151
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
152
|
Wang B, Zhang J, Li Z, Grill WM, Peterchev AV, Goetz SM. Optimized monophasic pulses with equivalent electric field for rapid-rate transcranial magnetic stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/acd081. [PMID: 37100051 PMCID: PMC10464893 DOI: 10.1088/1741-2552/acd081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) with monophasic pulses achieves greater changes in neuronal excitability but requires higher energy and generates more coil heating than TMS with biphasic pulses, and this limits the use of monophasic pulses in rapid-rate protocols. We sought to design a stimulation waveform that retains the characteristics of monophasic TMS but significantly reduces coil heating, thereby enabling higher pulse rates and increased neuromodulation effectiveness.Approach.A two-step optimization method was developed that uses the temporal relationship between the electric field (E-field) and coil current waveforms. The model-free optimization step reduced the ohmic losses of the coil current and constrained the error of the E-field waveform compared to a template monophasic pulse, with pulse duration as a second constraint. The second, amplitude adjustment step scaled the candidate waveforms based on simulated neural activation to account for differences in stimulation thresholds. The optimized waveforms were implemented to validate the changes in coil heating.Main results.Depending on the pulse duration and E-field matching constraints, the optimized waveforms produced 12%-75% less heating than the original monophasic pulse. The reduction in coil heating was robust across a range of neural models. The changes in the measured ohmic losses of the optimized pulses compared to the original pulse agreed with numeric predictions.Significance.The first step of the optimization approach was independent of any potentially inaccurate or incorrect model and exhibited robust performance by avoiding the highly nonlinear behavior of neural responses, whereas neural simulations were only run once for amplitude scaling in the second step. This significantly reduced computational cost compared to iterative methods using large populations of candidate solutions and more importantly reduced the sensitivity to the choice of neural model. The reduced coil heating and power losses of the optimized pulses can enable rapid-rate monophasic TMS protocols.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jinshui Zhang
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Zhongxi Li
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Warren M. Grill
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, NC, USA
- Department of Neurobiology, School of Medicine, Duke University, NC, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, NC, USA
| | - Stefan M. Goetz
- Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, NC, USA
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, UK
| |
Collapse
|
153
|
Yang R, Vishwanathan A, Wu J, Kemnitz N, Ih D, Turner N, Lee K, Tartavull I, Silversmith WM, Jordan CS, David C, Bland D, Sterling A, Goldman MS, Aksay ERF, Seung HS. Cyclic structure with cellular precision in a vertebrate sensorimotor neural circuit. Curr Biol 2023; 33:2340-2349.e3. [PMID: 37236180 PMCID: PMC10419332 DOI: 10.1016/j.cub.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Neuronal wiring diagrams reconstructed by electron microscopy1,2,3,4,5 pose new questions about the organization of nervous systems following the time-honored tradition of cross-species comparisons.6,7 The C. elegans connectome has been conceptualized as a sensorimotor circuit that is approximately feedforward,8,9,10,11 starting from sensory neurons proceeding to interneurons and ending with motor neurons. Overrepresentation of a 3-cell motif often known as the "feedforward loop" has provided further evidence for feedforwardness.10,12 Here, we contrast with another sensorimotor wiring diagram that was recently reconstructed from a larval zebrafish brainstem.13 We show that the 3-cycle, another 3-cell motif, is highly overrepresented in the oculomotor module of this wiring diagram. This is a first for any neuronal wiring diagram reconstructed by electron microscopy, whether invertebrate12,14 or mammalian.15,16,17 The 3-cycle of cells is "aligned" with a 3-cycle of neuronal groups in a stochastic block model (SBM)18 of the oculomotor module. However, the cellular cycles exhibit more specificity than can be explained by the group cycles-recurrence to the same neuron is surprisingly common. Cyclic structure could be relevant for theories of oculomotor function that depend on recurrent connectivity. The cyclic structure coexists with the classic vestibulo-ocular reflex arc for horizontal eye movements,19 and could be relevant for recurrent network models of temporal integration by the oculomotor system.20,21.
Collapse
Affiliation(s)
- Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Computer Science Department, Princeton University, Princeton, NJ 08540, USA
| | - Ashwin Vishwanathan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Nicholas Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Computer Science Department, Princeton University, Princeton, NJ 08540, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ignacio Tartavull
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Celia David
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mark S Goldman
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
| | - Emre R F Aksay
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Computer Science Department, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
154
|
Fossati G, Kiss-Bodolay D, Prados J, Chéreau R, Husi E, Cadilhac C, Gomez L, Silva BA, Dayer A, Holtmaat A. Bimodal modulation of L1 interneuron activity in anterior cingulate cortex during fear conditioning. Front Neural Circuits 2023; 17:1138358. [PMID: 37334059 PMCID: PMC10272719 DOI: 10.3389/fncir.2023.1138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.
Collapse
Affiliation(s)
- Giuliana Fossati
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniel Kiss-Bodolay
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ronan Chéreau
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Cadilhac
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Lucia Gomez
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Bianca A. Silva
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy
| | - Alexandre Dayer
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
155
|
Ren X, Bok I, Vareberg A, Hai A. Stimulation-mediated reverse engineering of silent neural networks. J Neurophysiol 2023; 129:1505-1514. [PMID: 37222450 PMCID: PMC10311990 DOI: 10.1152/jn.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023] Open
Abstract
Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand brain function.NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learning algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heterogeneous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad biological and artificial neural networks.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, United States
| |
Collapse
|
156
|
Filipis L, Canepari M. Can neuron modeling constrained by ultrafast imaging data extract the native function of ion channels? Front Comput Neurosci 2023; 17:1192421. [PMID: 37293354 PMCID: PMC10244549 DOI: 10.3389/fncom.2023.1192421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Luiza Filipis
- Univ Grenoble Alpes, CNRS, LIPhy, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France
| | - Marco Canepari
- Univ Grenoble Alpes, CNRS, LIPhy, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France
- Institut National de la Santé et Recherche Médicale, Paris, France
| |
Collapse
|
157
|
Meng X, Zhang G, Shi N, Li G, Azaña J, Capmany J, Yao J, Shen Y, Li W, Zhu N, Li M. Compact optical convolution processing unit based on multimode interference. Nat Commun 2023; 14:3000. [PMID: 37225707 DOI: 10.1038/s41467-023-38786-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Convolutional neural networks are an important category of deep learning, currently facing the limitations of electrical frequency and memory access time in massive data processing. Optical computing has been demonstrated to enable significant improvements in terms of processing speeds and energy efficiency. However, most present optical computing schemes are hardly scalable since the number of optical elements typically increases quadratically with the computational matrix size. Here, a compact on-chip optical convolutional processing unit is fabricated on a low-loss silicon nitride platform to demonstrate its capability for large-scale integration. Three 2 × 2 correlated real-valued kernels are made of two multimode interference cells and four phase shifters to perform parallel convolution operations. Although the convolution kernels are interrelated, ten-class classification of handwritten digits from the MNIST database is experimentally demonstrated. The linear scalability of the proposed design with respect to computational size translates into a solid potential for large-scale integration.
Collapse
Affiliation(s)
- Xiangyan Meng
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guojie Zhang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nuannuan Shi
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Guangyi Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - José Azaña
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications (INRS-EMT), H5A 1K6, Montréal, QC, Canada
| | - José Capmany
- ITEAM Research Institute, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Jianping Yao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, 511443, Guangzhou, China
- Microwave Photonic Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5, 25 Templeton Street, Ottawa, ON, Canada
| | - Yichen Shen
- Lightelligence Group, 311121, Hangzhou, China
| | - Wei Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ninghua Zhu
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
158
|
Thio BJ, Grill WM. Relative Contributions of Different Neural Sources to the EEG. Neuroimage 2023:120179. [PMID: 37225111 DOI: 10.1016/j.neuroimage.2023.120179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Dogma dictates that the EEG signal is generated by postsynaptic currents (PSCs) because there are an enormous number of synapses in the brain, and PSCs have relatively long durations. However, PSCs are not the only potential source of electric fields in the brain. Action potentials, afterpolarizations, and presynaptic activity can also generate electric fields. Experimentally it is exceedingly difficult to delineate the contributions of different sources because they are casually linked. However, using computational modeling, we can interrogate the relative contributions of different neural elements to the EEG. We used a library of neuron models with morphologically realistic axonal arbors to quantify the relative contributions of PSCs, action potentials, and presynaptic activity to the EEG signal. Consistent with prior assertions, PSCs were the largest contributor to the EEG, but action potentials and afterpolarizations can also make appreciable contributions. For a population of neurons generating simultaneous PSCs and action potentials, we found that the action potentials accounted for up to 20% of the source strength while PSCs accounted for the other 80% and presynaptic activity negligibly contributed. Additionally, L5 PCs generated the largest PSC and action potential signals indicating that they the dominant EEG signal generator. Further, action potentials and afterpolarizations were sufficient to generate physiological oscillations, indicating that they are valid source contributors to the EEG. The EEG emerges from a combination of multiple different source, and, while PSCs are the largest contributor, other sources are non-negligible and should be included in modeling, analysis and interpretation of the EEG.
