151
|
Günzel Y, McCollum J, Paoli M, Galizia CG, Petelski I, Couzin-Fuchs E. Social modulation of individual preferences in cockroaches. iScience 2021; 24:101964. [PMID: 33437942 PMCID: PMC7788088 DOI: 10.1016/j.isci.2020.101964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
In social species, decision-making is both influenced by, and in turn influences, the social context. This reciprocal feedback introduces coupling across scales, from the neural basis of sensing, to individual and collective decision-making. Here, we adopt an integrative approach investigating decision-making in dynamical social contexts. When choosing shelters, isolated cockroaches prefer vanillin-scented (food-associated) shelters over unscented ones, yet in groups, this preference is inverted. We demonstrate that this inversion can be replicated by replacing the full social context with social odors: presented alone food and social odors are attractive, yet when presented as a mixture they are avoided. Via antennal lobe calcium imaging, we show that neural activity in vanillin-responsive regions reduces as social odor concentration increases. Thus, we suggest that the mixture is evaluated as a distinct olfactory object with opposite valence, providing a mechanism that would naturally result in individuals avoiding what they perceive as recently exploited resources.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Jaclyn McCollum
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marco Paoli
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- CNRS, Research Centre for Animal Cognition, 31062 Toulouse Cedex 9, France
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Inga Petelski
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
152
|
Aldehyde-specific responses of olfactory sensory neurons in the praying mantis. Sci Rep 2021; 11:1856. [PMID: 33473161 PMCID: PMC7817670 DOI: 10.1038/s41598-021-81359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Although praying mantises rely mainly on vision for predatory behaviours, olfaction also plays a critical role in feeding and mating behaviours. However, the receptive processes underlying olfactory signals remain unclear. Here, we identified olfactory sensory neurons (OSNs) that are highly tuned to detect aldehydes in the mantis Tenodera aridifolia. In extracellular recordings from OSNs in basiconic sensilla on the antennae, we observed three different spike shapes, indicating that at least three OSNs are housed in a single basiconic sensillum. Unexpectedly, one of the three OSNs exhibited strong excitatory responses to a set of aldehydes. Based on the similarities of the response spectra to 15 different aldehydes, the aldehyde-specific OSNs were classified into three classes: B, S, and M. Class B broadly responded to most aldehydes used as stimulants; class S responded to short-chain aldehydes (C3–C7); and class M responded to middle-length chain aldehydes (C6–C9). Thus, aldehyde molecules can be finely discriminated based on the activity patterns of a population of OSNs. Because many insects emit aldehydes for pheromonal communication, mantises might use aldehydes as olfactory cues for locating prey habitat.
Collapse
|
153
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|
154
|
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period. J Neurosci 2021; 41:1218-1241. [PMID: 33402421 DOI: 10.1523/jneurosci.2167-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Abstract
Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable Drosophila brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global dfmr1 null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABAA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped Drosophila olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.
Collapse
|
155
|
Jafari S, Alenius M. Odor response adaptation in Drosophila-a continuous individualization process. Cell Tissue Res 2021; 383:143-148. [PMID: 33492517 PMCID: PMC7873105 DOI: 10.1007/s00441-020-03384-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
Olfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biology, New York University, New York, NY, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, 901 87, Umeå, SE, Sweden.
| |
Collapse
|
156
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
157
|
Wheelwright M, Whittle CR, Riabinina O. Olfactory systems across mosquito species. Cell Tissue Res 2021; 383:75-90. [PMID: 33475852 PMCID: PMC7873006 DOI: 10.1007/s00441-020-03407-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
There are 3559 species of mosquitoes in the world (Harbach 2018) but, so far, only a handful of them have been a focus of olfactory neuroscience and neurobiology research. Here we discuss mosquito olfactory anatomy and function and connect these to mosquito ecology. We highlight the least well-known and thus most interesting aspects of mosquito olfactory systems and discuss promising future directions. We hope this review will encourage the insect neuroscience community to work more broadly across mosquito species instead of focusing narrowly on the main disease vectors.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Catherine R Whittle
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Olena Riabinina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
158
|
Das Chakraborty S, Sachse S. Olfactory processing in the lateral horn of Drosophila. Cell Tissue Res 2021; 383:113-123. [PMID: 33475851 PMCID: PMC7873099 DOI: 10.1007/s00441-020-03392-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
Sensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.
Collapse
Affiliation(s)
- Sudeshna Das Chakraborty
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
159
|
Maeda T, Nisimura T, Habe S, Uebi T, Ozaki M. Visualization of antennal lobe glomeruli activated by nonappetitive D-limonene and appetitive 1-octen-3-ol odors via two types of olfactory organs in the blowfly Phormia regina. ZOOLOGICAL LETTERS 2020; 6:16. [PMID: 33292700 PMCID: PMC7694429 DOI: 10.1186/s40851-020-00167-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Appetite or feeding motivation relies significantly on food odors. In the blowfly Phormia regina, feeding motivation for sucrose is decreased by the odor of D-limonene but increased by the odor of 1-octen-3-ol odor. These flies have antennal lobes (ALs) consisting of several tens of glomerular pairs as a primary olfactory center in the brain. Odor information from different olfactory organs-specifically, the antennae and maxillary palps-goes to the corresponding glomeruli. To investigate how odors differently affect feeding motivation, we identified the olfactory organs and glomeruli that are activated by nonappetitive and appetitive odors. We first constructed a glomerular map of the antennal lobe in P. regina. Anterograde fluorescence labeling of antennal and maxillary afferent nerves, both of which project into the contralateral and ipsilateral ALs, revealed differential staining in glomerular regions. Some of the axonal fiber bundles from the antennae and maxillary palps projected to the subesophageal ganglion (SOG). We visualized the activation of the glomeruli in response to odor stimuli by immunostaining phosphorylated extracellular signal-regulated kinase (pERK). We observed different glomerulus activation under different odor stimulations. Referring to our glomerular map, we determined that antennal exposure to D-limonene odor activated the DA13 glomeruli, while exposure of the maxillary palps to 1-octen-3-ol activated the MxB1 glomeruli. Our results indicated that a nonappetitive odor input from the antennae and an appetitive odor input from the maxillary palps activate different glomeruli in the different regions of ALs in the blowfly P. regina. Collectively, our findings suggest that compartmentalization of glomeruli in AL is essential for proper transmission of odor information.
Collapse
Affiliation(s)
- Toru Maeda
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, 657-8501, Japan.
