151
|
Lin B, Deng S, Gao H, Yin J. A Multi-Scale Activity Transition Network for Data Translation in EEG Signals Decoding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1699-1709. [PMID: 32931434 DOI: 10.1109/tcbb.2020.3024228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electroencephalogram (EEG) is a non-invasive collection method for brain signals. It has broad prospects in brain-computer interface (BCI) applications. Recent advances have shown the effectiveness of the widely used convolutional neural network (CNN) in EEG decoding. However, some studies reveal that a slight disturbance to the inputs, e.g., data translation, can change CNN's outputs. Such instability is dangerous for EEG-based BCI applications because signals in practice are different from training data. In this study, we propose a multi-scale activity transition network (MSATNet) to alleviate the influence of the translation problem in convolution-based models. MSATNet provides an activity state pyramid consisting of multi-scale recurrent neural networks to capture the relationship between brain activities, which is a translation-invariant feature. In the experiment, Kullback-Leibler divergence is applied to measure the degree of translation. The comprehensive results demonstrate that our method surpasses the AUC of 0.0080, 0.0254, 0.0393 in 1, 5, and 10 KL divergence compared to competitors with various convolution structures.
Collapse
|
152
|
Patient-specific method of sleep electroencephalography using wavelet packet transform and Bi-LSTM for epileptic seizure prediction. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
153
|
Gu X, Cao Z, Jolfaei A, Xu P, Wu D, Jung TP, Lin CT. EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1645-1666. [PMID: 33465029 DOI: 10.1109/tcbb.2021.3052811] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research.
Collapse
|
154
|
Chakrabarti S, Swetapadma A, Pattnaik PK. A channel independent generalized seizure detection method for pediatric epileptic seizures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106335. [PMID: 34390934 DOI: 10.1016/j.cmpb.2021.106335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy the disorder of the central nervous system has its worldwide presence in roughly 50 million people as estimated by the World Health Organization. Electroencephalogram (EEG) is one of the most common and non-invasive ways of analyzing and studying the subtle changes in neuronal activity of the brain during an epileptic seizure attack. These changes can be analyzed for developing an automated system that would assert the chances of an impending seizure. As changeable nature of seizure affects the patients from having a normal life, hence progress in developing new methods will improve the quality of life and also provide assistance in the medical sector. Objective of the proposed method is to avoid EEG channel selection and use all input EEG channel features to design a generalized epileptic seizure detection framework. METHOD In this work, a long short-term memory network has been proposed that is not complex and has the capability of effectively detecting epileptic seizures from both non-invasive and invasive electroencephalogram recordings. The proposed framework is simple and effective and designed in such capacity that raw electroencephalogram signals can be used to detect seizures. Also, a generalized approach has been followed that is channel independent such that EEG signals belonging to any hemisphere of the brain can be detected effectively by the proposed architecture. RESULTS The automated seizure detection system achieved high seizure detection sensitivity of 99.9%, and a low false-positive rate of 0.003 per hour for the Children's Hospital Boston-Massachusetts Institute of Technology dataset. While for the Sleep-Wake-Epilepsy-Center of the University Department of Neurology at the Inselspital Bern dataset, the sensitivity is 99.4% and false-positive rate of 0.006 per hour. Convergence analysis of the proposed model provides a significant amount of reliability and correctness in the efficient detection of epileptic seizures. CONCLUSION Assessment of the proposed framework on non-invasive as well as invasive EEG signals showed that the framework worked well for different type of EEG recordings as different metrics gave satisfactory results. As the framework is simple and did not require any additional parameter optimization techniques, it reduced the processing overheads without affecting the accuracy. Hence, it can be used as an efficient method for monitoring epileptic seizures.
Collapse
Affiliation(s)
- Satarupa Chakrabarti
- School of Computer Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aleena Swetapadma
- School of Computer Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| | | |
Collapse
|
155
|
He H, Liu X, Hao Y. A progressive deep wavelet cascade classification model for epilepsy detection. Artif Intell Med 2021; 118:102117. [PMID: 34412840 DOI: 10.1016/j.artmed.2021.102117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Automatic epileptic seizure detection according to EEG recordings is helpful for neurologists to identify an epilepsy occurrence in the initial anti-epileptic treatment. To quickly and accurately detect epilepsy, we proposed a progressive deep wavelet cascade classification model (PDWC) based on the discrete wavelet transform (DWT) and Random Forest (RF). Different from current deep networks, the PDWC mimics the progressive object identification process of human beings with recognition cycles. In every cycle, enhanced wavelet energy features at a specific scale were extracted by DWT and input into a set of cascade RF classifiers to realize one recognition. The recognition accuracy of PDWC is gradually improved by the fusion of classification results produced by multiple recognition cycles. Moreover, the cascade structure of PDWC can be automatically determined by the classification accuracy increment between layers. To verify the performance of the PDWC, we respectively applied five traditional schemes and four deep learning schemes to four public datasets. The results show that the PDWC is not only superior than five traditional schemes, including KNN, Bayes, DT, SVM, and RF, but also better than deep learning methods, i.e. convolutional neural network (CNN), Long Short-Term Memory (LSTM), multi-Grained Cascade Forest (gcForest) and wavelet cascade model (WCM). The mean accuracy of PDWC for all subjects of all datasets reaches to 0.9914. With a flexible structure and less parameters, the PDWC is more suitable for the epilepsy detection of diverse EEG signals.
Collapse
Affiliation(s)
- Hong He
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyue Liu
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
156
|
Yang X, Zhao J, Sun Q, Lu J, Ma X. An Effective Dual Self-Attention Residual Network for Seizure Prediction. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1604-1613. [PMID: 34370668 DOI: 10.1109/tnsre.2021.3103210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As one of the most challenging data analysis tasks in chronic brain diseases, epileptic seizure prediction has attracted extensive attention from many researchers. Seizure prediction, can greatly improve patients' quality of life in many ways, such as preventing accidents and reducing harm that may occur during epileptic seizures. This work aims to develop a general method for predicting seizures in specific patients through exploring the time-frequency correlation of features obtained from multi-channel EEG signals. We convert the original EEG signals into spectrograms that represent time-frequency characteristics by applying short-time Fourier transform (STFT) to the EEG signals. For the first time, we propose a dual self-attention residual network (RDANet) that combines a spectrum attention module integrating local features with global features, with a channel attention module mining the interdependence between channel mappings to achieve better forecasting performance. Our proposed approach achieved a sensitivity of 89.33%, a specificity of 93.02%, an AUC of 91.26% and an accuracy of 92.07% on 13 patients from the public CHB-MIT scalp EEG dataset. Our experiments show that different EEG signal prediction segment lengths are an important factor affecting prediction performance. Our proposed method is competitive and achieves good robustness without patient-specific engineering.