Collapse
Affiliation(s)
- Brandon J Thio
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708; Duke University, Department of Electrical and Computer Engineering, Durham, NC, USA; Duke University School of Medicine, Department of Neurobiology, Durham, NC, USA; Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA.
| |
Collapse
|
159
|
Gao L, Liu S, Wang Y, Wu Q, Gou L, Yan J. Single-neuron analysis of dendrites and axons reveals the network organization in mouse prefrontal cortex. Nat Neurosci 2023:10.1038/s41593-023-01339-y. [PMID: 37217724 DOI: 10.1038/s41593-023-01339-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
The structures of dendrites and axons form the basis for the connectivity of neural network, but their precise relationship at single-neuron level remains unclear. Here we report the complete dendrite and axon morphology of nearly 2,000 neurons in mouse prefrontal cortex (PFC). We identified morphological variations of somata, dendrites and axons across laminar layers and PFC subregions and the general rules of somatodendritic scaling with cytoarchitecture. We uncovered 24 morphologically distinguishable dendrite subtypes in 1,515 pyramidal projection neurons and 405 atypical pyramidal projection neurons and spiny stellate neurons with unique axon projection patterns. Furthermore, correspondence analysis among dendrites, local axons and long-range axons revealed coherent morphological changes associated with electrophysiological phenotypes. Finally, integrative dendrite-axon analysis uncovered the organization of potential intra-column, inter-hemispheric and inter-column connectivity among projection neuron types in PFC. Together, our study provides a comprehensive structural repertoire for the reconstruction and analysis of PFC neural network.
Collapse
Affiliation(s)
- Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Qiwen Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lingfeng Gou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
160
|
Conti A, Gambadauro NM, Mantovani P, Picciano CP, Rosetti V, Magnani M, Lucerna S, Tuleasca C, Cortelli P, Giannini G. A Brief History of Stereotactic Atlases: Their Evolution and Importance in Stereotactic Neurosurgery. Brain Sci 2023; 13:brainsci13050830. [PMID: 37239302 DOI: 10.3390/brainsci13050830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Following the recent acquisition of unprecedented anatomical details through state-of-the-art neuroimaging, stereotactic procedures such as microelectrode recording (MER) or deep brain stimulation (DBS) can now rely on direct and accurately individualized topographic targeting. Nevertheless, both modern brain atlases derived from appropriate histological techniques involving post-mortem studies of human brain tissue and the methods based on neuroimaging and functional information represent a valuable tool to avoid targeting errors due to imaging artifacts or insufficient anatomical details. Hence, they have thus far been considered a reference guide for functional neurosurgical procedures by neuroscientists and neurosurgeons. In fact, brain atlases, ranging from the ones based on histology and histochemistry to the probabilistic ones grounded on data derived from large clinical databases, are the result of a long and inspiring journey made possible thanks to genial intuitions of great minds in the field of neurosurgery and to the technical advancement of neuroimaging and computational science. The aim of this text is to review the principal characteristics highlighting the milestones of their evolution.
Collapse
Affiliation(s)
- Alfredo Conti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Nicola Maria Gambadauro
- Stroke Unit- Barking, Havering and Redbrige University Hospitals NHS Trust, Queen's Hospital, Rom Valley Way, London RM7 0AG, UK
| | - Paolo Mantovani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Canio Pietro Picciano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Vittoria Rosetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Marcello Magnani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Sebastiano Lucerna
- Department of Neurosurgery, AOU "G. Martino", Via Consolare Valeria 1, 98125 Messina, Italy
| | - Constantin Tuleasca
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Rue du Bugnon 21 CH-1011, 1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Rte Cantonale, 1015 Lausanne, Switzerland
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| |
Collapse
|
161
|
Borst A, Leibold C. Connecting Connectomes to Physiology. J Neurosci 2023; 43:3599-3610. [PMID: 37197984 PMCID: PMC10198452 DOI: 10.1523/jneurosci.2208-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
With the advent of volumetric EM techniques, large connectomic datasets are being created, providing neuroscience researchers with knowledge about the full connectivity of neural circuits under study. This allows for numerical simulation of detailed, biophysical models of each neuron participating in the circuit. However, these models typically include a large number of parameters, and insight into which of these are essential for circuit function is not readily obtained. Here, we review two mathematical strategies for gaining insight into connectomics data: linear dynamical systems analysis and matrix reordering techniques. Such analytical treatment can allow us to make predictions about time constants of information processing and functional subunits in large networks.SIGNIFICANCE STATEMENT This viewpoint provides a concise overview on how to extract important insights from Connectomics data by mathematical methods. First, it explains how new dynamics and new time constants can evolve, simply through connectivity between neurons. These new time-constants can be far longer than the intrinsic membrane time-constants of the individual neurons. Second, it summarizes how structural motifs in the circuit can be discovered. Specifically, there are tools to decide whether or not a circuit is strictly feed-forward or whether feed-back connections exist. Only by reordering connectivity matrices can such motifs be made visible.
Collapse
Affiliation(s)
- Alexander Borst
- Max-Planck Institute for Biological Intelligence, Department Circuits-Computation-Models, Martinsried, Germany
| | - Christian Leibold
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, D-79104, Freiburg, Germany
| |
Collapse
|
162
|
Ekelmans P, Kraynyukovas N, Tchumatchenko T. Targeting operational regimes of interest in recurrent neural networks. PLoS Comput Biol 2023; 19:e1011097. [PMID: 37186668 DOI: 10.1371/journal.pcbi.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Neural computations emerge from local recurrent neural circuits or computational units such as cortical columns that comprise hundreds to a few thousand neurons. Continuous progress in connectomics, electrophysiology, and calcium imaging require tractable spiking network models that can consistently incorporate new information about the network structure and reproduce the recorded neural activity features. However, for spiking networks, it is challenging to predict which connectivity configurations and neural properties can generate fundamental operational states and specific experimentally reported nonlinear cortical computations. Theoretical descriptions for the computational state of cortical spiking circuits are diverse, including the balanced state where excitatory and inhibitory inputs balance almost perfectly or the inhibition stabilized state (ISN) where the excitatory part of the circuit is unstable. It remains an open question whether these states can co-exist with experimentally reported nonlinear computations and whether they can be recovered in biologically realistic implementations of spiking networks. Here, we show how to identify spiking network connectivity patterns underlying diverse nonlinear computations such as XOR, bistability, inhibitory stabilization, supersaturation, and persistent activity. We establish a mapping between the stabilized supralinear network (SSN) and spiking activity which allows us to pinpoint the location in parameter space where these activity regimes occur. Notably, we find that biologically-sized spiking networks can have irregular asynchronous activity that does not require strong excitation-inhibition balance or large feedforward input and we show that the dynamic firing rate trajectories in spiking networks can be precisely targeted without error-driven training algorithms.