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Tomoyosi Nisimura
- College of Bioresource Sciences, Nihon University, Fujisawa, 102-8275, Japan
| | - Shunnya Habe
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Tatsuya Uebi
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
160
|
Olafson PU, Saski CA. Chemosensory-Related Gene Family Members of the Horn Fly, Haematobia irritans irritans (Diptera: Muscidae), Identified by Transcriptome Analysis. INSECTS 2020; 11:E816. [PMID: 33228086 PMCID: PMC7699325 DOI: 10.3390/insects11110816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Horn flies are one of the most significant economic pests of cattle in the United States and worldwide. Chemical control methods have been routinely utilized to reduce populations of this pest, but the steady development of insecticide resistance has prompted evaluation of alternative control strategies. Behavior modifying compounds from natural products have shown some success in impacting horn fly populations, and a more thorough understanding of the horn fly chemosensory system would enable improvements in the development of species-specific compounds. Using an RNA-seq approach, we assembled a transcriptome representing genes expressed in adult female and male horn fly head appendages (antennae, maxillary palps, and proboscides) and adult fly bodies from which heads were removed. Differential gene expression analysis identified chemosensory gene family members that were enriched in head appendage tissues compared with headless bodies. Candidate members included 43 odorant binding proteins (OBP) and 5 chemosensory binding proteins (CSP), as well as 44 odorant receptors (OR), 27 gustatory receptors (GR), and 34 ionotropic receptors (IR). Sex-biased expression of these genes was not observed. These findings provide a resource to enable future studies targeting horn fly chemosensation as part of an integrated strategy to control this blood-feeding pest.
Collapse
Affiliation(s)
- Pia Untalan Olafson
- Knipling-Bushland US Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX 78028, USA
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
161
|
Cachero S, Gkantia M, Bates AS, Frechter S, Blackie L, McCarthy A, Sutcliffe B, Strano A, Aso Y, Jefferis GSXE. BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. Nat Methods 2020; 17:1254-1261. [PMID: 33139893 PMCID: PMC7610425 DOI: 10.1038/s41592-020-00989-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Animal behavior is encoded in neuronal circuits in the brain. To elucidate the function of these circuits, it is necessary to identify, record from and manipulate networks of connected neurons. Here we present BAcTrace (Botulinum Activated Tracer), a genetically encoded, retro-grade, transsynaptic labelling system. BAcTrace is based on C. botulinum neurotoxin A, Botox, which we have engineered to travel retrogradely between neurons to activate an otherwise silent transcription factor. We validate BAcTrace at three neuronal connections in the Drosophila olfactory system. We show that BAcTrace-mediated labeling allows electrophysiological recordings of connected neurons. Finally, in a challenging circuit with highly divergent connections, BAcTrace correctly identifies 12 out of 16 connections, which were previously observed by electron microscopy.
Collapse
Affiliation(s)
- Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shahar Frechter
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Blackie
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amy McCarthy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Ben Sutcliffe
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Strano
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Cancer and Developmental Biology & Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | |
Collapse
|
162
|
An updated antennal lobe atlas for the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008729. [PMID: 33079925 PMCID: PMC7575095 DOI: 10.1371/journal.pntd.0008729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is a prolific vector of arboviral and filarial diseases that largely relies on its sense of smell to find humans. To facilitate in-depth analysis of the neural circuitry underlying Ae. aegypti olfactory-driven behaviors, we generated an updated in vitro atlas for the antennal lobe olfactory brain region of this disease vector using two independent neuronal staining methods. We performed morphological reconstructions with replicate fixed, dissected and stained brain samples from adult male and female Ae. aegypti of the LVPib12 genome reference strain and determined that the antennal lobe in both sexes is comprised of approximately 80 discrete glomeruli. Guided by landmark features in the antennal lobe, we found 63 of these glomeruli are stereotypically located in spatially invariant positions within these in vitro preparations. A posteriorly positioned, mediodorsal glomerulus denoted MD1 was identified as the largest spatially invariant glomerulus in the antennal lobe. Spatial organization of glomeruli in a recently field-derived strain of Ae. aegypti from Puerto Rico was conserved, despite differences in antennal lobe shape relative to the inbred LVPib12 strain. This model in vitro atlas will serve as a useful community resource to improve antennal lobe annotation and anatomically map projection patterns of neurons expressing target genes in this olfactory center. It will also facilitate the development of chemotopic maps of odor representation in the mosquito antennal lobe to decode the molecular and cellular basis of Ae. aegypti attraction to human scent and other chemosensory cues. The olfactory system of the yellow fever mosquito Aedes aegypti is highly tuned for the detection of human odorants, as well as other chemical cues influencing host and food-search behavior, egg-laying and mating. To provide insights into the neuroanatomical organization of the olfactory system of this globally important disease vector, we have generated an updated in vitro atlas for the primary smell processing center of the Ae. aegypti brain, called the antennal lobe. These new guide maps facilitate systematic interrogation of antennal lobe morphology and naming of associated substructures in dissected brain samples of this species labeled with two common neural staining methods. We report that landmark features of the Ae. aegypti antennal lobe morphology and spatial organization appear conserved between mosquito sexes and across geographically divergent strains of this mosquito species. An improved understanding of Ae. aegypti antennal lobe neuroanatomy and how attractive or repellent odorant stimuli are encoded in this brain center has the potential to rapidly accelerate reverse engineering of synthetic chemical blends that effectively lure, confuse or repel this major disease vector.
Collapse
|
163
|
Honegger KS, Smith MAY, Churgin MA, Turner GC, de Bivort BL. Idiosyncratic neural coding and neuromodulation of olfactory individuality in Drosophila. Proc Natl Acad Sci U S A 2020; 117:23292-23297. [PMID: 31455738 PMCID: PMC7519279 DOI: 10.1073/pnas.1901623116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Innate behavioral biases and preferences can vary significantly among individuals of the same genotype. Though individuality is a fundamental property of behavior, it is not currently understood how individual differences in brain structure and physiology produce idiosyncratic behaviors. Here we present evidence for idiosyncrasy in olfactory behavior and neural responses in Drosophila We show that individual female Drosophila from a highly inbred laboratory strain exhibit idiosyncratic odor preferences that persist for days. We used in vivo calcium imaging of neural responses to compare projection neuron (second-order neurons that convey odor information from the sensory periphery to the central brain) responses to the same odors across animals. We found that, while odor responses appear grossly stereotyped, upon closer inspection, many individual differences are apparent across antennal lobe (AL) glomeruli (compact microcircuits corresponding to different odor channels). Moreover, we show that neuromodulation, environmental stress in the form of altered nutrition, and activity of certain AL local interneurons affect the magnitude of interfly behavioral variability. Taken together, this work demonstrates that individual Drosophila exhibit idiosyncratic olfactory preferences and idiosyncratic neural responses to odors, and that behavioral idiosyncrasies are subject to neuromodulation and regulation by neurons in the AL.