Collapse
|
157
|
Automatic detection of epileptic seizure events using the time-frequency features and machine learning. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
158
|
Muhammad Usman S, Khalid S, Bashir S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput Biol Med 2021; 136:104710. [PMID: 34364257 DOI: 10.1016/j.compbiomed.2021.104710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects.
Collapse
Affiliation(s)
| | - Shehzad Khalid
- Department of Computer Engineering, Bahria University, Islamabad, Pakistan.
| | - Sadaf Bashir
- Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| |
Collapse
|
159
|
Ma M, Cheng Y, Wei X, Chen Z, Zhou Y. Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN. BMC Med Inform Decis Mak 2021; 21:100. [PMID: 34330248 PMCID: PMC8323263 DOI: 10.1186/s12911-021-01438-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Epilepsy is one of the diseases of the nervous system, which has a large population in the world. Traditional diagnosis methods mostly depended on the professional neurologists’ reading of the electroencephalogram (EEG), which was time-consuming, inefficient, and subjective. In recent years, automatic epilepsy diagnosis of EEG by deep learning had attracted more and more attention. But the potential of deep neural networks in seizure detection had not been fully developed. Methods In this article, we used a one-dimensional convolutional neural network (1-D CNN) to replace the residual network architecture’s traditional convolutional neural network (CNN). Moreover, we combined the Independent recurrent neural network (indRNN) and CNN to form a new residual network architecture-independent convolutional recurrent neural network (RCNN). Our model can achieve an automatic diagnosis of epilepsy EEG. Firstly, the important features of EEG were learned by using the residual network architecture of 1-D CNN. Then the relationship between the sequences were learned by using the recurrent neural network. Finally, the model outputted the classification results. Results On the small sample data sets of Bonn University, our method was superior to the baseline methods and achieved 100% classification accuracy, 100% classification specificity. For the noisy real-world data, our method also exhibited powerful performance. Conclusion The model we proposed can quickly and accurately identify the different periods of EEG in an ideal condition and the real-world condition. The model can provide automatic detection capabilities for clinical epilepsy EEG detection. We hoped to provide a positive significance for the prediction of epileptic seizures EEG.
Collapse
Affiliation(s)
- Mengnan Ma
- School of Biomedical Engineering, Sun Yat-sen University, No.132 Waihuan East Road, Guangzhou, 510006, China.,Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yinlin Cheng
- School of Biomedical Engineering, Sun Yat-sen University, No.132 Waihuan East Road, Guangzhou, 510006, China.,Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoyan Wei
- Minister of Science, Education and Data Management Department, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Ziyi Chen
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, No.74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
160
|
A Study on Seizure Detection of EEG Signals Represented in 2D. SENSORS 2021; 21:s21155145. [PMID: 34372381 PMCID: PMC8348755 DOI: 10.3390/s21155145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
A seizure is a neurological disorder caused by abnormal neuronal discharges in the brain, which severely reduces the quality of life of patients and often endangers their lives. Automatic seizure detection is an important research area in the treatment of seizure and is a prerequisite for seizure intervention. Deep learning has been widely used for automatic detection of seizures, and many related research works decomposed the electroencephalogram (EEG) raw signal with a time window to obtain EEG signal slices, then performed feature extraction on the slices, and represented the obtained features as input data for neural networks. There are various methods for EEG signal decomposition, feature extraction, and representation, and most of the studies have been based on fixed hardware resources for the design of the scheme, which reduces the adaptability of the scheme in different application scenarios and makes it difficult to optimize the algorithms in the scheme. To address the above issues, this paper proposes a deep learning-based model for seizure detection, mainly characterized by the two-dimensional representation of EEG features and the scalability of neural networks. The model modularizes the main steps of seizure detection and improves the adaptability of the model to different hardware resource constraints, in order to increase the convenience of the algorithm optimization or the replacement of each module. The proposed model consists of five parts, and the model was tested using two epilepsy datasets separately. The experimental results showed that the proposed model has strong generality and good classification accuracy for seizure detection.
Collapse
|
161
|
Dissanayake T, Fernando T, Denman S, Sridharan S, Fookes C. Geometric Deep Learning for Subject-Independent Epileptic Seizure Prediction using Scalp EEG Signals. IEEE J Biomed Health Inform 2021; 26:527-538. [PMID: 34314363 DOI: 10.1109/jbhi.2021.3100297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subjects brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.
Collapse
|
162
|
Sundaresan A, Penchina B, Cheong S, Grace V, Valero-Cabré A, Martel A. Evaluating deep learning EEG-based mental stress classification in adolescents with autism for breathing entrainment BCI. Brain Inform 2021; 8:13. [PMID: 34255197 PMCID: PMC8276906 DOI: 10.1186/s40708-021-00133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Mental stress is a major individual and societal burden and one of the main contributing factors that lead to pathologies such as depression, anxiety disorders, heart attacks, and strokes. Given that anxiety disorders are one of the most common comorbidities in youth with autism spectrum disorder (ASD), this population is particularly vulnerable to mental stress, severely limiting overall quality of life. To prevent this, early stress quantification with machine learning (ML) and effective anxiety mitigation with non-pharmacological interventions are essential. This study aims to investigate the feasibility of exploiting electroencephalography (EEG) signals for stress assessment by comparing several ML classifiers, namely support vector machine (SVM) and deep learning methods. We trained a total of eleven subject-dependent models-four with conventional brain-computer interface (BCI) methods and seven with deep learning approaches-on the EEG of neurotypical (n=5) and ASD (n=8) participants performing alternating blocks of mental arithmetic stress induction, guided and unguided breathing. Our results show that a multiclass two-layer LSTM RNN deep learning classifier is capable of identifying mental stress from ongoing EEG with an overall accuracy of 93.27%. Our study is the first to successfully apply an LSTM RNN classifier to identify stress states from EEG in both ASD and neurotypical adolescents, and offers promise for an EEG-based BCI for the real-time assessment and mitigation of mental stress through a closed-loop adaptation of respiration entrainment.
