151
|
Gounko NV, Martens E, Opdenakker G, Rybakin V. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B. Sci Rep 2016; 6:29852. [PMID: 27432536 PMCID: PMC4949482 DOI: 10.1038/srep29852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMP) play critical roles in a variety of immune reactions by facilitating cell migration, and affect cell communication by processing both cytokines and cell surface receptors. Based on published data indicating that MMP-9 is upregulated upon T cell activation and also in the thymus upon the induction of negative selection, we investigated the contribution of MMP-9 into mouse T cell development and differentiation in the thymus. Our data suggest that MMP-9 deficiency does not result in major abnormalities in the development of any conventionally selected or agonist selected subsets and does not interfere with thymocyte apoptosis and clearance, and that MMP-9 expression is not induced in immature T cells at any stage of their thymic development.
Collapse
Affiliation(s)
- Natalia V Gounko
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.,Electron Microscopy Platform, Center for the Biology of Disease VIB and Center for Human Genetics KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| |
Collapse
|
152
|
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, Nagarkatti M, Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295-296:148-61. [DOI: 10.1016/j.jneuroim.2016.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
153
|
Strazza M, Maubert ME, Pirrone V, Wigdahl B, Nonnemacher MR. Co-culture model consisting of human brain microvascular endothelial and peripheral blood mononuclear cells. J Neurosci Methods 2016; 269:39-45. [PMID: 27216631 DOI: 10.1016/j.jneumeth.2016.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Numerous systems exist to model the blood-brain barrier (BBB) with the goal of understanding the regulation of passage into the central nervous system (CNS) and the potential impact of selected insults on BBB function. These models typically focus on the intrinsic cellular properties of the BBB, yet studies of peripheral cell migration are often excluded due to technical restraints. NEW METHOD This method allows for the study of in vitro cellular transmigration following exposure to any treatment of interest through optimization of co-culture conditions for the human brain microvascular endothelial cells (BMEC) cell line, hCMEC/D3, and primary human peripheral blood mononuclear cells (PBMCs). RESULTS hCMEC/D3 cells form functionally confluent monolayers on collagen coated polytetrafluoroethylene (PTFE) transwell inserts, as assessed by microscopy and tracer molecule (FITC-dextran (FITC-D)) exclusion. Two components of complete hCMEC/D3 media, EBM-2 base-media and hydrocortisone (HC), were determined to be cytotoxic to PBMCs. By combining the remaining components of complete hCMEC/D3 media with complete PBMC media a resulting co-culture media was established for use in hCMEC/D3-PBMC co-culture functional assays. COMPARISON WITH EXISTING METHODS Through this method, issues of extensive differences in culture media conditions are resolved allowing for treatments and functional assays to be conducted on the two cell populations co-cultured simultaneously. CONCLUSION Described here is an in vitro co-culture model of the BBB, consisting of the hCMEC/D3 cell line and primary human PBMCs. The co-culture media will now allow for the study of exposure to potential insults to BBB function over prolonged time courses.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Monique E Maubert
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street Suite 1050, Philadelphia, PA 19107, USA.