Collapse
Affiliation(s)
- Kyle S Honegger
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138
- Computational Informatics and Visualization Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611
| | - Matthew A-Y Smith
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Matthew A Churgin
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Benjamin L de Bivort
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
164
|
Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, et alScheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM. A connectome and analysis of the adult Drosophila central brain. eLife 2020; 9:e57443. [PMID: 32880371 PMCID: PMC7546738 DOI: 10.7554/elife.57443] [Show More Authors] [Citation(s) in RCA: 554] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tom Dolafi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Khaled A Khairy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Peter H Li
- Google ResearchMountain ViewUnited States
| | | | - Nicole Neubarth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
| | | | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Chelsea X Alvarado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dennis A Bailey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Ballinger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Octave Duclos
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bryon Eubanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelli Fairbanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Finley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily M Joyce
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - SungJin Kim
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicole A Kirk
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charli Maldonado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily A Manley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sari McLin
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Miatta Ndama
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicholas Padilla
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Elliott E Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Neha Rampally
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Caitlin Ribeiro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jon Thomson Rymer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean M Ryan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Anne K Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelsey Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natalie L Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Margaret A Sobeski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alia Suleiman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jackie Swift
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Temour Tokhi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory SXE Jefferis
- MRC Laboratory of Molecular BiologyCambridgeUnited States
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viren Jain
- Google Research, Google LLCZurichSwitzerland
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
165
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies.. [DOI: 10.1101/2020.07.23.217216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractWhen flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic (“ephaptic”) interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla.We found that NSIs improve mixture ratio detection and plume structure sensing and they do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.Author summaryMyelin is important to isolate neurons and avoid disruptive electrical interference between them; it can be found in almost any neural assembly. However, there are a few exceptions to this rule and it remains unclear why. One particularly interesting case is the electrical interaction between olfactory sensory neurons co-housed in the sensilla of insects. Here, we created a computational model of the early stages of the Drosophila olfactory system and observed that the electrical interference between olfactory receptor neurons can be a useful trait that can help flies, and other insects, to navigate the complex plumes of odorants in their natural environment.With the model we were able to shed new light on the trade-off of adopting this mechanism: We found that the non-synaptic interactions (NSIs) improve both the identification of the concentration ratio in mixtures of odorants and the discrimination of odorant mixtures emanating from a single source from odorants emitted from separate sources – both highly advantageous. However, they also decrease the dynamic range of the olfactory sensory neurons – a clear disadvantage.
Collapse
|
166
|
Sokolinskaya EL, Kolesov DV, Lukyanov KA, Bogdanov AM. Molecular Principles of Insect Chemoreception. Acta Naturae 2020; 12:81-91. [PMID: 33173598 PMCID: PMC7604898 DOI: 10.32607/actanaturae.11038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
Chemoreception, an ability to perceive specific chemical stimuli, is one of the most evolutionarily ancient forms of interaction between living organisms and their environment. Chemoreception systems are found in organisms belonging to all biological kingdoms. In higher multicellular animals, chemoreception (along with photo- and mechanoreception) underlies the functioning of five traditional senses. Insects have developed a peculiar and one of the most sophisticated chemoreception systems, which exploits at least three receptor superfamilies providing perception of smell and taste, as well as chemical communication in these animals. The enormous diversity of physiologically relevant compounds in the environment has given rise to a wide-ranging repertoire of chemoreceptors of various specificities. Thus, in insects, they are represented by several structurally and functionally distinct protein classes and are encoded by hundreds of genes. In the current review, we briefly characterize the insect chemoreception system by describing the main groups of receptors that constitute it and putting emphasis on the peculiar architecture and mechanisms of functioning possessed by these molecules.
Collapse
Affiliation(s)
- E. L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - D. V. Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - K. A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| |
Collapse
|
167
|
Gonzalez F, Borrero‐Echeverry F, Jósvai JK, Strandh M, Unelius CR, Tóth M, Witzgall P, Bengtsson M, Walker WB. Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths. Ecol Evol 2020; 10:7334-7348. [PMID: 32760532 PMCID: PMC7391548 DOI: 10.1002/ece3.6458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- ChemTica InternacionalHerediaCosta Rica
| | - Felipe Borrero‐Echeverry
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Corporación Colombiana de Investgación AgropecuariaAgrosaviaMosqueraColombia
| | | | - Maria Strandh
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Molecular Ecology and Evolution LabDepartment of BiologyLund UniversityLundSweden
| | | | - Miklós Tóth
- Plant Protection Institute CARBudapestHungary
| | - Peter Witzgall
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - William B. Walker
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| |
Collapse
|
168
|
Jain R, Brockmann A. Sex-specific molecular specialization and activity rhythm-dependent gene expression in honey bee antennae. J Exp Biol 2020; 223:jeb217406. [PMID: 32393545 DOI: 10.1242/jeb.217406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
We performed an RNA-seq-based comparison of gene expression levels in the antennae of honey bee drones and time-trained foragers (workers) collected at different times of the day and different activity states. Interestingly, olfaction-related genes [i.e. odorant receptor (Or) genes, odorant binding protein (Obp) genes, carboxyl esterase (CEst) genes, etc.] showed stable gene expression differences between drone and worker antennae. Drone antennae showed higher expression of 24 Or genes, of which 21 belong to the clade X which comprises the receptor for the major queen pheromone compound 9-ODA. This high number of drone-biased Or genes suggests that more than previously thought play a role in sex-pheromone communication. In addition, we found higher expression levels for many non-olfaction-related genes including nitric oxide synthase (NOS), and the potassium channel Shaw In contrast, workers showed higher expression of 67 Or genes, which belong to different Or clades that are involved in pheromone communication as well as the perception of cuticular hydrocarbons and floral scents. Further, drone antennae showed higher expression of genes involved in energy metabolism, whereas worker antennae showed higher expression of genes involved in neuronal communication, consistent with earlier reports on peripheral olfactory plasticity. Finally, drones that perform mating flight in the afternoon (innate) and foragers that are trained to forage in the afternoon (adapted) showed similar daily changes in the expression of two major clock genes, period and cryptochrome2 Most of the other genes showing changes with time or onset of daily flight activity were specific to drones and foragers.
Collapse
Affiliation(s)
- Rikesh Jain
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore-560056, Karnataka, India
- SASTRA University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Axel Brockmann
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore-560056, Karnataka, India
| |
Collapse
|
169
|
Ryba AR, McKenzie SK, Olivos-Cisneros L, Clowney EJ, Pires PM, Kronauer DJC. Comparative Development of the Ant Chemosensory System. Curr Biol 2020; 30:3223-3230.e4. [PMID: 32559450 DOI: 10.1016/j.cub.2020.05.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
The insect antennal lobe (AL) contains the first synapses of the olfactory system, where olfactory sensory neurons (OSNs) contact second-order projection neurons (PNs). In Drosophila melanogaster, OSNs expressing specific receptor genes send stereotyped projections to one or two of about 50 morphologically defined glomeruli [1-3]. The mechanisms for this precise matching between OSNs and PNs have been studied extensively in D. melanogaster, where development is deterministic and independent of neural activity [4-6]. However, a number of insect lineages, most notably the ants, have receptor gene repertoires many times larger than D. melanogaster and exhibit more structurally complex antennal lobes [7-12]. Moreover, perturbation of OSN function via knockout of the odorant receptor (OR) co-receptor, Orco, results in drastic AL reductions in ants [13, 14], but not in Drosophila [15]. Here, we characterize AL development in the clonal raider ant, Ooceraea biroi. We find that, unlike in Drosophila, ORs and Orco are expressed before the onset of glomerulus formation, and Orco protein is trafficked to developing axon terminals, raising the possibility that ORs play a role during ant AL development. Additionally, ablating ant antennae at the onset of pupation results in AL defects that recapitulate the Orco mutant phenotype. Thus, early loss of functional OSN innervation reveals latent structure in the AL that develops independently of peripheral input, suggesting that the AL is initially pre-patterned and later refined in an OSN-dependent manner. This two-step process might increase developmental flexibility and thereby facilitate the rapid evolution and expansion of the ant chemosensory system.