Collapse
Affiliation(s)
- Avirath Sundaresan
- The Nueva School, San Mateo, CA, 94033, USA.,Causal Brain Dynamics, Plasticity and Rehabilitation Team, Frontlab, Brain and Spine Institute, ICM, CNRS UMR, Paris, 7225, France
| | - Brian Penchina
- The Nueva School, San Mateo, CA, 94033, USA.,Causal Brain Dynamics, Plasticity and Rehabilitation Team, Frontlab, Brain and Spine Institute, ICM, CNRS UMR, Paris, 7225, France
| | - Sean Cheong
- The Nueva School, San Mateo, CA, 94033, USA.,Causal Brain Dynamics, Plasticity and Rehabilitation Team, Frontlab, Brain and Spine Institute, ICM, CNRS UMR, Paris, 7225, France
| | - Victoria Grace
- Muvik Labs, LLC, Locust Valley, NY, 11560, USA.,Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, 94305, USA.,Causal Brain Dynamics, Plasticity and Rehabilitation Team, Frontlab, Brain and Spine Institute, ICM, CNRS UMR, Paris, 7225, France
| | - Antoni Valero-Cabré
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, 94305, USA.,Department of Anatomy and Neurobiology, Laboratory of Cerebral Dynamics, Boston University School of Medicine, Boston, MA, 02118, USA.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.,Causal Brain Dynamics, Plasticity and Rehabilitation Team, Frontlab, Brain and Spine Institute, ICM, CNRS UMR, Paris, 7225, France
| | - Adrien Martel
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain. .,Causal Brain Dynamics, Plasticity and Rehabilitation Team, Frontlab, Brain and Spine Institute, ICM, CNRS UMR, Paris, 7225, France.
| |
Collapse
|
163
|
Zhao S, Yang J, Sawan M. Energy-Efficient Neural Network for Epileptic Seizure Prediction. IEEE Trans Biomed Eng 2021; 69:401-411. [PMID: 34242159 DOI: 10.1109/tbme.2021.3095848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Seizure prediction for drug-refractory epilepsy patients can improve their quality of life, reduce their anxiety, and help them take the necessary precautions. Nowadays, numerous deep learning algorithms have been proposed to predict seizure onset and obtain better performance than traditional machine learning methods. However, these methods require a large set of parameters and large hardware resources; they also have high energy consumption. Therefore, these methods cannot be implemented on compact, low-power wearable, or implantable medical devices. The devices should operate on a real-time basis to continually inform the epileptic patients. In this paper, we describe energy-efficient and hardware-friendly methods to predict the epileptic seizures. A model of only 45 kB was obtained by the neural architecture search and was evaluated across three datasets. The overall accuracy, sensitivity, false prediction rate, and area under receiver operating characteristic curve were 99.53%, 99.81%, 0.005/h, 1 and 93.60%, 93.48%, 0.063/h, 0.977 and 86.86%, 85.19%, 0.116/h, 0.933, respectively, for the CHB-MIT scalp, the AES and Melbourne University intracranial electroencephalography (EEG) datasets. This model was further reduced with network pruning, quantization, and compact neural networks. The performances for the model sizes less than 50 kB for scalp EEG data and less than 10 kB for intracranial EEG data outperformed all the other models of similar model sizes. In particular, the energy consumption estimation was less than 10 mJ per inference for scalp EEG signal and less than 0.5 mJ per inference for intracranial EEG signal, which meet the requirements for low-power wearable and implantable devices, respectively.
Collapse
|
164
|
Hussein R, Lee S, Ward R, McKeown MJ. Semi-dilated convolutional neural networks for epileptic seizure prediction. Neural Netw 2021; 139:212-222. [DOI: 10.1016/j.neunet.2021.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022]
|
165
|
|
166
|
Assali I, Jlassi I, Aissi M, Blaiech AG, Carrère M, Bedoui MH. Comparison by multivariate auto-regressive method of seizure prediction for real patients and virtual patients. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
167
|
Yang L, Ding S, Zhou F, Yang X, Xiao Y. Robust EEG feature learning model based on an adaptive weight and pairwise-fused LASSO. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
168
|
Sahani M, Rout SK, Dash PK. Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:595-605. [PMID: 34156948 DOI: 10.1109/tbcas.2021.3090995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN) are combined to recognize the epileptic seizure using both the multichannel scalp and single-channel electroencephalogram (EEG) signals. The novel RDCSAE structure is designed to extract the most discriminative unsupervised features from EEG signals and fed into the proposed supervised IKRVFLN classifier to train efficiently by reducing the mean-square error cost function for recognizing the epileptic seizure activity with promising accuracy. The proposed RDCSAE-IKRVFLN algorithm is tested over the benchmark Boston Children's Hospital multichannel scalp EEG (sEEG) and Boon University, Germany single-channel EEG databases. The less computational complexity, higher learning speed, better model generalization, accurate epileptic seizure recognition, remarkable classification accuracy, negligible false positive rate per hour (FPR/h) and short event recognition time are the main advantages of the proposed RDCSAE-IKRVFLN method over reduced deep convolutional neural network (RDCNN), RDCSAE and RDCSAE-KRVFLN methods. The proposed RDCSAE-IKRVFLN method is implemented in a high-speed reconfigurable field-programmable gate array (FPGA) hardware environment to design a computer-aided-diagnosis (CAD) system for automatic epileptic seizure diagnosis. The simplicity, feasibility, and practicability of the proposed method validate the stable and reliable performances of epilepsy detection and recognition.
Collapse
|
169
|
Ozdemir MA, Cura OK, Akan A. Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning. Int J Neural Syst 2021; 31:2150026. [PMID: 34039254 DOI: 10.1142/s012906572150026x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.
Collapse
Affiliation(s)
- Mehmet Akif Ozdemir
- Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey
| | - Ozlem Karabiber Cura
- Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey
| | - Aydin Akan
- Department of Electrical and Electronics Eng., Izmir University of Economics, Balcova 35330, Izmir, Turkey
| |
Collapse
|
170
|
Peng P, Xie L, Wei H. A Deep Fourier Neural Network for Seizure Prediction Using Convolutional Neural Network and Ratios of Spectral Power. Int J Neural Syst 2021; 31:2150022. [PMID: 33970057 DOI: 10.1142/s0129065721500222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods usually adopt handcrafted features and manual parameter setting. The over-reliance on the expertise of specialists may lead to weak exploitation of features and low popularization of clinical application. This paper proposes a novel parameterless patient-specific method based on Fourier Neural Network (FNN), where the Fourier transform and backpropagation learning are synthesized to make the predictor more efficient and practical. The employment of FNN is the first attempt in the field of seizure prediction due to its automatic extraction of immanent spectra in epileptic signals. Despite the self-adaptive superiority of FNN, we introduce Convolutional Neural Network (CNN) to further improve its search capability in high-dimensional feature spaces. The study also develops a multi-layer module to estimate spectral power ratios of raw recordings, which optimizes the prediction by enhancing feature diversity. Based on these modules, this paper proposes a two-channel deep neural network: Fourier Ratio Convolutional Neural Network (FRCNN). To demonstrate the reliability of the model, we explain the mathematical meaning of hidden-layer neurons in FRCNN theoretically. This approach is evaluated on both intracranial and scalp EEG datasets. It shows that the predictor achieved a sensitivity of 91.2% and a false prediction rate (FPR) of 0.06[Formula: see text]h[Formula: see text] across intracranial subjects and a sensitivity of 85.4% and an FPR of 0.14[Formula: see text]h[Formula: see text] over scalp subjects. The results indicate that FRCNN enables the convenience of epilepsy treatments while preserving a high degree of precision. In the end, a detailed comparison with the previous methods demonstrates that FRCNN has achieved higher performance and generalization ability.
