 Toulouse, France. Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France
| | - Thomas Clouaire
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse/Université Paul Sabatier, 31062 Toulouse, France. Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France
| | - Justin W Leung
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael Cammarata
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mercedes Perez
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Poonam Agarwal
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Gaëlle Legube
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse/Université Paul Sabatier, 31062 Toulouse, France. Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France
| | - Kyle M Miller
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
186
|
Andrade-Lima LC, Veloso A, Paulsen MT, Menck CFM, Ljungman M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res 2015; 43:2744-56. [PMID: 25722371 PMCID: PMC4357734 DOI: 10.1093/nar/gkv148] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5′-3′ direction with slow recovery and TC-NER at the 3′ end of long genes. RNA synthesis resumed fully at the 3′-end of genes after a 24 h recovery in wild-type fibroblasts, but not in cells deficient in transcription-coupled nucleotide excision repair (TC-NER) or global genomic NER (GG-NER). Different transcription recovery profiles were found for individual genes but these differences did not fully correlate to differences in DNA repair of these genes. Our study gives the first genome-wide view of how UV-induced lesions affect transcription and how the recovery of RNA synthesis of large genes are particularly delayed by the apparent lack of resumption of transcription by arrested polymerases.
Collapse
Affiliation(s)
- Leonardo C Andrade-Lima
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Artur Veloso
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Carlos F M Menck
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mats Ljungman
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
187
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
188
|
Sharma AK, Bhattacharya S, Khan SA, Khade B, Gupta S. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells. Mutat Res 2015; 773:83-91. [PMID: 25847424 DOI: 10.1016/j.mrfmmm.2015.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.
Collapse
Affiliation(s)
- Ajit K Sharma
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Saikat Bhattacharya
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Shafqat A Khan
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India.
| |
Collapse
|
189
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
190
|
Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci 2015; 128:607-20. [PMID: 25609713 DOI: 10.1242/jcs.163766] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.
Collapse
Affiliation(s)
- Indra A Shaltiel
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenno Krenning
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wytse Bruinsma
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René H Medema
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
191
|
Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol 2015; 91:254-64. [PMID: 25534312 DOI: 10.1111/php.12406] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | | |
Collapse
|
192
|
RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 2015; 10:226-38. [PMID: 25578731 DOI: 10.1016/j.celrep.2014.12.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination regulates numerous cellular processes by generating a versatile communication system based on eight structurally and functionally different chains linked through distinct residues. Except for K48 and K63, the biological relevance of different linkages is largely unclear. Here, we show that RNF168 ubiquitin ligase promotes noncanonical K27-linked ubiquitination both in vivo and in vitro. We demonstrate that residue K27 of ubiquitin (UbK27) is required for RNF168-dependent chromatin ubiquitination, by targeting histones H2A/H2A.X, and that it is the major ubiquitin-based modification marking chromatin upon DNA damage. Indeed, UbK27 is strictly required for the proper activation of the DNA damage response (DDR) and is directly recognized by crucial DDR mediators, namely 53BP1, Rap80, RNF168, and RNF169. Mutation of UbK27 has dramatic consequences on DDR activation, preventing the recruitment of 53BP1 and BRCA1 to DDR foci. Similarly to the DDR, atypical ubiquitin chains could play unanticipated roles in other crucial ubiquitin-mediated biological processes.
Collapse
|
193
|
Yu Z, Liu J, Deng WM, Jiao R. Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cell Mol Life Sci 2015; 72:327-37. [PMID: 25292338 PMCID: PMC11114026 DOI: 10.1007/s00018-014-1748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
More and more studies have shown chromatin remodelers and histone modifiers play essential roles in regulating developmental patterns by organizing specific chromosomal architecture to establish programmed transcriptional profiles, with implications that histone chaperones execute a coordinating role in these processes. Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved three-subunit protein complex, was identified as a histone chaperone coupled with DNA replication and repair in cultured mammalian cells and yeasts. Interestingly, recent findings indicate CAF-1 may have important regulatory roles during development by interacting with specific transcription factors and epigenetic regulators. In this review, we focus on the essential roles of CAF-1 in regulating heterochromatin organization, asymmetric cell division, and specific signal transduction through epigenetic modulations of the chromatin. In the end, we aim at providing a current image of facets of CAF-1 as a histone chaperone to orchestrate cell proliferation and differentiation during multi-cellular organism development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295 USA
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| |
Collapse
|
194
|
Adam S, Dabin J, Bai SK, Polo SE. Imaging local deposition of newly synthesized histones in UVC-damaged chromatin. Methods Mol Biol 2015; 1288:337-47. [PMID: 25827889 DOI: 10.1007/978-1-4939-2474-5_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage not only jeopardizes genome integrity but also challenges the well-organized association of DNA with histone proteins into chromatin, which is key for regulating gene expression and cell functions. The extent to which the original chromatin structure is altered after repair of DNA lesions is thus a critical issue. Dissecting histone dynamics at sites of DNA damage has provided mechanistic insights into chromatin plasticity in response to genotoxic stress. Here, we present an experimental protocol for visualizing the deposition of newly synthesized histone H3 variants at sites of UVC damage in human cells that couples SNAP-tag based labeling of new histones with local UVC irradiation of cells through micropore filters.