Collapse
Affiliation(s)
- Pierre Ekelmans
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Nataliya Kraynyukovas
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Bonn, Germany
| | - Tatjana Tchumatchenko
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Bonn, Germany
- Institute of physiological chemistry, Medical center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
163
|
Meng JH, Schuman B, Rudy B, Wang XJ. Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons. J Neurosci 2023; 43:3202-3218. [PMID: 36931710 PMCID: PMC10168018 DOI: 10.1523/jneurosci.1876-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/01/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023] Open
Abstract
Neocortical layer 1 (L1) consists of the distal dendrites of pyramidal cells and GABAergic interneurons (INs) and receives extensive long-range "top-down" projections, but L1 INs remain poorly understood. In this work, we systematically examined the distinct dominant electrophysiological features for four unique IN subtypes in L1 that were previously identified from mice of either gender: Canopy cells show an irregular firing pattern near rheobase; neurogliaform cells are late-spiking, and their firing rate accelerates during current injections; cells with strong expression of the α7 nicotinic receptor (α7 cells), display onset (rebound) bursting; vasoactive intestinal peptide (VIP) expressing cells exhibit high input resistance, strong adaptation, and irregular firing. Computational modeling revealed that these diverse neurophysiological features could be explained by an extended exponential-integrate-and-fire neuron model with varying contributions of a slowly inactivating K+ channel, a T-type Ca2+ channel, and a spike-triggered Ca2+-dependent K+ channel. In particular, we show that irregular firing results from square-wave bursting through a fast-slow analysis. Furthermore, we demonstrate that irregular firing is frequently observed in VIP cells because of the interaction between strong adaptation and a slowly inactivating K+ channel. At last, we reveal that the VIP and α7 cell models resonant with alpha/theta band input through a dynamic gain analysis.SIGNIFICANCE STATEMENT In the neocortex, ∼25% of neurons are interneurons. Interestingly, only somas of interneurons reside within layer 1 (L1) of the neocortex, but not of excitatory pyramidal cells. L1 interneurons are diverse and believed to be important in the cortical-cortex interactions, especially top-down signaling in the cortical hierarchy. However, the electrophysiological features of L1 interneurons are poorly understood. Here, we systematically studied the electrophysiological features within each L1 interneuron subtype. Furthermore, we build computational models for each subtype and study the mechanisms behind these features. These electrophysiological features within each subtype should be incorporated to elucidate how different L1 interneuron subtypes contribute to communication between cortexes.
Collapse
Affiliation(s)
- John Hongyu Meng
- Center for Neural Science, New York University, New York, New York 10003
| | - Benjamin Schuman
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York 10016
| | - Bernardo Rudy
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York 10016
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University, New York, New York 10016
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
164
|
Stasenko SV, Kazantsev VB. Information Encoding in Bursting Spiking Neural Network Modulated by Astrocytes. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050745. [PMID: 37238500 DOI: 10.3390/e25050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
We investigated a mathematical model composed of a spiking neural network (SNN) interacting with astrocytes. We analysed how information content in the form of two-dimensional images can be represented by an SNN in the form of a spatiotemporal spiking pattern. The SNN includes excitatory and inhibitory neurons in some proportion, sustaining the excitation-inhibition balance of autonomous firing. The astrocytes accompanying each excitatory synapse provide a slow modulation of synaptic transmission strength. An information image was uploaded to the network in the form of excitatory stimulation pulses distributed in time reproducing the shape of the image. We found that astrocytic modulation prevented stimulation-induced SNN hyperexcitation and non-periodic bursting activity. Such homeostatic astrocytic regulation of neuronal activity makes it possible to restore the image supplied during stimulation and lost in the raster diagram of neuronal activity due to non-periodic neuronal firing. At a biological point, our model shows that astrocytes can act as an additional adaptive mechanism for regulating neural activity, which is crucial for sensory cortical representations.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Victor B Kazantsev
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
165
|
Tolley N, Rodrigues PLC, Gramfort A, Jones S. Methods and considerations for estimating parameters in biophysically detailed neural models with simulation based inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537118. [PMID: 37131818 PMCID: PMC10153146 DOI: 10.1101/2023.04.17.537118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biophysically detailed neural models are a powerful technique to study neural dynamics in health and disease with a growing number of established and openly available models. A major challenge in the use of such models is that parameter inference is an inherently difficult and unsolved problem. Identifying unique parameter distributions that can account for observed neural dynamics, and differences across experimental conditions, is essential to their meaningful use. Recently, simulation based inference (SBI) has been proposed as an approach to perform Bayesian inference to estimate parameters in detailed neural models. SBI overcomes the challenge of not having access to a likelihood function, which has severely limited inference methods in such models, by leveraging advances in deep learning to perform density estimation. While the substantial methodological advancements offered by SBI are promising, their use in large scale biophysically detailed models is challenging and methods for doing so have not been established, particularly when inferring parameters that can account for time series waveforms. We provide guidelines and considerations on how SBI can be applied to estimate time series waveforms in biophysically detailed neural models starting with a simplified example and extending to specific applications to common MEG/EEG waveforms using the the large scale neural modeling framework of the Human Neocortical Neurosolver. Specifically, we describe how to estimate and compare results from example oscillatory and event related potential simulations. We also describe how diagnostics can be used to assess the quality and uniqueness of the posterior estimates. The methods described provide a principled foundation to guide future applications of SBI in a wide variety of applications that use detailed models to study neural dynamics.
Collapse
Affiliation(s)
- Nicholas Tolley
- Department of Neuroscience, Brown University, Providence, RI, United States
| | | | | | - Stephanie Jones
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
166
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
167
|
Rosenberg N, Reva M, Binda F, Restivo L, Depierre P, Puyal J, Briquet M, Bernardinelli Y, Rocher AB, Markram H, Chatton JY. Overexpression of UCP4 in astrocytic mitochondria prevents multilevel dysfunctions in a mouse model of Alzheimer's disease. Glia 2023; 71:957-973. [PMID: 36537556 DOI: 10.1002/glia.24317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.
Collapse
Affiliation(s)
- Nadia Rosenberg
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Maria Reva
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesca Binda
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Briquet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Bérengère Rocher
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Cellular Imaging Facility, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
168
|
Gamlin CR, Schneider-Mizell CM, Mallory M, Elabbady L, Gouwens N, Williams G, Mukora A, Dalley R, Bodor A, Brittain D, Buchanan J, Bumbarger D, Kapner D, Kinn S, Mahalingam G, Seshamani S, Takeno M, Torres R, Yin W, Nicovich PR, Bae JA, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Yu S, Berg J, Jarsky T, Lee B, Seung HS, Zeng H, Reid RC, Collman F, da Costa NM, Sorensen SA. Integrating EM and Patch-seq data: Synaptic connectivity and target specificity of predicted Sst transcriptomic types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533857. [PMID: 36993629 PMCID: PMC10055412 DOI: 10.1101/2023.03.22.533857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between those cell types 1 . Neural cell types have previously been defined by morphology 2, 3 , electrophysiology 4, 5 , transcriptomic expression 6-8 , connectivity 9-13 , or even a combination of such modalities 14-16 . More recently, the Patch-seq technique has enabled the characterization of morphology (M), electrophysiology (E), and transcriptomic (T) properties from individual cells 17-20 . Using this technique, these properties were integrated to define 28, inhibitory multimodal, MET-types in mouse primary visual cortex 21 . It is unknown how these MET-types connect within the broader cortical circuitry however. Here we show that we can predict the MET-type identity of inhibitory cells within a large-scale electron microscopy (EM) dataset and these MET-types have distinct ultrastructural features and synapse connectivity patterns. We found that EM Martinotti cells, a well defined morphological cell type 22, 23 known to be Somatostatin positive (Sst+) 24, 25 , were successfully predicted to belong to Sst+ MET-types. Each identified MET-type had distinct axon myelination patterns and synapsed onto specific excitatory targets. Our results demonstrate that morphological features can be used to link cell type identities across imaging modalities, which enables further comparison of connectivity in relation to transcriptomic or electrophysiological properties. Furthermore, our results show that MET-types have distinct connectivity patterns, supporting the use of MET-types and connectivity to meaningfully define cell types.
Collapse
|
169
|
Shirani F, Choi H. On the physiological and structural contributors to the overall balance of excitation and inhibition in local cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523489. [PMID: 36711468 PMCID: PMC9882012 DOI: 10.1101/2023.01.10.523489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Overall balance of excitation and inhibition in cortical networks is central to their functionality and normal operation. Such orchestrated co-evolution of excitation and inhibition is established through convoluted local interactions between neurons, which are organized by specific network connectivity structures and are dynamically controlled by modulating synaptic activities. Therefore, identifying how such structural and physiological factors contribute to establishment of overall balance of excitation and inhibition is crucial in understanding the homeostatic plasticity mechanisms that regulate the balance. We use biologically plausible mathematical models to extensively study the effects of multiple key factors on overall balance of a network. We characterize a network's baseline balanced state by certain functional properties, and demonstrate how variations in physiological and structural parameters of the network deviate this balance and, in particular, result in transitions in spontaneous activity of the network to high-amplitude slow oscillatory regimes. We show that deviations from the reference balanced state can be continuously quantified by measuring the ratio of mean excitatory to mean inhibitory synaptic conductances in the network. Our results suggest that the commonly observed ratio of the number of inhibitory to the number of excitatory neurons in local cortical networks is almost optimal for their stability and excitability. Moreover, the values of inhibitory synaptic decay time constants and density of inhibitory-to-inhibitory network connectivity are critical to overall balance and stability of cortical networks. However, network stability in our results is sufficiently robust against modulations of synaptic quantal conductances, as required by their role in learning and memory.