Collapse
Affiliation(s)
- Peizhen Peng
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| | - Liping Xie
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| | - Haikun Wei
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
171
|
Gabeff V, Teijeiro T, Zapater M, Cammoun L, Rheims S, Ryvlin P, Atienza D. Interpreting deep learning models for epileptic seizure detection on EEG signals. Artif Intell Med 2021; 117:102084. [PMID: 34127231 DOI: 10.1016/j.artmed.2021.102084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
While Deep Learning (DL) is often considered the state-of-the art for Artificial Intel-ligence-based medical decision support, it remains sparsely implemented in clinical practice and poorly trusted by clinicians due to insufficient interpretability of neural network models. We have approached this issue in the context of online detection of epileptic seizures by developing a DL model from EEG signals, and associating certain properties of the model behavior with the expert medical knowledge. This has conditioned the preparation of the input signals, the network architecture, and the post-processing of the output in line with the domain knowledge. Specifically, we focused the discussion on three main aspects: (1) how to aggregate the classification results on signal segments provided by the DL model into a larger time scale, at the seizure-level; (2) what are the relevant frequency patterns learned in the first convolutional layer of different models, and their relation with the delta, theta, alpha, beta and gamma frequency bands on which the visual interpretation of EEG is based; and (3) the identification of the signal waveforms with larger contribution towards the ictal class, according to the activation differences highlighted using the DeepLIFT method. Results show that the kernel size in the first layer determines the interpretability of the extracted features and the sensitivity of the trained models, even though the final performance is very similar after post-processing. Also, we found that amplitude is the main feature leading to an ictal prediction, suggesting that a larger patient population would be required to learn more complex frequency patterns. Still, our methodology was successfully able to generalize patient inter-variability for the majority of the studied population with a classification F1-score of 0.873 and detecting 90% of the seizures.
Collapse
Affiliation(s)
- Valentin Gabeff
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland.
| | - Tomas Teijeiro
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland
| | - Marina Zapater
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland; REDS Institute, University of Applied Sciences Western Switzerland (HEIG-VD/HES-SO), Yverdon-les-Bains, Switzerland
| | - Leila Cammoun
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France; Lyon's Neurosciences Research Center (INSERM U1028/CNRS UMR 5292), Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - David Atienza
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland
| |
Collapse
|
172
|
Yoo SH, Santosa H, Kim CS, Hong KS. Decoding Multiple Sound-Categories in the Auditory Cortex by Neural Networks: An fNIRS Study. Front Hum Neurosci 2021; 15:636191. [PMID: 33994978 PMCID: PMC8113416 DOI: 10.3389/fnhum.2021.636191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to decode the hemodynamic responses (HRs) evoked by multiple sound-categories using functional near-infrared spectroscopy (fNIRS). The six different sounds were given as stimuli (English, non-English, annoying, nature, music, and gunshot). The oxy-hemoglobin (HbO) concentration changes are measured in both hemispheres of the auditory cortex while 18 healthy subjects listen to 10-s blocks of six sound-categories. Long short-term memory (LSTM) networks were used as a classifier. The classification accuracy was 20.38 ± 4.63% with six class classification. Though LSTM networks' performance was a little higher than chance levels, it is noteworthy that we could classify the data subject-wise without feature selections.
Collapse
Affiliation(s)
- So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Hendrik Santosa
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
173
|
Liu X, Richardson AG. Edge deep learning for neural implants: a case study of seizure detection and prediction. J Neural Eng 2021; 18. [PMID: 33794507 DOI: 10.1088/1741-2552/abf473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.Implanted devices providing real-time neural activity classification and control are increasingly used to treat neurological disorders, such as epilepsy and Parkinson's disease. Classification performance is critical to identifying brain states appropriate for the therapeutic action (e.g. neural stimulation). However, advanced algorithms that have shown promise in offline studies, in particular deep learning (DL) methods, have not been deployed on resource-restrained neural implants. Here, we designed and optimized three DL models or edge deployment and evaluated their inference performance in a case study of seizure detection.Approach.A deep neural network (DNN), a convolutional neural network (CNN), and a long short-term memory (LSTM) network were designed and trained with TensorFlow to classify ictal, preictal, and interictal phases from the CHB-MIT scalp EEG database. A sliding window based weighted majority voting algorithm was developed to detect seizure events based on each DL model's classification results. After iterative model compression and coefficient quantization, the algorithms were deployed on a general-purpose, off-the-shelf microcontroller for real-time testing. Inference sensitivity, false positive rate (FPR), execution time, memory size, and power consumption were quantified.Main results.For seizure event detection, the sensitivity and FPR for the DNN, CNN, and LSTM models were 87.36%/0.169 h-1, 96.70%/0.102 h-1, and 97.61%/0.071 h-1, respectively. Predicting seizures for early warnings was also feasible. The LSTM model achieved the best overall performance at the expense of the highest power. The DNN model achieved the shortest execution time. The CNN model showed advantages in balanced performance and power with minimum memory requirement. The implemented model compression and quantization achieved a significant saving of power and memory with an accuracy degradation of less than 0.5%.Significance.Inference with embedded DL models achieved performance comparable to many prior implementations that had no time or computational resource limitations. Generic microcontrollers can provide the required memory and computational resources, while model designs can be migrated to application-specific integrated circuits for further optimization and power saving. The results suggest that edge DL inference is a feasible option for future neural implants to improve classification performance and therapeutic outcomes.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew G Richardson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
174
|
B. LP, S. J, Pragatheeswaran JK, D. S, N. P. Scattering convolutional network based predictive model for cognitive activity of brain using empirical wavelet decomposition. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
175
|
Sharma G, Parashar A, Joshi AM. DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102393] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
176
|
Diagnosis and prognosis of mental disorders by means of EEG and deep learning: a systematic mapping study. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-09986-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
177
|
Leal A, Pinto MF, Lopes F, Bianchi AM, Henriques J, Ruano MG, de Carvalho P, Dourado A, Teixeira CA. Heart rate variability analysis for the identification of the preictal interval in patients with drug-resistant epilepsy. Sci Rep 2021; 11:5987. [PMID: 33727606 PMCID: PMC7966782 DOI: 10.1038/s41598-021-85350-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Electrocardiogram (ECG) recordings, lasting hours before epileptic seizures, have been studied in the search for evidence of the existence of a preictal interval that follows a normal ECG trace and precedes the seizure's clinical manifestation. The preictal interval has not yet been clinically parametrized. Furthermore, the duration of this interval varies for seizures both among patients and from the same patient. In this study, we performed a heart rate variability (HRV) analysis to investigate the discriminative power of the features of HRV in the identification of the preictal interval. HRV information extracted from the linear time and frequency domains as well as from nonlinear dynamics were analysed. We inspected data from 238 temporal lobe seizures recorded from 41 patients with drug-resistant epilepsy from the EPILEPSIAE database. Unsupervised methods were applied to the HRV feature dataset, thus leading to a new perspective in preictal interval characterization. Distinguishable preictal behaviour was exhibited by 41% of the seizures and 90% of the patients. Half of the preictal intervals were identified in the 40 min before seizure onset. The results demonstrate the potential of applying clustering methods to HRV features to deepen the current understanding of the preictal state.