Collapse
Affiliation(s)
- Salomé Adam
- Epigenetics and Cell Fate Centre, UMR7216 CNRS/Paris Diderot University, Bâtiment Lamarck (4ème étage) Case 7042, 35 rue Hélène Brion, Paris, 75205, France
| | | | | | | |
Collapse
|
195
|
Perez-Oliva AB, Lachaud C, Szyniarowski P, Muñoz I, Macartney T, Hickson I, Rouse J, Alessi DR. USP45 deubiquitylase controls ERCC1-XPF endonuclease-mediated DNA damage responses. EMBO J 2014; 34:326-43. [PMID: 25538220 PMCID: PMC4339120 DOI: 10.15252/embj.201489184] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reversible protein ubiquitylation plays important roles in various processes including DNA repair. Here, we identify the deubiquitylase USP45 as a critical DNA repair regulator. USP45 associates with ERCC1, a subunit of the DNA repair endonuclease XPF-ERCC1, via a short acidic motif outside of the USP45 catalytic domain. Wild-type USP45, but not a USP45 mutant defective in ERCC1 binding, efficiently deubiquitylates ERCC1 in vitro, and the levels of ubiquitylated ERCC1 are markedly enhanced in USP45 knockout cells. Cells lacking USP45 are hypersensitive specifically to UV irradiation and DNA interstrand cross-links, similar to cells lacking ERCC1. Furthermore, the repair of UV-induced DNA damage is markedly reduced in USP45-deficient cells. ERCC1 translocation to DNA damage-induced subnuclear foci is markedly impaired in USP45 knockout cells, possibly accounting for defective DNA repair. Finally, USP45 localises to sites of DNA damage in a manner dependent on its deubiquitylase activity, but independent of its ability to bind ERCC1-XPF. Together, these results establish USP45 as a new regulator of XPF-ERCC1 crucial for efficient DNA repair.
Collapse
Affiliation(s)
- Ana B Perez-Oliva
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Christophe Lachaud
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Piotr Szyniarowski
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Ivan Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Ian Hickson
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
196
|
Rai TS, Cole JJ, Nelson DM, Dikovskaya D, Faller WJ, Vizioli MG, Hewitt RN, Anannya O, McBryan T, Manoharan I, van Tuyn J, Morrice N, Pchelintsev NA, Ivanov A, Brock C, Drotar ME, Nixon C, Clark W, Sansom OJ, Anderson KI, King A, Blyth K, Adams PD. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes Dev 2014; 28:2712-25. [PMID: 25512559 PMCID: PMC4265675 DOI: 10.1101/gad.247528.114] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 11/04/2014] [Indexed: 01/06/2023]
Abstract
Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.
Collapse
Affiliation(s)
- Taranjit Singh Rai
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom; Institute of Biomedical and Environmental Health Research, University of West of Scotland, Paisley PA1 2BE, United Kingdom
| | - John J Cole
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - David M Nelson
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Dina Dikovskaya
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - William J Faller
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Maria Grazia Vizioli
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Rachael N Hewitt
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Orchi Anannya
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Tony McBryan
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Indrani Manoharan
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - John van Tuyn
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Nicholas Morrice
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Nikolay A Pchelintsev
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Andre Ivanov
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Claire Brock
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Mark E Drotar
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Colin Nixon
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - William Clark
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Ayala King
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Peter D Adams
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom;
| |
Collapse
|
197
|
Transcribing through the nucleosome. Trends Biochem Sci 2014; 39:577-86. [DOI: 10.1016/j.tibs.2014.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
|
198
|
Arimura Y, Shirayama K, Horikoshi N, Fujita R, Taguchi H, Kagawa W, Fukagawa T, Almouzni G, Kurumizaka H. Crystal structure and stable property of the cancer-associated heterotypic nucleosome containing CENP-A and H3.3. Sci Rep 2014; 4:7115. [PMID: 25408271 PMCID: PMC4236741 DOI: 10.1038/srep07115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
The centromere-specific histone H3 variant, CENP-A, is overexpressed in particular aggressive cancer cells, where it can be mislocalized ectopically in the form of heterotypic nucleosomes containing H3.3. In the present study, we report the crystal structure of the heterotypic CENP-A/H3.3 particle and reveal its “hybrid structure”, in which the physical characteristics of CENP-A and H3.3 are conserved independently within the same particle. The CENP-A/H3.3 nucleosome forms an unexpectedly stable structure as compared to the CENP-A nucleosome, and allows the binding of the essential centromeric protein, CENP-C, which is ectopically mislocalized in the chromosomes of CENP-A overexpressing cells.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazuyoshi Shirayama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Risa Fujita
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroyuki Taguchi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Kagawa
- 1] Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan [2] Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Geneviève Almouzni
- 1] Institut Curie, Centre de Recherche, Paris, F-75248 France [2] CNRS, UMR3664, Paris, F-75248 France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
199
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
200
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|