Collapse
|
170
|
Zhang Y, Du K, Huang T. Heuristic Tree-Partition-Based Parallel Method for Biophysically Detailed Neuron Simulation. Neural Comput 2023; 35:627-644. [PMID: 36746142 DOI: 10.1162/neco_a_01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/20/2022] [Indexed: 02/08/2023]
Abstract
Biophysically detailed neuron simulation is a powerful tool to explore the mechanisms behind biological experiments and bridge the gap between various scales in neuroscience research. However, the extremely high computational complexity of detailed neuron simulation restricts the modeling and exploration of detailed network models. The bottleneck is solving the system of linear equations. To accelerate detailed simulation, we propose a heuristic tree-partition-based parallel method (HTP) to parallelize the computation of the Hines algorithm, the kernel for solving linear equations, and leverage the strong parallel capability of the graphic processing unit (GPU) to achieve further speedup. We formulate the problem of how to get a fine parallel process as a tree-partition problem. Next, we present a heuristic partition algorithm to obtain an effective partition to efficiently parallelize the equation-solving process in detailed simulation. With further optimization on GPU, our HTP method achieves 2.2 to 8.5 folds speedup compared to the state-of-the-art GPU method and 36 to 660 folds speedup compared to the typical Hines algorithm.
Collapse
Affiliation(s)
- Yichen Zhang
- School of Computer Science, Peking University, Beijing 100871, China
| | - Kai Du
- School of Computer Science and Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| | - Tiejun Huang
- School of Computer Science and Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| |
Collapse
|
171
|
Winston CN, Mastrovito D, Shea-Brown E, Mihalas S. Heterogeneity in Neuronal Dynamics Is Learned by Gradient Descent for Temporal Processing Tasks. Neural Comput 2023; 35:555-592. [PMID: 36827598 PMCID: PMC10044000 DOI: 10.1162/neco_a_01571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 11/02/2022] [Indexed: 02/26/2023]
Abstract
Individual neurons in the brain have complex intrinsic dynamics that are highly diverse. We hypothesize that the complex dynamics produced by networks of complex and heterogeneous neurons may contribute to the brain's ability to process and respond to temporally complex data. To study the role of complex and heterogeneous neuronal dynamics in network computation, we develop a rate-based neuronal model, the generalized-leaky-integrate-and-fire-rate (GLIFR) model, which is a rate equivalent of the generalized-leaky-integrate-and-fire model. The GLIFR model has multiple dynamical mechanisms, which add to the complexity of its activity while maintaining differentiability. We focus on the role of after-spike currents, currents induced or modulated by neuronal spikes, in producing rich temporal dynamics. We use machine learning techniques to learn both synaptic weights and parameters underlying intrinsic dynamics to solve temporal tasks. The GLIFR model allows the use of standard gradient descent techniques rather than surrogate gradient descent, which has been used in spiking neural networks. After establishing the ability to optimize parameters using gradient descent in single neurons, we ask how networks of GLIFR neurons learn and perform on temporally challenging tasks, such as sequential MNIST. We find that these networks learn diverse parameters, which gives rise to diversity in neuronal dynamics, as demonstrated by clustering of neuronal parameters. GLIFR networks have mixed performance when compared to vanilla recurrent neural networks, with higher performance in pixel-by-pixel MNIST but lower in line-by-line MNIST. However, they appear to be more robust to random silencing. We find that the ability to learn heterogeneity and the presence of after-spike currents contribute to these gains in performance. Our work demonstrates both the computational robustness of neuronal complexity and diversity in networks and a feasible method of training such models using exact gradients.
Collapse
Affiliation(s)
- Chloe N Winston
- Departments of Neuroscience and Computer Science, University of Washington, Seattle, WA 98195, U.S.A
- University of Washington Computational Neuroscience Center, Seattle, WA 98195, U.S.A.
| | - Dana Mastrovito
- Allen Institute for Brain Science, Seattle, WA 98109, U.S.A.
| | - Eric Shea-Brown
- University of Washington Computational Neuroscience Center, Seattle, WA 98195, U.S.A
- Allen Institute for Brain Science, Seattle, WA 98109, U.S.A
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, U.S.A.
| | - Stefan Mihalas
- University of Washington Computational Neuroscience Center, Seattle, WA 98195, U.S.A
- Allen Institute for Brain Science, Seattle, WA 98109, U.S.A
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, U.S.A.
| |
Collapse
|
172
|
Liu X, Gao T, Lu T, Bao Y, Schumann G, Lu L. China Brain Project: from bench to bedside. Sci Bull (Beijing) 2023; 68:444-447. [PMID: 36822910 DOI: 10.1016/j.scib.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit, Peking University, Beijing 100191, China
| | - Teng Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit, Peking University, Beijing 100191, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; School of Public Health, Peking University, Beijing 100191, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; PONS Centre, Department of Psychiatry and Psychotherapy, Campus Charite Mitte (CCM), Charite Universitaetsmedizin Berlin, Berlin 10117, Germany
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit, Peking University, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100081, China.
| |
Collapse
|
173
|
Naudin L. Different parameter solutions of a conductance-based model that behave identically are not necessarily degenerate. J Comput Neurosci 2023; 51:201-206. [PMID: 36905484 DOI: 10.1007/s10827-023-00848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Affiliation(s)
- Loïs Naudin
- Laboratoire Lorrain de Recherche en Informatique et ses Applications, CNRS, Université de Lorraine, Nancy, France. .,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, F-75012, France.
| |
Collapse
|
174
|
Hunt S, Leibner Y, Mertens EJ, Barros-Zulaica N, Kanari L, Heistek TS, Karnani MM, Aardse R, Wilbers R, Heyer DB, Goriounova NA, Verhoog MB, Testa-Silva G, Obermayer J, Versluis T, Benavides-Piccione R, de Witt-Hamer P, Idema S, Noske DP, Baayen JC, Lein ES, DeFelipe J, Markram H, Mansvelder HD, Schürmann F, Segev I, de Kock CPJ. Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. Cereb Cortex 2023; 33:2857-2878. [PMID: 35802476 PMCID: PMC10016070 DOI: 10.1093/cercor/bhac246] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.
Collapse
Affiliation(s)
| | | | - Eline J Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalí Barros-Zulaica
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Lida Kanari
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Mahesh M Karnani
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Romy Aardse
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | | | - Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tamara Versluis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Philip de Witt-Hamer
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - David P Noske
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Johannes C Baayen
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Henry Markram
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Felix Schürmann
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Idan Segev
- Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190501 Jerusalem, Israel
| | | |
Collapse
|
175
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
176
|
Galan-Gadea A, Salvador R, Bartolomei F, Wendling F, Ruffini G. Spherical harmonics representation of the steady-state membrane potential shift induced by tDCS in realistic neuron models. J Neural Eng 2023; 20. [PMID: 36758230 DOI: 10.1088/1741-2552/acbabd] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Objective.We provide a systematic framework for quantifying the effect of externally applied weak electric fields on realistic neuron compartment models as captured by physiologically relevant quantities such as the membrane potential or transmembrane current as a function of the orientation of the field.Approach.We define a response function as the steady-state change of the membrane potential induced by a canonical external field of 1 V m-1as a function of its orientation. We estimate the function values through simulations employing reconstructions of the rat somatosensory cortex from the Blue Brain Project. The response of different cell types is simulated using the NEURON simulation environment. We represent and analyze the angular response as an expansion in spherical harmonics.Main results.We report membrane perturbation values comparable to those in the literature, extend them to different cell types, and provide their profiles as spherical harmonic coefficients. We show that at rest, responses are dominated by their dipole terms (ℓ=1), in agreement with experimental findings and compartment theory. Indeed, we show analytically that for a passive cell, only the dipole term is nonzero. However, while minor, other terms are relevant for states different from resting. In particular, we show howℓ=0andℓ=2terms can modify the function to induce asymmetries in the response.Significance.This work provides a practical framework for the representation of the effects of weak electric fields on different neuron types and their main regions-an important milestone for developing micro- and mesoscale models and optimizing brain stimulation solutions.