Collapse
Affiliation(s)
- Adriana Leal
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.
| | - Mauro F Pinto
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - Fábio Lopes
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - Anna M Bianchi
- Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milan, Italy
| | - Jorge Henriques
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - Maria G Ruano
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
- University of Algarve, Department of Electronics and Informatics Engineering, Faculty of Science and Technology, Faro, Portugal
| | - Paulo de Carvalho
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - António Dourado
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - César A Teixeira
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| |
Collapse
|
178
|
Analyzing and Improving the Performance of a Particulate Matter Low Cost Air Quality Monitoring Device. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Air quality (AQ) in urban areas is deteriorating, thus having negative effects on people’s everyday lives. Official air quality monitoring stations provide the most reliable information, but do not always depict air pollution levels at scales reflecting human activities. They also have a high cost and therefore are limited in number. This issue can be addressed by deploying low cost AQ monitoring devices (LCAQMD), though their measurements are of far lower quality. In this paper we study the correlation of air pollution levels reported by such a device and by a reference station for particulate matter, ozone and nitrogen dioxide in Thessaloniki, Greece. On this basis, a corrective factor is modeled via seven machine learning algorithms in order to improve the quality of measurements for the LCAQMD against reference stations, thus leading to its on-field computational improvement. We show that our computational intelligence approach can improve the performance of such a device for PM10 under operational conditions.
Collapse
|
179
|
Wang Q, Wang H, Hu F, Hua C, Wang D. Using convolutional neural networks to decode EEG-based functional brain network with different severity of acrophobia. J Neural Eng 2021; 18. [DOI: 10.1088/1741-2552/abcdbd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
|
180
|
A Study of EEG Feature Complexity in Epileptic Seizure Prediction. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study is (1) to provide EEG feature complexity analysis in seizure prediction by inter-ictal and pre-ital data classification and, (2) to assess the between-subject variability of the considered features. In the past several decades, there has been a sustained interest in predicting epilepsy seizure using EEG data. Most methods classify features extracted from EEG, which they assume are characteristic of the presence of an epilepsy episode, for instance, by distinguishing a pre-ictal interval of data (which is in a given window just before the onset of a seizure) from inter-ictal (which is in preceding windows following the seizure). To evaluate the difficulty of this classification problem independently of the classification model, we investigate the complexity of an exhaustive list of 88 features using various complexity metrics, i.e., the Fisher discriminant ratio, the volume of overlap, and the individual feature efficiency. Complexity measurements on real and synthetic data testbeds reveal that that seizure prediction by pre-ictal/inter-ictal feature distinction is a problem of significant complexity. It shows that several features are clearly useful, without decidedly identifying an optimal set.
Collapse
|
181
|
Epilepsy prediction through optimized multidimensional sample entropy and Bi-LSTM. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
182
|
Rasheed K, Qayyum A, Qadir J, Sivathamboo S, Kwan P, Kuhlmann L, O'Brien T, Razi A. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Rev Biomed Eng 2021; 14:139-155. [PMID: 32746369 DOI: 10.1109/rbme.2020.3008792] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.
Collapse
|
183
|
Uyulan C, Ergüzel TT, Unubol H, Cebi M, Sayar GH, Nezhad Asad M, Tarhan N. Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach. Clin EEG Neurosci 2021; 52:38-51. [PMID: 32491928 DOI: 10.1177/1550059420916634] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human brain is characterized by complex structural, functional connections that integrate unique cognitive characteristics. There is a fundamental hurdle for the evaluation of both structural and functional connections of the brain and the effects in the diagnosis and treatment of neurodegenerative diseases. Currently, there is no clinically specific diagnostic biomarker capable of confirming the diagnosis of major depressive disorder (MDD). Therefore, exploring translational biomarkers of mood disorders based on deep learning (DL) has valuable potential with its recently underlined promising outcomes. In this article, an electroencephalography (EEG)-based diagnosis model for MDD is built through advanced computational neuroscience methodology coupled with a deep convolutional neural network (CNN) approach. EEG recordings are analyzed by modeling 3 different deep CNN structure, namely, ResNet-50, MobileNet, Inception-v3, in order to dichotomize MDD patients and healthy controls. EEG data are collected for 4 main frequency bands (Δ, θ, α, and β, accompanying spatial resolution with location information by collecting data from 19 electrodes. Following the pre-processing step, different DL architectures were employed to underline discrimination performance by comparing classification accuracies. The classification performance of models based on location data, MobileNet architecture generated 89.33% and 92.66% classification accuracy. As to the frequency bands, delta frequency band outperformed compared to other bands with 90.22% predictive accuracy and area under curve (AUC) value of 0.9 for ResNet-50 architecture. The main contribution of the study is the delineation of distinctive spatial and temporal features using various DL architectures to dichotomize 46 MDD subjects from 46 healthy subjects. Exploring translational biomarkers of mood disorders based on DL perspective is the main focus of this study and, though it is challenging, with its promising potential to improve our understanding of the psychiatric disorders, computational methods are highly worthy for the diagnosis process and valuable in terms of both speed and accuracy compared with classical approaches.