Collapse
Affiliation(s)
- Anna R Ryba
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA; Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Mussells Pires
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
170
|
Khallaf MA, Auer TO, Grabe V, Depetris-Chauvin A, Ammagarahalli B, Zhang DD, Lavista-Llanos S, Kaftan F, Weißflog J, Matzkin LM, Rollmann SM, Löfstedt C, Svatoš A, Dweck HKM, Sachse S, Benton R, Hansson BS, Knaden M. Mate discrimination among subspecies through a conserved olfactory pathway. SCIENCE ADVANCES 2020; 6:eaba5279. [PMID: 32704542 PMCID: PMC7360436 DOI: 10.1126/sciadv.aba5279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/07/2020] [Indexed: 05/22/2023]
Abstract
Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner.
Collapse
Affiliation(s)
- Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Thomas O. Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ana Depetris-Chauvin
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Byrappa Ammagarahalli
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-22362 Lund, Sweden
| | - Sofía Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Filip Kaftan
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jerrit Weißflog
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Luciano M. Matzkin
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ 85721, USA
| | - Stephanie M. Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Aleš Svatoš
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Hany K. M. Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
171
|
Hing H, Reger N, Snyder J, Fradkin LG. Interplay between axonal Wnt5-Vang and dendritic Wnt5-Drl/Ryk signaling controls glomerular patterning in the Drosophila antennal lobe. PLoS Genet 2020; 16:e1008767. [PMID: 32357156 PMCID: PMC7219789 DOI: 10.1371/journal.pgen.1008767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/13/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the importance of dendritic targeting in neural circuit assembly, the mechanisms by which it is controlled still remain incompletely understood. We previously showed that in the developing Drosophila antennal lobe, the Wnt5 protein forms a gradient that directs the ~45˚ rotation of a cluster of projection neuron (PN) dendrites, including the adjacent DA1 and VA1d dendrites. We report here that the Van Gogh (Vang) transmembrane planar cell polarity (PCP) protein is required for the rotation of the DA1/VA1d dendritic pair. Cell type-specific rescue and mosaic analyses showed that Vang functions in the olfactory receptor neurons (ORNs), suggesting a codependence of ORN axonal and PN dendritic targeting. Loss of Vang suppressed the repulsion of the VA1d dendrites by Wnt5, indicating that Wnt5 signals through Vang to direct the rotation of the DA1 and VA1d glomeruli. We observed that the Derailed (Drl)/Ryk atypical receptor tyrosine kinase is also required for the rotation of the DA1/VA1d dendritic pair. Antibody staining showed that Drl/Ryk is much more highly expressed by the DA1 dendrites than the adjacent VA1d dendrites. Mosaic and epistatic analyses showed that Drl/Ryk specifically functions in the DA1 dendrites in which it antagonizes the Wnt5-Vang repulsion and mediates the migration of the DA1 glomerulus towards Wnt5. Thus, the nascent DA1 and VA1d glomeruli appear to exhibit Drl/Ryk-dependent biphasic responses to Wnt5. Our work shows that the final patterning of the fly olfactory map is the result of an interplay between ORN axons and PN dendrites, wherein converging pre- and postsynaptic processes contribute key Wnt5 signaling components, allowing Wnt5 to orient the rotation of nascent synapses through a PCP mechanism. During brain development, the processes of nerve cells, axons and dendrites, grow over long distances to find and connect with each other to form synapses in precise locations. Understanding the mechanisms that control the growth of these neurites is important for understanding normal brain functions like neuronal plasticity and neural diseases like autism. Although much progress has been made by studying the development of axons and dendrites separately, the mechanisms that guide neuronal processes to their final locations are still incompletely understood. In particular, careful observation of converging pre- and postsynaptic processes suggests that their targeting may be coordinated. Whether the final targeting of axons and dendrites are functionally linked and what molecular mechanisms may be involved are unknown. In this paper we show that, in the developing Drosophila olfactory circuit, coalescing axons and dendrites respond to the extracellular Wnt5 signal in a codependent manner. We demonstrate that the converging axons and dendrites contribute different signaling components to the Wnt5 pathway, the Vang Gogh and Derailed transmembrane receptors respectively, which allow Wnt5 to coordinately guide the targeting of the neurites. Our work thus reveals a novel mechanism of neural circuit patterning and the molecular mechanism that controls it.
Collapse
Affiliation(s)
- Huey Hing
- Department of Biology, State University of New York at Brockport, Brockport, NY, United States of America
- * E-mail:
| | - Noah Reger
- Department of Biology, State University of New York at Brockport, Brockport, NY, United States of America
| | - Jennifer Snyder
- Department of Biology, State University of New York at Brockport, Brockport, NY, United States of America
| | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
172
|
Kermen F, Lal P, Faturos NG, Yaksi E. Interhemispheric connections between olfactory bulbs improve odor detection. PLoS Biol 2020; 18:e3000701. [PMID: 32310946 PMCID: PMC7192517 DOI: 10.1371/journal.pbio.3000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/30/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. However, the cellular and spatial organization of interhemispheric networks and the computational properties they mediate in vertebrates are still poorly understood. Thus, it remains unclear to what extent the connectivity between left and right brain hemispheres participates in sensory processing. Here, we show that the zebrafish olfactory bulbs (OBs) receive direct interhemispheric projections from their contralateral counterparts in addition to top-down inputs from the contralateral zebrafish homolog of olfactory cortex. The direct interhemispheric projections between the OBs reach peripheral layers of the contralateral OB and retain a precise topographic organization, which directly connects similarly tuned olfactory glomeruli across hemispheres. In contrast, interhemispheric top-down inputs consist of diffuse projections that broadly innervate the inhibitory granule cell layer. Jointly, these interhemispheric connections elicit a balance of topographically organized excitation and nontopographic inhibition on the contralateral OB and modulate odor responses. We show that the interhemispheric connections in the olfactory system enable the modulation of odor response and contribute to a small but significant improvement in the detection of a reproductive pheromone when presented together with complex olfactory cues by potentiating the response of the pheromone selective neurons. Taken together, our data show a previously unknown function for an interhemispheric connection between chemosensory maps of the olfactory system. Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. This study shows that interhemispheric olfactory connections in the zebrafish brain improve the detection of a reproductive pheromone within a noisy odor background.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (FK); (EY)
| | - Pradeep Lal
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas G. Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- * E-mail: (FK); (EY)
| |
Collapse
|
173
|