Collapse
Affiliation(s)
| | | | - Fabrice Bartolomei
- Clinical Physiology Department, INSERM, UMR 1106 and Timone University Hospital, Aix-Marseille Université, Marseille, France
| | - Fabrice Wendling
- Univ Rennes, INSERM, LTSI (Laboratoire de Traitement du Signal et de l'Image) U1099, 35000 Rennes, France
| | - Giulio Ruffini
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| |
Collapse
|
177
|
Vinci GV, Benzi R, Mattia M. Self-Consistent Stochastic Dynamics for Finite-Size Networks of Spiking Neurons. PHYSICAL REVIEW LETTERS 2023; 130:097402. [PMID: 36930929 DOI: 10.1103/physrevlett.130.097402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Despite the huge number of neurons composing a brain network, ongoing activity of local cell assemblies is intrinsically stochastic. Fluctuations in their instantaneous rate of spike firing ν(t) scale with the size of the assembly and persist in isolated networks, i.e., in the absence of external sources of noise. Although deterministic chaos due to the quenched disorder of the synaptic couplings underlies this seemingly stochastic dynamics, an effective theory for the network dynamics of a finite assembly of spiking neurons is lacking. Here, we fill this gap by extending the so-called population density approach including an activity- and size-dependent stochastic source in the Fokker-Planck equation for the membrane potential density. The finite-size noise embedded in this stochastic partial derivative equation is analytically characterized leading to a self-consistent and nonperturbative description of ν(t) valid for a wide class of spiking neuron networks. Power spectra of ν(t) are found in excellent agreement with those from detailed simulations both in the linear regime and across a synchronization phase transition, when a size-dependent smearing of the critical dynamics emerges.
Collapse
Affiliation(s)
- Gianni V Vinci
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, 00161 Roma, Italy
- PhD Program in Physics, Dept. of Physics, "Tor Vergata" University of Rome, 00133 Roma, Italy
| | - Roberto Benzi
- Dept. of Physics and INFN, "Tor Vergata" University of Rome, 00133 Roma, Italy
- Centro Ricerche "E. Fermi," 00184, Roma, Italy
| | - Maurizio Mattia
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
178
|
Mohan H, An X, Xu XH, Kondo H, Zhao S, Matho KS, Wang BS, Musall S, Mitra P, Huang ZJ. Cortical glutamatergic projection neuron types contribute to distinct functional subnetworks. Nat Neurosci 2023; 26:481-494. [PMID: 36690901 PMCID: PMC10571488 DOI: 10.1038/s41593-022-01244-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 12/02/2022] [Indexed: 01/24/2023]
Abstract
The cellular basis of cerebral cortex functional architecture remains not well understood. A major challenge is to monitor and decipher neural network dynamics across broad cortical areas yet with projection-neuron-type resolution in real time during behavior. Combining genetic targeting and wide-field imaging, we monitored activity dynamics of subcortical-projecting (PTFezf2) and intratelencephalic-projecting (ITPlxnD1) types across dorsal cortex of mice during different brain states and behaviors. ITPlxnD1 and PTFezf2 neurons showed distinct activation patterns during wakeful resting, during spontaneous movements and upon sensory stimulation. Distinct ITPlxnD1 and PTFezf2 subnetworks were dynamically tuned to different sensorimotor components of a naturalistic feeding behavior, and optogenetic inhibition of ITsPlxnD1 and PTsFezf2 in subnetwork nodes disrupted distinct components of this behavior. Lastly, ITPlxnD1 and PTFezf2 projection patterns are consistent with their subnetwork activation patterns. Our results show that, in addition to the concept of columnar organization, dynamic areal and projection-neuron-type specific subnetworks are a key feature of cortical functional architecture linking microcircuit components with global brain networks.
Collapse
Affiliation(s)
- Hemanth Mohan
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xu An
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - X Hermione Xu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hideki Kondo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Simon Musall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Institute of Biological information Processing, Forschungszentrum Julich, Julich, Germany
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
179
|
Balcioglu A, Gillani R, Doron M, Burnell K, Ku T, Erisir A, Chung K, Segev I, Nedivi E. Mapping thalamic innervation to individual L2/3 pyramidal neurons and modeling their 'readout' of visual input. Nat Neurosci 2023; 26:470-480. [PMID: 36732641 DOI: 10.1038/s41593-022-01253-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
The thalamus is the main gateway for sensory information from the periphery to the mammalian cerebral cortex. A major conundrum has been the discrepancy between the thalamus's central role as the primary feedforward projection system into the neocortex and the sparseness of thalamocortical synapses. Here we use new methods, combining genetic tools and scalable tissue expansion microscopy for whole-cell synaptic mapping, revealing the number, density and size of thalamic versus cortical excitatory synapses onto individual layer 2/3 (L2/3) pyramidal cells (PCs) of the mouse primary visual cortex. We find that thalamic inputs are not only sparse, but remarkably heterogeneous in number and density across individual dendrites and neurons. Most surprising, despite their sparseness, thalamic synapses onto L2/3 PCs are smaller than their cortical counterparts. Incorporating these findings into fine-scale, anatomically faithful biophysical models of L2/3 PCs reveals how individual neurons with sparse and weak thalamocortical synapses, embedded in small heterogeneous neuronal ensembles, may reliably 'read out' visually driven thalamic input.
Collapse
Affiliation(s)
- Aygul Balcioglu
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca Gillani
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Doron
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Kendyll Burnell
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taeyun Ku
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kwanghun Chung
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Medical Engineering and Science, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
180
|
Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep. Cell Rep 2023; 42:112200. [PMID: 36867532 PMCID: PMC10066598 DOI: 10.1016/j.celrep.2023.112200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.
Collapse
|
181
|
Birgiolas J, Haynes V, Gleeson P, Gerkin RC, Dietrich SW, Crook S. NeuroML-DB: Sharing and characterizing data-driven neuroscience models described in NeuroML. PLoS Comput Biol 2023; 19:e1010941. [PMID: 36867658 PMCID: PMC10016719 DOI: 10.1371/journal.pcbi.1010941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/15/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023] Open
Abstract
As researchers develop computational models of neural systems with increasing sophistication and scale, it is often the case that fully de novo model development is impractical and inefficient. Thus arises a critical need to quickly find, evaluate, re-use, and build upon models and model components developed by other researchers. We introduce the NeuroML Database (NeuroML-DB.org), which has been developed to address this need and to complement other model sharing resources. NeuroML-DB stores over 1,500 previously published models of ion channels, cells, and networks that have been translated to the modular NeuroML model description language. The database also provides reciprocal links to other neuroscience model databases (ModelDB, Open Source Brain) as well as access to the original model publications (PubMed). These links along with Neuroscience Information Framework (NIF) search functionality provide deep integration with other neuroscience community modeling resources and greatly facilitate the task of finding suitable models for reuse. Serving as an intermediate language, NeuroML and its tooling ecosystem enable efficient translation of models to other popular simulator formats. The modular nature also enables efficient analysis of a large number of models and inspection of their properties. Search capabilities of the database, together with web-based, programmable online interfaces, allow the community of researchers to rapidly assess stored model electrophysiology, morphology, and computational complexity properties. We use these capabilities to perform a database-scale analysis of neuron and ion channel models and describe a novel tetrahedral structure formed by cell model clusters in the space of model properties and features. This analysis provides further information about model similarity to enrich database search.