Collapse
Affiliation(s)
- Caglar Uyulan
- Department of Mechatronics, Faculty of Engineering, Bulent Ecevit University, Zonguldak, Turkey
| | - Türker Tekin Ergüzel
- Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| | - Huseyin Unubol
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| | - Merve Cebi
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| | - Gokben Hizli Sayar
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| | | | - Nevzat Tarhan
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| |
Collapse
|
184
|
Gong S, Xing K, Cichocki A, Li J. Deep Learning in EEG: Advance of the Last Ten-Year Critical Period. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3079712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
185
|
Ranti D, Valliani AAA, Costa A, Oermann EK. Artificial intelligence as applied to clinical neurological conditions. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
186
|
Gómez C, Arbeláez P, Navarrete M, Alvarado-Rojas C, Le Van Quyen M, Valderrama M. Automatic seizure detection based on imaged-EEG signals through fully convolutional networks. Sci Rep 2020; 10:21833. [PMID: 33311533 PMCID: PMC7732993 DOI: 10.1038/s41598-020-78784-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Seizure detection is a routine process in epilepsy units requiring manual intervention of well-trained specialists. This process could be extensive, inefficient and time-consuming, especially for long term recordings. We proposed an automatic method to detect epileptic seizures using an imaged-EEG representation of brain signals. To accomplish this, we analyzed EEG signals from two different datasets: the CHB-MIT Scalp EEG database and the EPILEPSIAE project that includes scalp and intracranial recordings. We used fully convolutional neural networks to automatically detect seizures. For our best model, we reached average accuracy and specificity values of 99.3% and 99.6%, respectively, for the CHB-MIT dataset, and corresponding values of 98.0% and 98.3% for the EPILEPSIAE patients. For these patients, the inclusion of intracranial electrodes together with scalp ones increased the average accuracy and specificity values to 99.6% and 58.3%, respectively. Regarding the other metrics, our best model reached average precision of 62.7%, recall of 58.3%, F-measure of 59.0% and AP of 54.5% on the CHB-MIT recordings, and comparatively lowers performances for the EPILEPSIAE dataset. For both databases, the number of false alarms per hour reached values less than 0.5/h for 92% of the CHB-MIT patients and less than 1.0/h for 80% of the EPILEPSIAE patients. Compared to recent studies, our lightweight approach does not need any estimation of pre-selected features and demonstrates high performances with promising possibilities for the introduction of such automatic methods in the clinical practice.
Collapse
Affiliation(s)
- Catalina Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Center for Research and Formation in Artificial Intelligence (CINFONIA), Universidad de los Andes, Bogotá, Colombia
| | - Pablo Arbeláez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Center for Research and Formation in Artificial Intelligence (CINFONIA), Universidad de los Andes, Bogotá, Colombia
| | - Miguel Navarrete
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- School of Psychology, Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | | | - Michel Le Van Quyen
- Laboratoire d'Imagerie Biomédicale (LIB), Inserm U1146 / Sorbonne Université UMCR2 / UMR7371 CNRS, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Mario Valderrama
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
187
|
Xiao F, Yang M, Fan H, Fan G, Al-Qaness MAA. An improved deep learning model for predicting daily PM2.5 concentration. Sci Rep 2020; 10:20988. [PMID: 33268885 PMCID: PMC7710732 DOI: 10.1038/s41598-020-77757-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, air pollution has caused serious damage to public health. Therefore, making accurate predictions of PM2.5 is a crucial task. Due to the transportation of air pollutants among areas, the PM2.5 concentration is strongly spatiotemporal correlated. However, the distribution of air pollution monitoring sites is not even making the spatiotemporal correlation between the central site and surrounding sites vary with different density of sites, and this was neglected by previous methods. To this end, this study proposes a weighted long short-term memory neural network extended model (WLSTME), which addressed the issue that how to consider the effect of the density of sites and wind conditions on the spatiotemporal correlation of air pollution concentration. First, a number of nearest surrounding sites were chosen as the neighbor sites to the central site, and their distance, as well as their air pollution concentration and wind condition, were input to multilayer perception (MLP) to generate weighted historical PM2.5 time series data. Second, historical PM2.5 concentration of the central site and weighted PM2.5 series data of neighbor sites were input into a long short-term memory (LSTM) to address spatiotemporal dependency simultaneously and extract spatiotemporal features. Finally, another MLP was utilized to integrate spatiotemporal features extracted above with the meteorological data of the central site to generate the forecasts future PM2.5 concentration of the central site. Daily PM2.5 concentration and meteorological data on Beijing–Tianjin–Hebei from 2015 to 2017 were collected to train models and to evaluate its performance. Experimental results with three existing methods showed that the proposed WLSTME model has the lowest RMSE (40.67) and MAE (26.10) and the highest p (0.59). Further experiments showed that in all seasons and regions, WLSTME performed the best. This finding confirms that WLSTME can significantly improve PM2.5 prediction accuracy.
Collapse
Affiliation(s)
- Fei Xiao
- School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mei Yang
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
| | - Hong Fan
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
| | - Guanghui Fan
- School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,General Hospital of Centeral Theater Command of PLA, 627 Luoyu Road, Wuhan, 430079, China.
| | - Mohammed A A Al-Qaness
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
188
|
Bongiorni L, Balbinot A. Evaluation of recurrent neural networks as epileptic seizure predictor. ARRAY 2020. [DOI: 10.1016/j.array.2020.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
189
|
Lashgari E, Liang D, Maoz U. Data augmentation for deep-learning-based electroencephalography. J Neurosci Methods 2020; 346:108885. [DOI: 10.1016/j.jneumeth.2020.108885] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
|
190
|
Zhang Y, Yang R, Zhou W. Roughness-Length-Based Characteristic Analysis of Intracranial EEG and Epileptic Seizure Prediction. Int J Neural Syst 2020; 30:2050072. [DOI: 10.1142/s0129065720500720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify precursors of epileptic seizures, an EEG characteristic analysis is carried out based on a roughness-length method, where fractal dimensions and intercept values are extracted to measure the structure complexity and the amplitude roughness of EEG signals in different phases. Using the significant changes of the fractal dimension and intercept in the preictal phase with respect to those in the interictal phase, a patient-specific seizure prediction algorithm is then proposed by combining with a gradient boosting classifier. The probabilistic outputs of the trained gradient boosting classifier are further processed by threshold comparison and rule-based judgment to distinguish preictal EEG from interictal EEG and to generate seizure alerts. The prediction algorithm was evaluated on 20 patients’ intracranial EEG recordings from the Freiburg EEG database, which contains the preictal periods of 65 seizures and 499[Formula: see text]h interictal EEG. Setting the seizure prediction horizon as 2[Formula: see text]min, averaged sensitivity values of 90.42% and 91.67% with averaged false prediction rates of 0.12/h and 0.10/h were achieved for seizure occurrence periods of 30 and 50[Formula: see text]min, respectively. These results demonstrate the ability of fractal dimension and intercept metrics in predicting the occurrence of seizures.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Information and Electronic Engineering, Shandong Technology and Business University, 191 Binhai Middle Road, Yantai 264005, P. R. China
| | - Rendi Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
191
|
Zhang X, Yao L, Wang X, Monaghan JJM, Mcalpine D, Zhang Y. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 2020; 18. [PMID: 33171452 DOI: 10.1088/1741-2552/abc902] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide a comprehensive survey of the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.