A molecular odorant transduction model and the complexity of spatio-temporal encoding in the Drosophila antenna. PLoS Comput Biol 2020; 16:e1007751. [PMID: 32287275 PMCID: PMC7182276 DOI: 10.1371/journal.pcbi.1007751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 04/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, substantial amount of work has been conducted to characterize different odorant receptors, neuroanatomy and odorant response properties of the early olfactory system of Drosophila melanogaster. Yet many odorant receptors remain only partially characterized, and the odorant transduction process and the axon hillock spiking mechanism of the olfactory sensory neurons (OSNs) have yet to be fully determined. Identity and concentration, two key characteristics of the space of odorants, are encoded by the odorant transduction process. Detailed molecular models of the odorant transduction process are, however, scarce for fruit flies. To address these challenges we advance a comprehensive model of fruit fly OSNs as a cascade consisting of an odorant transduction process (OTP) and a biophysical spike generator (BSG). We model odorant identity and concentration using an odorant-receptor binding rate tensor, modulated by the odorant concentration profile, and an odorant-receptor dissociation rate tensor, and quantitatively describe the mechanics of the molecular ligand binding/dissociation of the OTP. We model the BSG as a Connor-Stevens point neuron. The resulting spatio-temporal encoding model of the Drosophila antenna provides a theoretical foundation for understanding the neural code of both odorant identity and odorant concentration and advances the state-of-the-art in a number of ways. First, it quantifies on the molecular level the spatio-temporal level of complexity of the transformation taking place in the antennae. The concentration-dependent spatio-temporal code at the output of the antenna circuits determines the level of complexity of olfactory processing in the downstream neuropils, such as odorant recognition and olfactory associative learning. Second, the model is biologically validated using multiple electrophysiological recordings. Third, the model demonstrates that the currently available data for odorant-receptor responses only enable the estimation of the affinity of the odorant-receptor pairs. The odorant-dissociation rate is only available for a few odorant-receptor pairs. Finally, our model calls for new experiments for massively identifying the odorant-receptor dissociation rates of relevance to flies. Identity and concentration, intrinsically embedded in the odorant space, are two key characteristics of olfactory coding that define the level of complexity of neural processing throughout the olfactory system in the fruit fly. In this paper we advance a theoretical foundation for understanding these two characteristics by quantifying mathematically the odorant space and devising a biophysical model of the olfactory sensory neurons (OSNs). To validate our modeling approach, we propose and apply an algorithm to estimate the affinity value and the dissociation rate, the two characteristics that define odorant identity, of multiple odorant-receptor pairs. We then evaluate our model with a multitude of odorant waveforms and demonstrate that the model output reproduces the temporal responses of OSNs obtained from in vivo electrophysiology recordings. Furthermore, we evaluate the model at the OSN population level and quantify on the molecular level the spatio-temporal level of complexity of the transformation taking place between the odorant space and the OSNs. The resulting concentration-dependent spatio-temporal code determines the level of complexity of the input space driving olfactory processing in the downstream neuropils. Lastly, our model demonstrates that the currently available data for OSN responses only enables estimation of affinity value. This calls for new experiments for massively identifying the odorant-receptor dissociation rates of relevance to flies.
Collapse
|
174
|
Behavioral and Transcriptional Response to Selection for Olfactory Behavior in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:1283-1296. [PMID: 32024668 PMCID: PMC7144070 DOI: 10.1534/g3.120.401117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detection, discrimination, and behavioral responses to chemical cues in the environment can have marked effects on organismal survival and reproduction, eliciting attractive or aversive behavior. To gain insight into mechanisms mediating this hedonic valence, we applied thirty generations of divergent artificial selection for Drosophila melanogaster olfactory behavior. We independently selected for positive and negative behavioral responses to two ecologically relevant chemical compounds: 2,3-butanedione and cyclohexanone. We also tested the correlated responses to selection by testing behavioral responses to other odorants and life history traits. Measurements of behavioral responses of the selected lines and unselected controls to additional odorants showed that the mechanisms underlying responses to these odorants are, in some cases, differentially affected by selection regime and generalization of the response to other odorants was only detected in the 2,3-butanedione selection lines. Food consumption and lifespan varied with selection regime and, at times, sex. An analysis of gene expression of both selection regimes identified multiple differentially expressed genes. New genes and genes previously identified in mediating olfactory behavior were identified. In particular, we found functional enrichment of several gene ontology terms, including cell-cell adhesion and sulfur compound metabolic process, the latter including genes belonging to the glutathione S-transferase family. These findings highlight a potential role for glutathione S-transferases in the evolution of hedonic valence to ecologically relevant volatile compounds and set the stage for a detailed investigation into mechanisms by which these genes mediate attraction and aversion.
Collapse
|
175
|
Stanhope BA, Jaggard JB, Gratton M, Brown EB, Keene AC. Sleep Regulates Glial Plasticity and Expression of the Engulfment Receptor Draper Following Neural Injury. Curr Biol 2020; 30:1092-1101.e3. [PMID: 32142708 DOI: 10.1016/j.cub.2020.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Chronic sleep disturbance is associated with numerous health consequences, including neurodegenerative disease and cognitive decline [1]. Neurite damage due to apoptosis, trauma, or genetic factors is a common feature of aging, and clearance of damaged neurons is essential for maintenance of brain function. In the central nervous system, damaged neurites are cleared by Wallerian degeneration, in which activated microglia and macrophages engulf damaged neurons [2]. The fruit fly Drosophila melanogaster provides a powerful model for investigating the relationship between sleep and Wallerian degeneration [3]. Several lines of evidence suggest that glia influence sleep duration, sleep-mediated neuronal homeostasis, and clearance of toxic substances during sleep, raising the possibility that glial engulfment of damaged axons is regulated by sleep [4]. To explore this possibility, we axotomized olfactory receptor neurons and measured the effects of sleep loss or gain on the clearance of damaged neurites. Mechanical and genetic sleep deprivation impaired the clearance of damaged neurites. Conversely, treatment with the sleep-promoting drug gaboxadol accelerated clearance, while genetic induction of sleep promotes Draper expression. In sleep-deprived animals, multiple markers of glial activation were delayed, including activation of the JAK-STAT pathway, upregulation of the cell corpse engulfment receptor Draper, and innervation of the antennal lobe by glial membranes. These markers were all enhanced following genetic and pharmacological sleep induction. Taken together, these findings reveal a critical association between sleep and glial activation following neural injury, providing a platform for further investigations of the molecular mechanisms underlying sleep-dependent modulation of glial function and neurite clearance.