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| |
Collapse
|
154
|
Qiao Z, Dang C, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Ma Y, Kong R, Ma Z. Downregulation of O-linked N-acetylglucosamine transferase by RNA interference decreases MMP9 expression in human esophageal cancer cells. Oncol Lett 2016; 11:3317-3323. [PMID: 27123109 PMCID: PMC4840913 DOI: 10.3892/ol.2016.4428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
O-linked N-acetylglucosamine transferase (OGT) catalyzes O-linked glycosylation (O-GlcNAcylation). O-GlcNAcylation is a post-translational carbohydrate modification of diverse nuclear and cytosolic proteins by the addition of O-linked β-N-acetylglucosamine. It was recently demonstrated that OGT and the level of O-GlcNAcylation are upregulated in esophageal cancer; however, the physiological consequences of this upregulation remain unknown. The current study reports that OGT knockdown by short hairpin RNA (shRNA) did not affect cell viability; however, cell migration in esophageal cancer Eca-109 cells was significantly reduced. OGT-specific shRNA vectors efficiently decreased the protein and mRNA levels of OGT and the RL2 level (a marker of O-GlcNAcylation levels) in Eca-109 esophageal cancer cells. In addition, colony formation and cell proliferation assays demonstrated that OGT-specific shRNA decreased the proliferation of Eca-109 cells; however, there was no significant statistical difference between OGT-specific shRNA and control shRNA. Notably, transwell assays demonstrated that the migratory ability of Eca-109 cells was significantly suppressed following knockdown of the OGT gene. Correspondingly, western blot analyses demonstrated that OGT knockdown significantly downregulated the expression of matrix metalloproteinase 9 (MMP9) in Eca-109 cells. These results suggest that OGT may promote the migration, invasion and metastasis of esophageal cancer cells by enhancing the stability or expression of MMP9.
Collapse
Affiliation(s)
- Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bin Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhenchuan Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
155
|
Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016; 139 Suppl 2:91-114. [PMID: 26525923 DOI: 10.1111/jnc.13415] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.
Collapse
|
156
|
Owens GC, Chang JW, Huynh MN, Chirwa T, Vinters HV, Mathern GW. Evidence for Resident Memory T Cells in Rasmussen Encephalitis. Front Immunol 2016; 7:64. [PMID: 26941743 PMCID: PMC4763066 DOI: 10.3389/fimmu.2016.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease of unknown etiology characterized by intractable seizures, and progressive atrophy usually confined to one cerebral hemisphere. Surgical removal or disconnection of the affected cerebral hemisphere is currently the only intervention that effectively stops the seizures. Histopathological evaluation of resected brain tissue has shown that activated brain resident macrophages (microglia) and infiltrating T cells are involved in the inflammatory reaction. Here, we report that T cells isolated from seven RE brain surgery specimens express the resident memory T cell (TRM) marker CD103. CD103 was expressed by >50% of CD8+ αβ T cells and γδ T cells irrespective of the length of time from seizure onset to surgery, which ranged from 0.3 to 8.4 years. Only ~10% of CD4+ αβ were CD103+, which was consistent with the observation that few CD4+ T cells are found in RE brain parenchyma. Clusters of T cells in brain parenchyma, which are a characteristic of RE histopathology, stained for CD103. Less than 10% of T cells isolated from brain specimens from eight surgical cases of focal cortical dysplasia (FCD), a condition that is also characterized by intractable seizures, were CD103+. In contrast to the RE cases, the percent of CD103+ T cells increased with the length of time from seizure onset to surgery. In sections of brain tissue from the FCD cases, T cells were predominantly found around blood vessels, and did not stain for CD103. The presence of significant numbers of TRM cells in RE brain irrespective of the length of time between clinical presentation and surgical intervention supports the conclusion that a cellular immune response to an as yet unidentified antigen(s) occurs at an early stage of the disease. Reactivated TRM cells may contribute to disease progression.