Collapse
Affiliation(s)
- Xiang Zhang
- Harvard University, Cambridge, Massachusetts, UNITED STATES
| | - Lina Yao
- University of New South Wales, Sydney, New South Wales, AUSTRALIA
| | - Xianzhi Wang
- Faculty of Engineering and IT, University of Technology Sydney, 81 Broadway, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | | | - David Mcalpine
- Macquarie University, Sydney, New South Wales, AUSTRALIA
| | - Yu Zhang
- Stanford University, Stanford, California, 94305-6104, UNITED STATES
| |
Collapse
|
192
|
Chung YG, Jeon Y, Choi SA, Cho A, Kim H, Hwang H, Kim KJ. Deep Convolutional Neural Network Based Interictal-Preictal Electroencephalography Prediction: Application to Focal Cortical Dysplasia Type-II. Front Neurol 2020; 11:594679. [PMID: 33250854 PMCID: PMC7674929 DOI: 10.3389/fneur.2020.594679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to differentiate between the interictal and preictal states in epilepsy patients with focal cortical dysplasia (FCD) type-II using deep learning-based classifiers based on intracranial electroencephalography (EEG). We also investigated the practical conditions for high interictal-preictal discriminability in terms of spatiotemporal EEG characteristics and data size efficiency. Intracranial EEG recordings of nine epilepsy patients with FCD type-II (four female, five male; mean age: 10.7 years) were analyzed. Seizure onset and channel ranking were annotated by two epileptologists. We performed three consecutive interictal-preictal classification steps by varying the preictal length, number of electrodes, and sampling frequency with convolutional neural networks (CNN) using 30 s time-frequency data matrices. Classification performances were evaluated based on accuracy, F1 score, precision, and recall with respect to the above-mentioned three parameters. We found that (1) a 5 min preictal length provided the best classification performance, showing a remarkable enhancement of >13% on average compared to that with the 120 min preictal length; (2) four electrodes provided considerably high classification performance with a decrease of only approximately 1% on average compared to that with all channels; and (3) there was minimal performance change when quadrupling the sampling frequency from 128 Hz. Patient-specific performance variations were noticeable with respect to the preictal length, and three patients showed above-average performance enhancements of >28%. However, performance enhancements were low with respect to both the number of electrodes and sampling frequencies, and some patients showed at most 1–2% performance change. CNN-based classifiers from intracranial EEG recordings using a small number of electrodes and efficient sampling frequency are feasible for predicting the interictal-preictal state transition preceding seizures in epilepsy patients with FCD type-II. Preictal lengths affect the predictability in a patient-specific manner; therefore, pre-examinations for optimal preictal length will be helpful in seizure prediction.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Healthcare ICT Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yonghoon Jeon
- Healthcare ICT Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sun Ah Choi
- Department of Pediatrics, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Anna Cho
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
193
|
Thoduparambil PP, Dominic A, Varghese SM. EEG-based deep learning model for the automatic detection of clinical depression. Phys Eng Sci Med 2020; 43:1349-1360. [PMID: 33090373 DOI: 10.1007/s13246-020-00938-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/10/2020] [Indexed: 11/28/2022]
Abstract
Clinical depression is a neurological disorder that can be identified by analyzing the Electroencephalography (EEG) signals. However, the major drawback in using EEG to accurately identify depression is the complexity and variation that exist in the EEG of a depressed individual. There are several strategies for automated depression diagnosis, but they all have flaws, which make the diagnostic task inaccurate. In this paper, a deep model is designed in which an integration of Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) is implemented for the detection of depression. CNN and LSTM are used to learn the local characteristics and the EEG signal sequence, respectively. In the deep learning model, filters in the convolution layer are convolved with the input signal to generate feature maps. All the extracted features are given to the LSTM for it to learn the different patterns in the signal, after which the classification is performed using fully connected layers. LSTM has memory cells to remember the essential features for a long time. It also has different functions to update the weights during training. Testing of the model was done by random splitting technique and obtained 99.07% and 98.84% accuracies for the right and left hemispheres EEG signals, respectively.
Collapse
Affiliation(s)
- Pristy Paul Thoduparambil
- Department of Computer Science and Engineering, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India.
| | - Anna Dominic
- Department of Computer Science and Engineering, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India
| | - Surekha Mariam Varghese
- Department of Computer Science and Engineering, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India
| |
Collapse
|
194
|
Abbaszadeh B, Fard RS, Yagoub MCE. Application of Global Coherence Measure to Characterize Coordinated Neural Activity during Frontal and Temporal Lobe Epilepsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3699-3702. [PMID: 33018804 DOI: 10.1109/embc44109.2020.9176486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Time- and frequency-domain studies of EEG signals are most commonly employed to study the electrical activities of the brain in order to diagnose potential neurological disorders. In this work, we applied the global coherence approach to help estimating the neural synchrony across multiple nodes in the brain, prior and during a seizure. The ratio of the largest eigenvalue to the sum of the eigenvalues of the cross spectral matrix at a certain frequency and time allowed detecting a strong coordinated neural activity in alpha sub-band for the frontal lobe epilepsy. Kruskal Wallis test reveals that global coherence is an efficient tool before the seizure for the temporal lobe epilepsy in a wide range of frequencies from Delta to Beta sub-bands.Clinical Relevance-The work introduces global coherence as a new and efficient feature in prediction of seizure and specifically for the frontal lobe epilepsy.