Collapse
Affiliation(s)
- Bethany A Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Melanie Gratton
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458.
| |
Collapse
|
176
|
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, Arguello JR, Hansson BS, Jefferis GSXE, Caron SJC, Knaden M, Benton R. Olfactory receptor and circuit evolution promote host specialization. Nature 2020. [PMID: 32132713 DOI: 10.1038/s41586-020–2073-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare3-5. Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster6,7, which are linked to its extreme specialization on noni fruit (Morinda citrifolia)8-16. Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ana F Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaitlyn Ellis
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - J Roman Arguello
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Sophie J C Caron
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
177
|
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, Arguello JR, Hansson BS, Jefferis GSXE, Caron SJC, Knaden M, Benton R. Olfactory receptor and circuit evolution promote host specialization. Nature 2020; 579:402-408. [PMID: 32132713 PMCID: PMC7100913 DOI: 10.1038/s41586-020-2073-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022]
Abstract
The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations of behavioural and nervous system divergence, demonstration of the genetic basis of interspecific behavioural differences remains rare3–5. Here, we develop a novel neurogenetic model, Drosophila sechellia, a close cousin of D. melanogaster6,7 that displays profound behavioural changes linked to its extreme specialisation on noni fruit8–16. Using calcium imaging, we identify D. sechellia olfactory pathways detecting host volatiles. Mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni. Cross-species allele transfer demonstrates that tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterise their evolutionary origin and behavioural significance. Through circuit tracing in the D. sechellia brain, we find that receptor adaptations are accompanied by increased sensory pooling onto interneurons and novel central projection patterns. This work reveals the accumulation of molecular, physiological and anatomical traits linked to behavioural divergence, and defines a powerful model for investigating nervous system evolution and speciation.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ana F Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaitlyn Ellis
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - J Roman Arguello
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Sophie J C Caron
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
178
|
Strausfeld NJ, Wolff GH, Sayre ME. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife 2020; 9:e52411. [PMID: 32124731 PMCID: PMC7054004 DOI: 10.7554/elife.52411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as 'hemiellipsoid bodies,' are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.
Collapse
Affiliation(s)
- Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and BehaviorUniversity of ArizonaTucsonUnited States
| | | | | |
Collapse
|
179
|
Crowley-Gall A, Shaw M, Rollmann SM. Host Preference and Olfaction in Drosophila mojavensis. J Hered 2020; 110:68-79. [PMID: 30299456 DOI: 10.1093/jhered/esy052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Abstract
Many organisms live in complex environments that vary geographically in resource availability. This environmental heterogeneity can lead to changes within species in their phenotypic traits. For example, in many herbivorous insects, variation in host plant availability has been shown to influence insect host preference behavior. This behavior can be mediated in part through the insect olfactory system and the odor-evoked responses of olfactory sensory neurons (OSNs), which are in turn mediated by their corresponding odorant receptor genes. The desert dwelling fly Drosophila mojavensis is a model species for understanding the mechanisms underlying host preference in a heterogeneous environment. Depending on geographic region, one to multiple host plant species are available. Here, we conducted electrophysiological studies and found variation in responses of ORNs to host plant volatiles both within and between 2 populations-particularly to the odorant 4-methylphenol. Flies from select localities within each population were found to lack a response to 4-methylphenol. Experiments then assessed the extent to which these electrophysiological differences were associated with differences in several odor-mediated behavioral responses. No association between the presence/absence of these odor-evoked responses and short range olfactory behavior or oviposition behavior was observed. However, differences in odor-induced feeding behavior in response to 4-methylphenol were found. Localities that exhibit an odor-evoked response to the odorant had increased feeding behavior in the presence of the odorant. This study sets the stage for future work examining the functional genetics underlying variation in odor perception.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Mary Shaw
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| |
Collapse
|
180
|
Guo H, Kunwar K, Smith D. Multiple channels of DEET repellency in Drosophila. PEST MANAGEMENT SCIENCE 2020; 76:880-887. [PMID: 31429190 PMCID: PMC7015792 DOI: 10.1002/ps.5592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND N,N-Diethyl-meta-toluamide (DEET) is the prophylactic insect repellent used most widely to inhibit insect bites. Despite its use since 1944, the mechanism of DEET repellency remains controversial. Here, we revisited the role of smell and taste in DEET repellence using Drosophila as a model. RESULTS Analysis of the responses of individual olfactory receptor neuron (ORN) classes to DEET reveals that 11 ORNs are activated and two are inhibited by this compound. Blocking individual ORN classes in the antenna does not block DEET repellence. This argues against the existence of a single ORN mediating DEET repellence in Drosophila. Activation of all ORCO-expressing neurons using channelrhodopsin favors attraction, not repellence, in behavioral valence. We also demonstrate that gustatory neurons are highly sensitive to DEET. We used RNA interference to screen candidate receptors encoded by gene families involved in the detection of bitter compounds, including 34 gustatory receptors (Grs), 14 ionotropic receptors (Irs), five pick-pocket subunits (PPKs), three transient receptor potential ion channels (TrpA, TrpL, Painless) and one metabotropic glutamate receptors gene (DmXR). We saw striking defects in DEET-mediated oviposition behavior when expression of either Gr32a or Gr33a was inhibited. CONCLUSION Our findings support a multimodal mechanism for DEET detection in fruit flies and indicate a prominent role for taste detection mediating DEET repellence. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111
| | - Kishor Kunwar
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111
| | - Dean Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111
| |
Collapse
|
181
|
Prieto-Godino LL, Silbering AF, Khallaf MA, Cruchet S, Bojkowska K, Pradervand S, Hansson BS, Knaden M, Benton R. Functional integration of "undead" neurons in the olfactory system. SCIENCE ADVANCES 2020; 6:eaaz7238. [PMID: 32195354 PMCID: PMC7065876 DOI: 10.1126/sciadv.aaz7238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is widespread during neurodevelopment, eliminating the surpluses of neuronal production. Using the Drosophila olfactory system, we examined the potential of cells fated to die to contribute to circuit evolution. Inhibition of PCD is sufficient to generate new cells that express neural markers and exhibit odor-evoked activity. These "undead" neurons express a subset of olfactory receptors that is enriched for relatively recent receptor duplicates and includes some normally found in different chemosensory organs and life stages. Moreover, undead neuron axons integrate into the olfactory circuitry in the brain, forming novel receptor/glomerular couplings. Comparison of homologous olfactory lineages across drosophilids reveals natural examples of fate change from death to a functional neuron. Last, we provide evidence that PCD contributes to evolutionary differences in carbon dioxide-sensing circuit formation in Drosophila and mosquitoes. These results reveal the remarkable potential of alterations in PCD patterning to evolve new neural pathways.
Collapse
Affiliation(s)
- Lucia L. Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- The Francis Crick Institute, London NW1 1BF, UK
| | - Ana F. Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Karolina Bojkowska
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
182
|
Multiple network properties overcome random connectivity to enable stereotypic sensory responses. Nat Commun 2020; 11:1023. [PMID: 32094345 PMCID: PMC7039968 DOI: 10.1038/s41467-020-14836-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity.