Collapse
Affiliation(s)
- Justas Birgiolas
- Ronin Institute, Montclair, New Jersey, United States of America
| | - Vergil Haynes
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, United States of America
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Padraig Gleeson
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Suzanne W. Dietrich
- School of Mathematical and Natural Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Sharon Crook
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
182
|
Gandolfi D, Mapelli J, Solinas SMG, Triebkorn P, D'Angelo E, Jirsa V, Migliore M. Full-scale scaffold model of the human hippocampus CA1 area. NATURE COMPUTATIONAL SCIENCE 2023; 3:264-276. [PMID: 38177882 PMCID: PMC10766517 DOI: 10.1038/s43588-023-00417-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/09/2023] [Indexed: 01/06/2024]
Abstract
The increasing availability of quantitative data on the human brain is opening new avenues to study neural function and dysfunction, thus bringing us closer and closer to the implementation of digital twin applications for personalized medicine. Here we provide a resource to the neuroscience community: a computational method to generate full-scale scaffold model of human brain regions starting from microscopy images. We have benchmarked the method to reconstruct the CA1 region of a right human hippocampus, which accounts for about half of the entire right hippocampal formation. Together with 3D soma positioning we provide a connectivity matrix generated using a morpho-anatomical connection strategy based on axonal and dendritic probability density functions accounting for morphological properties of hippocampal neurons. The data and algorithms are supplied in a ready-to-use format, suited to implement computational models at different scales and detail.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| | - Sergio M G Solinas
- Department of Biomedical Science, University of Sassari, Sassari, Italy
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Paul Triebkorn
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy.
| |
Collapse
|
183
|
Shomali SR, Rasuli SN, Ahmadabadi MN, Shimazaki H. Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons. Commun Biol 2023; 6:169. [PMID: 36792689 PMCID: PMC9932086 DOI: 10.1038/s42003-023-04511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Identifying network architecture from observed neural activities is crucial in neuroscience studies. A key requirement is knowledge of the statistical input-output relation of single neurons in vivo. By utilizing an exact analytical solution of the spike-timing for leaky integrate-and-fire neurons under noisy inputs balanced near the threshold, we construct a framework that links synaptic type, strength, and spiking nonlinearity with the statistics of neuronal population activity. The framework explains structured pairwise and higher-order interactions of neurons receiving common inputs under different architectures. We compared the theoretical predictions with the activity of monkey and mouse V1 neurons and found that excitatory inputs given to pairs explained the observed sparse activity characterized by strong negative triple-wise interactions, thereby ruling out the alternative explanation by shared inhibition. Moreover, we showed that the strong interactions are a signature of excitatory rather than inhibitory inputs whenever the spontaneous rate is low. We present a guide map of neural interactions that help researchers to specify the hidden neuronal motifs underlying observed interactions found in empirical data.
Collapse
Affiliation(s)
- Safura Rashid Shomali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran.
| | - Seyyed Nader Rasuli
- grid.418744.a0000 0000 8841 7951School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531 Iran ,grid.411872.90000 0001 2087 2250Department of Physics, University of Guilan, Rasht, 41335-1914 Iran
| | - Majid Nili Ahmadabadi
- grid.46072.370000 0004 0612 7950Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395-515 Iran
| | - Hideaki Shimazaki
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan. .,Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Hokkaido, 060-0812, Japan.
| |
Collapse
|
184
|
Efficient 3D light-sheet imaging of very large-scale optically cleared human brain and prostate tissue samples. Commun Biol 2023; 6:170. [PMID: 36781939 PMCID: PMC9925784 DOI: 10.1038/s42003-023-04536-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.
Collapse
|
185
|
Schmitt FJ, Rostami V, Nawrot MP. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST. Front Neuroinform 2023; 17:941696. [PMID: 36844916 PMCID: PMC9950635 DOI: 10.3389/fninf.2023.941696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Spiking neural networks (SNNs) represent the state-of-the-art approach to the biologically realistic modeling of nervous system function. The systematic calibration for multiple free model parameters is necessary to achieve robust network function and demands high computing power and large memory resources. Special requirements arise from closed-loop model simulation in virtual environments and from real-time simulation in robotic application. Here, we compare two complementary approaches to efficient large-scale and real-time SNN simulation. The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly parallel GPU-based architecture to gain simulation speed. We quantify fixed and variable simulation costs on single machines with different hardware configurations. As a benchmark model, we use a spiking cortical attractor network with a topology of densely connected excitatory and inhibitory neuron clusters with homogeneous or distributed synaptic time constants and in comparison to the random balanced network. We show that simulation time scales linearly with the simulated biological model time and, for large networks, approximately linearly with the model size as dominated by the number of synaptic connections. Additional fixed costs with GeNN are almost independent of model size, while fixed costs with NEST increase linearly with model size. We demonstrate how GeNN can be used for simulating networks with up to 3.5 · 106 neurons (> 3 · 1012synapses) on a high-end GPU, and up to 250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was achieved for networks with 100, 000 neurons. Network calibration and parameter grid search can be efficiently achieved using batch processing. We discuss the advantages and disadvantages of both approaches for different use cases.
Collapse
Affiliation(s)
| | | | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
186
|
Pahlavan B, Buitrago N, Santamaria F. Macromolecular rate theory explains the temperature dependence of membrane conductance kinetics. Biophys J 2023; 122:522-532. [PMID: 36567527 PMCID: PMC9941726 DOI: 10.1016/j.bpj.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
The factor Q10 is used in neuroscience to adjust reaction rates of voltage-activated membrane conductances to different temperatures and is widely assumed to be constant. By performing an analysis of published data of the reaction rates of sodium, potassium, and calcium membrane conductances, we demonstrate that 1) Q10 is temperature dependent, 2) this relationship is similar across conductances, and 3) there is a strong effect at low temperatures (<15°C). We show that macromolecular rate theory (MMRT) explains this temperature dependency. MMRT predicts the existence of optimal temperatures at which reaction rates decrease as temperature increases, a phenomenon that we also found in the published data sets. We tested the consequences of using MMRT-adjusted reaction rates in the Hodgkin-Huxley model of the squid's giant axon. The MMRT-adjusted model reproduces the temperature dependence of the rising and falling times of the action potential. Furthermore, the model also reproduces these properties for different squid species that live in different climates. In a second example, we compare spiking patterns of biophysical models based on human pyramidal neurons from the Allen Cell Types database at room and physiological temperatures. The original models, calibrated at 34°C, failed to generate realistic spikes at room temperature in more than half of the tested models, while the MMRT produces realistic spiking in all conditions. In another example, we show that using the MMRT correction in hippocampal pyramidal cell models results in 100% differences in voltage responses. Finally, we show that the shape of the Q10 function results in systematic errors in predicting reaction rates. We propose that the optimal temperature could be a thermodynamical barrier to avoid over excitation in neurons. While this study is centered on membrane conductances, our results have important consequences for all biochemical reactions involved in cell signaling.
Collapse
Affiliation(s)
- Bahram Pahlavan
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Nicolas Buitrago
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Fidel Santamaria
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas.
| |
Collapse
|
187
|
Tamura K, Yamamoto Y, Kobayashi T, Kuriyama R, Yamazaki T. Discrimination and learning of temporal input sequences in a cerebellar Purkinje cell model. Front Cell Neurosci 2023; 17:1075005. [PMID: 36816857 PMCID: PMC9932327 DOI: 10.3389/fncel.2023.1075005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Temporal information processing is essential for sequential contraction of various muscles with the appropriate timing and amplitude for fast and smooth motor control. These functions depend on dynamics of neural circuits, which consist of simple neurons that accumulate incoming spikes and emit other spikes. However, recent studies indicate that individual neurons can perform complex information processing through the nonlinear dynamics of dendrites with complex shapes and ion channels. Although we have extensive evidence that cerebellar circuits play a vital role in motor control, studies investigating the computational ability of single Purkinje cells are few. Methods We found, through computer simulations, that a Purkinje cell can discriminate a series of pulses in two directions (from dendrite tip to soma, and from soma to dendrite), as cortical pyramidal cells do. Such direction sensitivity was observed in whatever compartment types of dendrites (spiny, smooth, and main), although they have dierent sets of ion channels. Results We found that the shortest and longest discriminable sequences lasted for 60 ms (6 pulses with 10 ms interval) and 4,000 ms (20 pulses with 200 ms interval), respectively. and that the ratio of discriminable sequences within the region of the interesting parameter space was, on average, 3.3% (spiny), 3.2% (smooth), and 1.0% (main). For the direction sensitivity, a T-type Ca2+ channel was necessary, in contrast with cortical pyramidal cells that have N-methyl-D-aspartate receptors (NMDARs). Furthermore, we tested whether the stimulus direction can be reversed by learning, specifically by simulated long-term depression, and obtained positive results. Discussion Our results show that individual Purkinje cells can perform more complex information processing than is conventionally assumed for a single neuron, and suggest that Purkinje cells act as sequence discriminators, a useful role in motor control and learning.