Collapse
Affiliation(s)
- Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - My N Huynh
- Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Thabiso Chirwa
- Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Harry V Vinters
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Mattel Children's Hospital, Los Angeles, CA, USA
| |
Collapse
|
157
|
Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RLM, Curtis MA, Park TIH, Dragunow M. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation 2016; 13:37. [PMID: 26867675 PMCID: PMC4751726 DOI: 10.1186/s12974-016-0503-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Background Transforming growth factor beta 1 (TGFβ1) is strongly induced following brain injury and polarises microglia to an anti-inflammatory phenotype. Augmentation of TGFβ1 responses may therefore be beneficial in preventing inflammation in neurological disorders including stroke and neurodegenerative diseases. However, several other cell types display immunogenic potential and identifying the effect of TGFβ1 on these cells is required to more fully understand its effects on brain inflammation. Pericytes are multifunctional cells which ensheath the brain vasculature and have garnered recent attention with respect to their immunomodulatory potential. Here, we sought to investigate the inflammatory phenotype adopted by TGFβ1-stimulated human brain pericytes. Methods Microarray analysis was performed to examine transcriptome-wide changes in TGFβ1-stimulated pericytes, and results were validated by qRT-PCR and cytometric bead arrays. Flow cytometry, immunocytochemistry and LDH/Alamar Blue® viability assays were utilised to examine phagocytic capacity of human brain pericytes, transcription factor modulation and pericyte health. Results TGFβ1 treatment of primary human brain pericytes induced the expression of several inflammatory-related genes (NOX4, COX2, IL6 and MMP2) and attenuated others (IL8, CX3CL1, MCP1 and VCAM1). A synergistic induction of IL-6 was seen with IL-1β/TGFβ1 treatment whilst TGFβ1 attenuated the IL-1β-induced expression of CX3CL1, MCP-1 and sVCAM-1. TGFβ1 was found to signal through SMAD2/3 transcription factors but did not modify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation. Furthermore, TGFβ1 attenuated the phagocytic ability of pericytes, possibly through downregulation of the scavenger receptors CD36, CD47 and CD68. Whilst TGFβ did decrease pericyte number, this was due to a reduction in proliferation, not apoptotic death or compromised cell viability. Conclusions TGFβ1 attenuated pericyte expression of key chemokines and adhesion molecules involved in CNS leukocyte trafficking and the modulation of microglial function, as well as reduced the phagocytic ability of pericytes. However, TGFβ1 also enhanced the expression of classical pro-inflammatory cytokines and enzymes which can disrupt BBB functioning, suggesting that pericytes adopt a phenotype which is neither solely pro- nor anti-inflammatory. Whilst the effects of pericyte modulation by TGFβ1 in vivo are difficult to infer, the reduction in pericyte proliferation together with the elevated IL-6, MMP-2 and NOX4 and reduced phagocytosis suggests a detrimental action of TGFβ1 on neurovasculature. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0503-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Miranda Aalderink
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Emma L Scotter
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | | | - Peter S Bergin
- Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand.,Auckland City Hospital, Auckland, 1023, New Zealand
| | - Edward W Mee
- Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand.,Auckland City Hospital, Auckland, 1023, New Zealand
| | - E Scott Graham
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Richard L M Faull
- Department of Anatomy, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Maurice A Curtis
- Department of Anatomy, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, 1023, New Zealand.,Department of Anatomy, The University of Auckland, Auckland, 1023, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, 1023, New Zealand. .,Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
158
|
Cui C, Wang P, Cui N, Song S, Liang H, Ji A. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicas promotes the SDF-1α/CXCR4 axis-induced NSC migration via the PI3K/Akt/FOXO3a, ERK/MAPK, and NF-κB signaling pathways. Neurosci Lett 2016; 616:57-64. [PMID: 26827717 DOI: 10.1016/j.neulet.2016.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
Abstract
The present study describes a positive regulatory loop between SJP and the SDF-1α/CXCR4 axis in NSC migration. The treatment of NSCs with SJP and SDF-1α increases the cell migration capacity and promotes cell migration from the neurospheres. These effects are accompanied by the up-regulation of Nestin, N-cadherin, TLR4, TNF-α, Cyclin D1, EGFR, Alpha 6 integrin, MMP-2, MMP-9, and iNOS, including SDF-1α and CXCR4 themselves. However, these effects are blocked by AMD3100, LY294002, U0126, and PDTC. SJP enhances the SDF-1α/CXCR4 axis-induced MMP-2 and MMP-9 secretion and NO release. Results demonstrate that interaction of SJP with the SDF-1α/CXCR4 axis regulates NSC migration via the PI3K/Akt/FOXO3a, ERK-MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Chao Cui