Collapse
|
183
|
Li H, Li T, Horns F, Li J, Xie Q, Xu C, Wu B, Kebschull JM, McLaughlin CN, Kolluru SS, Jones RC, Vacek D, Xie A, Luginbuhl DJ, Quake SR, Luo L. Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Curr Biol 2020; 30:1189-1198.e5. [PMID: 32059767 DOI: 10.1016/j.cub.2020.01.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Felix Horns
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Justus M Kebschull
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Sai Saroja Kolluru
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Robert C Jones
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David Vacek
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
184
|
Warth Pérez Arias CC, Frosch P, Fiala A, Riemensperger TD. Stochastic and Arbitrarily Generated Input Patterns to the Mushroom Bodies Can Serve as Conditioned Stimuli in Drosophila. Front Physiol 2020; 11:53. [PMID: 32116764 PMCID: PMC7027390 DOI: 10.3389/fphys.2020.00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Single neurons in the brains of insects often have individual genetic identities and can be unambiguously identified between animals. The overall neuronal connectivity is also genetically determined and hard-wired to a large degree. Experience-dependent structural and functional plasticity is believed to be superimposed onto this more-or-less fixed connectome. However, in Drosophila melanogaster, it has been shown that the connectivity between the olfactory projection neurons (OPNs) and Kenyon cells, the intrinsic neurons of the mushroom body, is highly stochastic and idiosyncratic between individuals. Ensembles of distinctly and sparsely activated Kenyon cells represent information about the identity of the olfactory input, and behavioral relevance can be assigned to this representation in the course of associative olfactory learning. Previously, we showed that in the absence of any direct sensory input, artificially and stochastically activated groups of Kenyon cells could be trained to encode aversive cues when their activation coincided with aversive stimuli. Here, we have tested the hypothesis that the mushroom body can learn any stochastic neuronal input pattern as behaviorally relevant, independent of its exact origin. We show that fruit flies can learn thermogenetically generated, stochastic activity patterns of OPNs as conditioned stimuli, irrespective of glomerular identity, the innate valence that the projection neurons carry, or inter-hemispheric symmetry.
Collapse
Affiliation(s)
- Carmina Carelia Warth Pérez Arias
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Patrizia Frosch
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thomas D Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
185
|
Missbach C, Vogel H, Hansson BS, Große-Wilde E, Vilcinskas A, Kaiser TS. Developmental and sexual divergence in the olfactory system of the marine insect Clunio marinus. Sci Rep 2020; 10:2125. [PMID: 32034235 PMCID: PMC7005812 DOI: 10.1038/s41598-020-59063-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
An animal's fitness strongly depends on successful feeding, avoidance of predators and reproduction. All of these behaviours commonly involve chemosensation. As a consequence, when species' ecological niches and life histories differ, their chemosensory abilities need to be adapted accordingly. The intertidal insect Clunio marinus (Diptera: Chironomidae) has tuned its olfactory system to two highly divergent niches. The long-lived larvae forage in a marine environment. During the few hours of terrestrial adult life, males have to find the female pupae floating on the water surface, free the cryptic females from their pupal skin, copulate and carry the females to the oviposition sites. In order to explore the possibility for divergent olfactory adaptations within the same species, we investigated the chemosensory system of C. marinus larvae, adult males and adult females at the morphological and molecular level. The larvae have a well-developed olfactory system, but olfactory gene expression only partially overlaps with that of adults, likely reflecting their marine vs. terrestrial lifestyles. The olfactory system of the short-lived adults is simple, displaying no glomeruli in the antennal lobes. There is strong sexual dimorphism, the female olfactory system being particularly reduced in terms of number of antennal annuli and sensilla, olfactory brain centre size and gene expression. We found hints for a pheromone detection system in males, including large trichoid sensilla and expression of specific olfactory receptors and odorant binding proteins. Taken together, this makes C. marinus an excellent model to study within-species evolution and adaptation of chemosensory systems.
Collapse
Affiliation(s)
- Christine Missbach
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany.
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Ewald Große-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany.,Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, EXTEMIT-K, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Andreas Vilcinskas
- Justus-Liebig University Giessen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Tobias S Kaiser
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna, Medical University Vienna, Dr. Bohr Gasse 9, A-1030, Wien, Austria. .,Max Planck Institute for Evolutionary Biology, Max Planck Research Group "Biological Clocks", August-Thienemann-Strasse 2, 24306, Plön, Germany.
| |
Collapse
|
186
|
Paoli M, Nishino H, Couzin-Fuchs E, Galizia CG. Coding of odour and space in the hemimetabolous insect Periplaneta americana. J Exp Biol 2020; 223:jeb218032. [PMID: 31932303 DOI: 10.1242/jeb.218032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
The general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae's exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selectively labelling antennal lobe projection neurons with a calcium-sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus specific and concentration dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone B activate a subregion of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.
Collapse
Affiliation(s)
- Marco Paoli
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Einat Couzin-Fuchs
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - C Giovanni Galizia
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
187
|
Chin SG, Maguire SE, Huoviala P, Jefferis GSXE, Potter CJ. Olfactory Neurons and Brain Centers Directing Oviposition Decisions in Drosophila. Cell Rep 2020; 24:1667-1678. [PMID: 30089274 PMCID: PMC6290906 DOI: 10.1016/j.celrep.2018.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/30/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
The sense of smell influences many behaviors, yet how odors are represented in the brain remains unclear. A major challenge to studying olfaction is the lack of methods allowing activation of specific types of olfactory neurons in an ethologically relevant setting. To address this, we developed a genetic method in Drosophila called olfactogenetics in which a narrowly tuned odorant receptor, Or56a, is ectopically expressed in different olfactory neuron types. Stimulation with geosmin (the only known Or56a ligand) in an Or56a mutant background leads to specific activation of only target olfactory neuron types. We used this approach to identify olfactory sensory neurons (OSNs) that directly guide oviposition decisions. We identify 5 OSN-types (Or71a, Or47b, Or49a, Or67b, and Or7a) that, when activated alone, suppress oviposition. Projection neurons partnering with these OSNs share a region of innervation in the lateral horn, suggesting that oviposition site selection might be encoded in this brain region.
Collapse
Affiliation(s)
- Sonia G Chin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sarah E Maguire
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Paavo Huoviala
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Gregory S X E Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Christopher J Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
188
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
189
|
Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L. Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell 2020; 180:373-386.e15. [PMID: 31955847 DOI: 10.1016/j.cell.2019.12.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pornchai Kaewsapsak
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
190
|
Odor-Induced Multi-Level Inhibitory Maps in Drosophila. eNeuro 2020; 7:ENEURO.0213-19.2019. [PMID: 31888962 PMCID: PMC6957311 DOI: 10.1523/eneuro.0213-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
Optical imaging of intracellular Ca2+ influx as a correlate of neuronal excitation represents a standard technique for visualizing spatiotemporal activity of neuronal networks. However, the information-processing properties of single neurons and neuronal circuits likewise involve inhibition of neuronal membrane potential. Here, we report spatially resolved optical imaging of odor-evoked inhibitory patterns in the olfactory circuitry of Drosophila using a genetically encoded fluorescent Cl- sensor. In combination with the excitatory component reflected by intracellular Ca2+ dynamics, we present a comprehensive functional map of both odor-evoked neuronal activation and inhibition at different levels of olfactory processing. We demonstrate that odor-evoked inhibition carried by Cl- influx is present both in sensory neurons and second-order projection neurons (PNs), and is characterized by stereotypic, odor-specific patterns. Cl--mediated inhibition features distinct dynamics in different neuronal populations. Our data support a dual role of inhibitory neurons in the olfactory system: global gain control across the neuronal circuitry and glomerulus-specific inhibition to enhance neuronal information processing.