Collapse
Affiliation(s)
- Kaaya Tamura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Yuki Yamamoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taira Kobayashi
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Rin Kuriyama
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan,*Correspondence: Tadashi Yamazaki ✉
| |
Collapse
|
188
|
Gaugain G, Quéguiner L, Bikson M, Sauleau R, Zhadobov M, Modolo J, Nikolayev D. Quasi-static approximation error of electric field analysis for transcranial current stimulation. J Neural Eng 2023; 20. [PMID: 36621858 DOI: 10.1088/1741-2552/acb14d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Objective.Numerical modeling of electric fields induced by transcranial alternating current stimulation (tACS) is currently a part of the standard procedure to predict and understand neural response. Quasi-static approximation (QSA) for electric field calculations is generally applied to reduce the computational cost. Here, we aimed to analyze and quantify the validity of the approximation over a broad frequency range.Approach.We performed electromagnetic modeling studies using an anatomical head model and considered approximations assuming either a purely ohmic medium (i.e. static formulation) or a lossy dielectric medium (QS formulation). The results were compared with the solution of Maxwell's equations in the cases of harmonic and pulsed signals. Finally, we analyzed the effect of electrode positioning on these errors.Main results.Our findings demonstrate that the QSA is valid and produces a relative error below 1% up to 1.43 MHz. The largest error is introduced in the static case, where the error is over 1% across the entire considered spectrum and as high as 20% in the brain at 10 Hz. We also highlight the special importance of considering the capacitive effect of tissues for pulsed waveforms, which prevents signal distortion induced by the purely ohmic approximation. At the neuron level, the results point a difference of sense electric field as high as 22% at focusing point, impacting pyramidal cells firing times.Significance.QSA remains valid in the frequency range currently used for tACS. However, neglecting permittivity (static formulation) introduces significant error for both harmonic and non-harmonic signals. It points out that reliable low frequency dielectric data are needed for accurate transcranial current stimulation numerical modeling.
Collapse
Affiliation(s)
- Gabriel Gaugain
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Lorette Quéguiner
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, United States of America
| | - Ronan Sauleau
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Maxim Zhadobov
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| | - Julien Modolo
- Univ Rennes, INSERM, LTSI (Laboratoire traitement du signal et de l'image) - U1099, 35000 Rennes, France
| | - Denys Nikolayev
- Univ Rennes, CNRS, IETR (Institut d'électronique et des technologies du numérique) - UMR 6164, 35000 Rennes, France
| |
Collapse
|
189
|
Mercadal B, Lopez-Sola E, Galan-Gadea A, Al Harrach M, Sanchez-Todo R, Salvador R, Bartolomei F, Wendling F, Ruffini G. Towards a mesoscale physical modeling framework for stereotactic-EEG recordings. J Neural Eng 2023; 20. [PMID: 36548999 DOI: 10.1088/1741-2552/acae0c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Stereotactic-electroencephalography (SEEG) and scalp EEG recordings can be modeled using mesoscale neural mass population models (NMMs). However, the relationship between those mathematical models and the physics of the measurements is unclear. In addition, it is challenging to represent SEEG data by combining NMMs and volume conductor models due to the intermediate spatial scale represented by these measurements.Approach.We provide a framework combining the multi-compartmental modeling formalism and a detailed geometrical model to simulate the transmembrane currents that appear in layer 3, 5 and 6 pyramidal cells due to a synaptic input. With this approach, it is possible to realistically simulate the current source density (CSD) depth profile inside a cortical patch due to inputs localized into a single cortical layer and the induced voltage measured by two SEEG contacts using a volume conductor model. Based on this approach, we built a framework to connect the activity of a NMM with a volume conductor model and we simulated an example of SEEG signal as a proof of concept.Main results.CSD depends strongly on the distribution of the synaptic inputs onto the different cortical layers and the equivalent current dipole strengths display substantial differences (of up to a factor of four in magnitude in our example). Thus, the inputs coming from different neural populations do not contribute equally to the electrophysiological recordings. A direct consequence of this is that the raw output of NMMs is not a good proxy for electrical recordings. We also show that the simplest CSD model that can accurately reproduce SEEG measurements can be constructed from discrete monopolar sources (one per cortical layer).Significance.Our results highlight the importance of including a physical model in NMMs to represent measurements. We provide a framework connecting microscale neuron models with the neural mass formalism and with physical models of the measurement process that can improve the accuracy of predicted electrophysiological recordings.
Collapse
Affiliation(s)
- Borja Mercadal
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | | | | | - Mariam Al Harrach
- Université de Rennes, INSERM, LTSI (Laboratoire de Traitement du Signal et de l'Image) U1099, 35000 Rennes, France
| | | | | | - Fabrice Bartolomei
- Clinical Physiology Department, INSERM, UMR 1106 and Timone University Hospital, Aix-Marseille Université, Marseille, France
| | - Fabrice Wendling
- Université de Rennes, INSERM, LTSI (Laboratoire de Traitement du Signal et de l'Image) U1099, 35000 Rennes, France
| | - Giulio Ruffini
- Neuroelectrics, Av. Tibidabo 47b, 08035 Barcelona, Spain
| |
Collapse
|
190
|
Nanami T, Kohno T. Piecewise quadratic neuron model: A tool for close-to-biology spiking neuronal network simulation on dedicated hardware. Front Neurosci 2023; 16:1069133. [PMID: 36699524 PMCID: PMC9870328 DOI: 10.3389/fnins.2022.1069133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023] Open
Abstract
Spiking neuron models simulate neuronal activities and allow us to analyze and reproduce the information processing of the nervous system. However, ionic-conductance models, which can faithfully reproduce neuronal activities, require a huge computational cost, while integral-firing models, which are computationally inexpensive, have some difficulties in reproducing neuronal activities. Here we propose a Piecewise Quadratic Neuron (PQN) model based on a qualitative modeling approach that aims to reproduce only the key dynamics behind neuronal activities. We demonstrate that PQN models can accurately reproduce the responses of ionic-conductance models of major neuronal classes to stimulus inputs of various magnitudes. In addition, the PQN model is designed to support the efficient implementation on digital arithmetic circuits for use as silicon neurons, and we confirm that the PQN model consumes much fewer circuit resources than the ionic-conductance models. This model intends to serve as a tool for building a large-scale closer-to-biology spiking neural network.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
191
|
Shao F, Shen Z. How can artificial neural networks approximate the brain? Front Psychol 2023; 13:970214. [PMID: 36698593 PMCID: PMC9868316 DOI: 10.3389/fpsyg.2022.970214] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
The article reviews the history development of artificial neural networks (ANNs), then compares the differences between ANNs and brain networks in their constituent unit, network architecture, and dynamic principle. The authors offer five points of suggestion for ANNs development and ten questions to be investigated further for the interdisciplinary field of brain simulation. Even though brain is a super-complex system with 1011 neurons, its intelligence does depend rather on the neuronal type and their energy supply mode than the number of neurons. It might be possible for ANN development to follow a new direction that is a combination of multiple modules with different architecture principle and multiple computation, rather than very large scale of neural networks with much more uniformed units and hidden layers.
Collapse
Affiliation(s)
- Feng Shao
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | | |
Collapse
|
192
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
193
|
Dandekar T, Kunz M. How Is Our Own Extremely Powerful Brain Constructed? Bioinformatics 2023. [DOI: 10.1007/978-3-662-65036-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
194
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
195
|
Roussel Y, Verasztó C, Rodarie D, Damart T, Reimann M, Ramaswamy S, Markram H, Keller D. Mapping of morpho-electric features to molecular identity of cortical inhibitory neurons. PLoS Comput Biol 2023; 19:e1010058. [PMID: 36602951 DOI: 10.1371/journal.pcbi.1010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/26/2022] [Indexed: 01/06/2023] Open
Abstract
Knowledge of the cell-type-specific composition of the brain is useful in order to understand the role of each cell type as part of the network. Here, we estimated the composition of the whole cortex in terms of well characterized morphological and electrophysiological inhibitory neuron types (me-types). We derived probabilistic me-type densities from an existing atlas of molecularly defined cell-type densities in the mouse cortex. We used a well-established me-type classification from rat somatosensory cortex to populate the cortex. These me-types were well characterized morphologically and electrophysiologically but they lacked molecular marker identity labels. To extrapolate this missing information, we employed an additional dataset from the Allen Institute for Brain Science containing molecular identity as well as morphological and electrophysiological data for mouse cortical neurons. We first built a latent space based on a number of comparable morphological and electrical features common to both data sources. We then identified 19 morpho-electrical clusters that merged neurons from both datasets while being molecularly homogeneous. The resulting clusters best mirror the molecular identity classification solely using available morpho-electrical features. Finally, we stochastically assigned a molecular identity to a me-type neuron based on the latent space cluster it was assigned to. The resulting mapping was used to derive inhibitory me-types densities in the cortex.