Collapse
|
195
|
Scalp EEG classification using deep Bi-LSTM network for seizure detection. Comput Biol Med 2020; 124:103919. [DOI: 10.1016/j.compbiomed.2020.103919] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022]
|
196
|
Tsai CM, Chang SF, Chang H. Transcranial photobiomodulation attenuates pentylenetetrazole-induced status epilepticus in peripubertal rats. JOURNAL OF BIOPHOTONICS 2020; 13:e202000095. [PMID: 32362066 DOI: 10.1002/jbio.202000095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Convulsive status epilepticus is the most common neurological emergency in children. Transcranial photobiomodulation (tPBM) reverses elevated rodent neurotransmitters after status epilepticus (SE) yet whether tPBM can attenuate seizure behaviors remains unknown. Here, we applied near-infrared laser at wavelength 808 nm transcranially to peripubertal Sprague-Dawley rats prior to pentylenetetrazole (PTZ) injection. Hematoxylin-eosin, immunofluorescence (IF) staining with anti-parvalbumin (PV) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay after IF staining was performed. Behaviorally, tPBM attenuated the mean seizure score and reduced the incidence of SE and mortality. Histochemically, tPBM reduced dark neurons in the cortex, hippocampus, thalamus and hypothalamus, lessened the apoptotic ratio of parvalbumin-positive interneurons (PV-INs) and alleviated the aberrant extent of PV-positive unstained somata of PCs in the hippocampus. Conclusively, tPBM attenuated PTZ-induced seizures, SE and mortality in peripubertal rats and reduced PTZ-induced neuronal injury, apoptosis of PV-INs and preserved PV positive perisomatic inhibitory network in the hippocampus.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
197
|
Nabil D, Benali R, Bereksi Reguig F. Epileptic seizure recognition using EEG wavelet decomposition based on nonlinear and statistical features with support vector machine classification. ACTA ACUST UNITED AC 2020; 65:133-148. [PMID: 31536031 DOI: 10.1515/bmt-2018-0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Epileptic seizure (ES) is a neurological brain dysfunction. ES can be detected using the electroencephalogram (EEG) signal. However, visual inspection of ES using long-time EEG recordings is a difficult, time-consuming and a costly procedure. Thus, automatic epilepsy recognition is of primary importance. In this paper, a new method is proposed for automatic ES recognition using short-time EEG recordings. The method is based on first decomposing the EEG signals on sub-signals using discrete wavelet transform. Then, from the obtained sub-signals, different non-linear parameters such as approximate entropy (ApEn), largest Lyapunov exponents (LLE) and statistical parameters are determined. These parameters along with phase entropies, calculated through higher order spectrum analysis, are used as an input vector of a multi-class support vector machine (MSVM) for ES recognition. The proposed method is evaluated using the standard EEG database developed by the Department of Epileptology, University of Bonn, Germany. The evaluation is carried out through a large number of classification experiments. Different statistical metrics namely Sensitivity (Se), Specificity (Sp) and classification accuracy (Ac) are calculated and compared to those obtained in the scientific research literature. The obtained results show that the proposed method achieves high accuracies, which are as good as the best existing state-of-the-art methods studied using the same EEG database.
Collapse
Affiliation(s)
- Dib Nabil
- Biomedical Engineering Laboratory, Faculty of Technology, Abou Bekr Belkaid University, Tlemcen 13048, Algeria
| | - Radhwane Benali
- Biomedical Engineering Laboratory, Faculty of Technology, Abou Bekr Belkaid University, Tlemcen 13048, Algeria
| | - Fethi Bereksi Reguig
- Biomedical Engineering Laboratory, Faculty of Technology, Abou Bekr Belkaid University, Tlemcen 13048, Algeria
| |
Collapse
|
198
|
Selecting transferrable neurophysiological features for inter-individual emotion recognition via a shared-subspace feature elimination approach. Comput Biol Med 2020; 123:103875. [PMID: 32658790 DOI: 10.1016/j.compbiomed.2020.103875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 11/23/2022]
Abstract
The interplay between human emotions, personality, and motivation results in individual specificity in neurophysiological data distributions for the same emotional category. To address this issue for building an emotion recognition system based on electroencephalogram (EEG) features, we propose a shared-subspace feature elimination (SSFE) approach to identify EEG variables with common characteristics across multiple individuals. In the SSFE framework, a low-dimensional space defined by a selected number of EEG features is created to represent the inter-emotion discriminant for different pairs of subjects evaluated based on the interclass margin. Using two public databases-DEAP and MAHNOB-HCI-the performance of the SSFE is validated according to the leave-one-subject-out paradigm. The performance of the proposed framework is compared with five other feature-selection methods. The effectiveness and computational cost of the SSFE is investigated across six machine learning models based on their optimal hyperparameters. In the end, the competitive binary classification accuracy from the SSFE of arousal and valence recognitions are determined to be 0.6521 and 0.6635, respectively, for DEAP, and 0.6520 and 0.6537, respectively for MAHNOB-HCI.
Collapse
|
199
|
Zhang R, Jiang X, Dai C, Chen W. Tensor-based Uncorrelated Multilinear Discriminant Analysis for Epileptic Seizure Prediction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:541-544. [PMID: 33018046 DOI: 10.1109/embc44109.2020.9175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epileptic seizure prediction explores the probability of forecasting the onset of epileptic seizure, which aids to timely treatment for patients. It provides a time lead compared to traditional seizure detection. In this paper, a spectral feature extraction is developed and the seizure prediction is performed based on uncorrelated multilinear discriminant analysis (UMLDA) and Support Vector Machine (SVM). To make best use of information in different dimension, we construct a three-order tensor in temporal, spectral and spatial domain by wavelet transform. And UMLDA implements the tensor-to-vector projection (TVP) with the minimum redundancy. The proposed solution employed 23 subjects' Electroencephalogram (EEG) data from Boston Children's Hospital-MIT scalp EEG dataset, each subject contains 40 minutes EEG signal. For the classification task of ictal state and preictal state, it exhibits an overall accuracy of 95%.
Collapse
|
200
|
Ahmedt-Aristizabal D, Fernando T, Denman S, Petersson L, Aburn MJ, Fookes C. Neural Memory Networks for Seizure Type Classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:569-575. [PMID: 33018053 DOI: 10.1109/embc44109.2020.9175641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Classification of seizure type is a key step in the clinical process for evaluating an individual who presents with seizures. It determines the course of clinical diagnosis and treatment, and its impact stretches beyond the clinical domain to epilepsy research and the development of novel therapies. Automated identification of seizure type may facilitate understanding of the disease, and seizure detection and prediction have been the focus of recent research that has sought to exploit the benefits of machine learning and deep learning architectures. Nevertheless, there is not yet a definitive solution for automating the classification of seizure type, a task that must currently be performed by an expert epileptologist. Inspired by recent advances in neural memory networks (NMNs), we introduce a novel approach for the classification of seizure type using electrophysiological data. We first explore the performance of traditional deep learning techniques which use convolutional and recurrent neural networks, and enhance these architectures by using external memory modules with trainable neural plasticity. We show that our model achieves a state-of-the-art weighted F1 score of 0.945 for seizure type classification on the TUH EEG Seizure Corpus with the IBM TUSZ preprocessed data. This work highlights the potential of neural memory networks to support the field of epilepsy research, along with biomedical research and signal analysis more broadly.
Collapse
|