- Marine College, Shandong University, Weihai, Shandong, China; School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Ningshan Cui
- Marine College, Shandong University, Weihai, Shandong, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong, China
| | - Hao Liang
- Marine College, Shandong University, Weihai, Shandong, China
| | - Aiguo Ji
- Marine College, Shandong University, Weihai, Shandong, China; School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
159
|
Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, Xu N, Stetler RA, Zhang F, Liu X, Leak RK, Keep RF, Ji X, Chen J. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun 2016; 7:10523. [PMID: 26813496 PMCID: PMC4737895 DOI: 10.1038/ncomms10523] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022] Open
Abstract
The mechanism and long-term consequences of early blood–brain barrier (BBB) disruption after cerebral ischaemic/reperfusion (I/R) injury are poorly understood. Here we discover that I/R induces subtle BBB leakage within 30–60 min, likely independent of gelatinase B/MMP-9 activities. The early BBB disruption is caused by the activation of ROCK/MLC signalling, persistent actin polymerization and the disassembly of junctional proteins within microvascular endothelial cells (ECs). Furthermore, the EC alterations facilitate subsequent infiltration of peripheral immune cells, including MMP-9-producing neutrophils/macrophages, resulting in late-onset, irreversible BBB damage. Inactivation of actin depolymerizing factor (ADF) causes sustained actin polymerization in ECs, whereas EC-targeted overexpression of constitutively active mutant ADF reduces actin polymerization and junctional protein disassembly, attenuates both early- and late-onset BBB impairment, and improves long-term histological and neurological outcomes. Thus, we identify a previously unexplored role for early BBB disruption in stroke outcomes, whereby BBB rupture may be a cause rather than a consequence of parenchymal cell injury. Matrix metalloproteinases (MMPs) released from infiltrating immune cells are a major contributor to blood-brain barrier (BBB) breakdown following stroke. Here, the authors identify an early, MMP-independent BBB breakdown mechanism caused by rapid cytoskeletal rearrangements in endothelial cells, which could be inhibited by ADF.
Collapse
Affiliation(s)
- Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lili Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Hongjian Pu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Leilei Mao
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Xiaoyan Jiang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Na Xu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Feng Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Xiangrong Liu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
160
|
Seo JE, Hasan M, Han JS, Kim NK, Lee JE, Lee KM, Park JH, Kim HJ, Son J, Lee J, Kwon OS. Dependency of Experimental Autoimmune Encephalomyelitis Induction on MOG35-55 Properties Modulating Matrix Metalloproteinase-9 and Interleukin-6. Neurochem Res 2015; 41:666-76. [PMID: 26464215 DOI: 10.1007/s11064-015-1732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Mahbub Hasan
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Joon-Seung Han
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ju-Hyung Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ho Jun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Oh-Seung Kwon
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea.
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Korea.
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
161
|
Hallmann R, Zhang X, Di Russo J, Li L, Song J, Hannocks MJ, Sorokin L. The regulation of immune cell trafficking by the extracellular matrix. Curr Opin Cell Biol 2015; 36:54-61. [PMID: 26189064 DOI: 10.1016/j.ceb.2015.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/04/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) comes in different structural forms and biochemical compositions, which determine both its biophysical properties and its ability to convey specific signals to immune cells encountering or navigating through it. Traditionally, the role of the individual ECM molecules on cell migration has been investigated independent of considerations such as the tension/mechanical strength constituted by the ECM. However, more recently, this aspect has attracted considerable attention and data suggest that rigidity and molecular signals derived from the ECM define the mode of cell migration. We here review the different types of ECM encountered by migrating immune cells in vivo, as well as current information on how both molecular components of the ECM and their supramolecular structure can impact on modes of immune cell migration.
Collapse
Affiliation(s)
- Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
162
|
Glioblastoma Circulating Cells: Reality, Trap or Illusion? Stem Cells Int 2015; 2015:182985. [PMID: 26078762 PMCID: PMC4452868 DOI: 10.1155/2015/182985] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/19/2015] [Indexed: 01/08/2023] Open
Abstract
Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM), the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a “homing metastasis” process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC) specific properties, emphasizing their epithelial to mesenchymal transition (EMT) abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM.
Collapse
|