Collapse
Affiliation(s)
- Yann Roussel
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Csaba Verasztó
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Dimitri Rodarie
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Tanguy Damart
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Michael Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
196
|
Thio BJ, Aberra AS, Dessert GE, Grill WM. Ideal current dipoles are appropriate source representations for simulating neurons for intracranial recordings. Clin Neurophysiol 2023; 145:26-35. [PMID: 36403433 PMCID: PMC9772254 DOI: 10.1016/j.clinph.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether dipoles are an appropriate simplified representation of neural sources for stereo-EEG (sEEG). METHODS We compared the distributions of voltages generated by a dipole, biophysically realistic cortical neuron models, and extended regions of cortex to determine how well a dipole represented neural sources at different spatial scales and at electrode to neuron distances relevant for sEEG. We also quantified errors introduced by the dipole approximation of neural sources in sEEG source localization using standardized low-resolution electrotomography (sLORETA). RESULTS For pyramidal neurons, the coefficient of correlation between voltages generated by a dipole and neuron model were > 0.9 for distances > 1 mm. For small regions of cortex (∼0.1 cm2), the error in voltages between a dipole and region was < 100 µV for all distances. However, larger regions of active cortex (>5 cm2) yielded > 50 µV errors within 1.5 cm of an electrode when compared to single dipoles. Finally, source localization errors were < 5 mm when using dipoles to represent realistic neural sources. CONCLUSIONS Single dipoles are an appropriate source model to represent both single neurons and small regions of active cortex, while multiple dipoles are required to represent large regions of cortex. SIGNIFICANCE Dipoles are computationally tractable and valid source models for sEEG.
Collapse
Affiliation(s)
- Brandon J Thio
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Grace E Dessert
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States; Department of Neurobiology, Duke University, Durham, NC, United States; Department of Neurosurgery, Duke University, Durham, NC, United States.
| |
Collapse
|
197
|
Evaluating the statistical similarity of neural network activity and connectivity via eigenvector angles. Biosystems 2023; 223:104813. [PMID: 36460172 DOI: 10.1016/j.biosystems.2022.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Neural systems are networks, and strategic comparisons between multiple networks are a prevalent task in many research scenarios. In this study, we construct a statistical test for the comparison of matrices representing pairwise aspects of neural networks, in particular, the correlation between spiking activity and connectivity. The "eigenangle test" quantifies the similarity of two matrices by the angles between their ranked eigenvectors. We calibrate the behavior of the test for use with correlation matrices using stochastic models of correlated spiking activity and demonstrate how it compares to classical two-sample tests, such as the Kolmogorov-Smirnov distance, in the sense that it is able to evaluate also structural aspects of pairwise measures. Furthermore, the principle of the eigenangle test can be applied to compare the similarity of adjacency matrices of certain types of networks. Thus, the approach can be used to quantitatively explore the relationship between connectivity and activity with the same metric. By applying the eigenangle test to the comparison of connectivity matrices and correlation matrices of a random balanced network model before and after a specific synaptic rewiring intervention, we gauge the influence of connectivity features on the correlated activity. Potential applications of the eigenangle test include simulation experiments, model validation, and data analysis.
Collapse
|
198
|
Xing Y, Zan C, Liu L. Recent advances in understanding neuronal diversity and neural circuit complexity across different brain regions using single-cell sequencing. Front Neural Circuits 2023; 17:1007755. [PMID: 37063385 PMCID: PMC10097998 DOI: 10.3389/fncir.2023.1007755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/16/2023] [Indexed: 04/18/2023] Open
Abstract
Neural circuits are characterized as interconnecting neuron networks connected by synapses. Some kinds of gene expression and/or functional changes of neurons and synaptic connections may result in aberrant neural circuits, which has been recognized as one crucial pathological mechanism for the onset of many neurological diseases. Gradual advances in single-cell sequencing approaches with strong technological advantages, as exemplified by high throughput and increased resolution for live cells, have enabled it to assist us in understanding neuronal diversity across diverse brain regions and further transformed our knowledge of cellular building blocks of neural circuits through revealing numerous molecular signatures. Currently published transcriptomic studies have elucidated various neuronal subpopulations as well as their distribution across prefrontal cortex, hippocampus, hypothalamus, and dorsal root ganglion, etc. Better characterization of brain region-specific circuits may shed light on new pathological mechanisms involved and assist in selecting potential targets for the prevention and treatment of specific neurological disorders based on their established roles. Given diverse neuronal populations across different brain regions, we aim to give a brief sketch of current progress in understanding neuronal diversity and neural circuit complexity according to their locations. With the special focus on the application of single-cell sequencing, we thereby summarize relevant region-specific findings. Considering the importance of spatial context and connectivity in neural circuits, we also discuss a few published results obtained by spatial transcriptomics. Taken together, these single-cell sequencing data may lay a mechanistic basis for functional identification of brain circuit components, which links their molecular signatures to anatomical regions, connectivity, morphology, and physiology. Furthermore, the comprehensive characterization of neuron subtypes, their distributions, and connectivity patterns via single-cell sequencing is critical for understanding neural circuit properties and how they generate region-dependent interactions in different context.
Collapse
Affiliation(s)
- Yu Xing
- Department of Neurology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Chunfang Zan
- Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Lu Liu
- Munich Medical Research School (MMRS), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
- *Correspondence: Lu Liu, ,
| |
Collapse
|
199
|
Grounding Mental Representations in a Virtual Multi-Level Functional Framework. J Cogn 2023; 6:6. [PMID: 36698786 PMCID: PMC9838229 DOI: 10.5334/joc.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/14/2022] [Indexed: 01/14/2023] Open
Abstract
According to the associative theory of learning, reactive behaviors described by stimulus-response pairs result in the progressive wiring of a plastic brain. In contrast, flexible behaviors are supposedly driven by neurologically grounded mental states that involve computations on informational contents. These theories appear complementary, but are generally opposed to each other. The former is favored by neuro-scientists who explore the low-level biological processes supporting cognition, and the later by cognitive psychologists who look for higher-level structures. This situation can be clarified through an analysis that independently defines abstract neurological and informational functionalities, and then relate them through a virtual interface. This framework is validated through a modeling of the first stage of Piaget's cognitive development theory, whose reported end experiments demonstrate the emergence of mental representations of object displacements. The neural correlates grounding this emergence are given in the isomorphic format of an associative memory. As a child's exploration of the world progresses, his mental models will eventually include representations of space, time and causality. Only then epistemological concepts, such as beliefs, will give rise to higher level mental representations in a possibly richer propositional format. This raises the question of which additional neurological functionalities, if any, would be required in order to include these extensions into a comprehensive grounded model. We relay previously expressed views, which in summary hypothesize that the ability to learn has evolved from associative reflexes and memories, to suggest that the functionality of associative memories could well provide the sufficient means for grounding cognitive capacities.
Collapse
|
200
|
Buchin A, de Frates R, Nandi A, Mann R, Chong P, Ng L, Miller J, Hodge R, Kalmbach B, Bose S, Rutishauser U, McConoughey S, Lein E, Berg J, Sorensen S, Gwinn R, Koch C, Ting J, Anastassiou CA. Multi-modal characterization and simulation of human epileptic circuitry. Cell Rep 2022; 41:111873. [PMID: 36577383 PMCID: PMC9841067 DOI: 10.1016/j.celrep.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/16/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular level remains unclear. Here, we show that hippocampal granule cells change with disease progression as measured in living, resected hippocampal tissue excised from patients with epilepsy. We show that granule cells increase excitability and shorten response latency while also enlarging in cellular volume and spine density. Single-nucleus RNA sequencing combined with simulations ascribes the changes to three conductances: BK, Cav2.2, and Kir2.1. In a network model, we show that these changes related to disease progression bring the circuit into a more excitable state, while reversing them produces a less excitable, "early-disease-like" state.
Collapse
Affiliation(s)
| | | | | | - Rusty Mann
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lindsay Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Soumita Bose
- Allen Institute for Brain Science, Seattle, WA, USA; CiperHealth, San Francisco, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Costas A Anastassiou
- Allen Institute for Brain Science, Seattle, WA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|