Collapse
|
191
|
Lee S, Jones WD, Kim DH. A cyclic nucleotide-gated channel in the brain regulates olfactory modulation through neuropeptide F in fruit fly Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21620. [PMID: 31625196 DOI: 10.1002/arch.21620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Olfactory sensing and its modulation are important for the insects in recognizing diverse odors from the environment and in making correct decisions to survive. Identifying new genes involved in olfactory modulation and unveiling their mechanisms may lead us to understand decision making processes in the central nervous system. Here, we report a novel olfactory function of the cyclic nucleotide-gated (CNG) channel CG42260 in modulating ab3A olfactory sensory neurons, which specifically respond to food-derived odors in fruit fly Drosophila melanogaster. We found that two independent CG42260 mutants show reduced responses in the ab3A neurons. Unlike mammalian CNGs, CG42260 is not expressed in the odorant sensory neurons but broadly in the central nervous system including neuropeptide-producing cells. By using molecular genetic tools, we identified CG42260 expression in one pair of neuropeptide F (NPF) positive L1-l cells known to modulate food odor responsiveness. Knockdown of CG42260 in the NPF neurons reduced production of NPF in Ll-1 cells, which in turn, led to reduction of neuronal responses of the ab3A neurons. Our findings show the novel biological function of CG42260 in modulating olfactory responses to food odor through NPF.
Collapse
Affiliation(s)
- Sion Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Walton D Jones
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
192
|
Dweck HKM, Carlson JR. Molecular Logic and Evolution of Bitter Taste in Drosophila. Curr Biol 2019; 30:17-30.e3. [PMID: 31839451 DOI: 10.1016/j.cub.2019.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 01/05/2023]
Abstract
Taste systems detect a vast diversity of toxins, which are perceived as bitter. When a species adapts to a new environment, its taste system must adapt to detect new death threats. We deleted each of six commonly expressed bitter gustatory receptors (Grs) from Drosophila melanogaster. Systematic analysis revealed that requirements for these Grs differed for the same tastant in different neurons and for different tastants in the same neuron. Responses to some tastants in some neurons required four Grs, including Gr39a. Deletions also produced increased or novel responses, supporting a model of Gr-Gr inhibitory interactions. Coexpression of four Grs conferred several bitter responses to a sugar neuron. We then examined bitter coding in three other Drosophila species. We found major evolutionary shifts. One shift depended on the concerted activity of seven Grs. This work shows how the complex logic of bitter coding provides the capacity to detect innumerable hazards and the flexibility to adapt to new ones.
Collapse
Affiliation(s)
- Hany K M Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
193
|
Amin H, Lin AC. Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:9-17. [PMID: 31280185 DOI: 10.1016/j.cois.2019.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Olfaction allows animals to adapt their behavior in response to different chemical cues in their environment. How does the brain efficiently discriminate different odors to drive appropriate behavior, and how does it flexibly assign value to odors to adjust behavior according to experience? This review traces neuronal mechanisms underlying these processes in adult Drosophila melanogaster from olfactory receptors to higher brain centers. We highlight neural circuit principles such as lateral inhibition, segregation and integration of olfactory channels, temporal accumulation of sensory evidence, and compartmentalized synaptic plasticity underlying associative memory.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
194
|
Molecular Profiling of the Drosophila Antenna Reveals Conserved Genes Underlying Olfaction in Insects. G3-GENES GENOMES GENETICS 2019; 9:3753-3771. [PMID: 31527046 PMCID: PMC6829134 DOI: 10.1534/g3.119.400669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Repellent odors are widely used to prevent insect-borne diseases, making it imperative to identify the conserved molecular underpinnings of their olfactory systems. Currently, little is known about the molecules supporting odor signaling beyond the odor receptors themselves. Most known molecules function in one of two classes of olfactory sensilla, single-walled or double-walled, which have differing morphology and odor response profiles. Here, we took two approaches to discover novel genes that contribute to insect olfaction in the periphery. We transcriptionally profiled Drosophila melanogasteramos mutants that lack trichoid and basiconic sensilla, the single-walled sensilla in this species. This revealed 187 genes whose expression is enriched in these sensilla, including pickpocket ion channels and neuromodulator GPCRs that could mediate signaling pathways unique to single-walled sensilla. For our second approach, we computationally identified 141 antennal-enriched (AE) genes that are more than ten times as abundant in D. melanogaster antennae as in other tissues or whole-body extracts, and are thus likely to play a role in olfaction. We identified unambiguous orthologs of AE genes in the genomes of four distantly related insect species, and most identified orthologs were expressed in the antenna of these species. Further analysis revealed that nearly half of the 141 AE genes are localized specifically to either single or double-walled sensilla. Functional annotation suggests the AE genes include signaling molecules and enzymes that could be involved in odorant degradation. Together, these two resources provide a foundation for future studies investigating conserved mechanisms of odor signaling.
Collapse
|
195
|
Scheuermann EA, Smith DP. Odor-Specific Deactivation Defects in a Drosophila Odorant-Binding Protein Mutant. Genetics 2019; 213:897-909. [PMID: 31492805 PMCID: PMC6827369 DOI: 10.1534/genetics.119.302629] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Insect odorant-binding proteins (OBPs) are a large, diverse group of low-molecular weight proteins secreted into the fluid bathing olfactory and gustatory neuron dendrites. The best-characterized OBP, LUSH (OBP76a) enhances pheromone sensitivity enabling detection of physiological levels of the male-specific pheromone, 11-cis vaccenyl acetate. The role of the other OBPs encoded in the Drosophila genome is largely unknown. Here, using clustered regularly interspaced short palindromic repeats/Cas9, we generated and characterized the loss-of-function phenotype for two genes encoding homologous OBPs, OS-E (OBP83b) and OS-F (OBP83a). Instead of activation defects, these extracellular proteins are required for normal deactivation of odorant responses to a subset of odorants. Remarkably, odorants detected by the same odorant receptor are differentially affected by the loss of the OBPs, revealing an odorant-specific role in deactivation kinetics. In stark contrast to lush mutants, the OS-E/F mutants have normal activation kinetics to the affected odorants, even at low stimulus concentrations, suggesting that these OBPs are not competing for these ligands with the odorant receptors. We also show that OS-E and OS-F are functionally redundant as either is sufficient to revert the mutant phenotype in transgenic rescue experiments. These findings expand our understanding of the roles of OBPs to include the deactivation of odorant responses.
Collapse
Affiliation(s)
- Elizabeth A Scheuermann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Dean P Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
196
|
Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. eLife 2019; 8:51040. [PMID: 31651397 PMCID: PMC6814364 DOI: 10.7554/elife.51040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023] Open
Abstract
Odorant binding proteins (Obps) are expressed at extremely high levels in the antennae of insects, and have long been believed essential for carrying hydrophobic odorants to odor receptors. Previously we found that when one functional type of olfactory sensillum in Drosophila was depleted of its sole abundant Obp, it retained a robust olfactory response (Larter et al., 2016). Here we have deleted all the Obp genes that are abundantly expressed in the antennal basiconic sensilla. All of six tested sensillum types responded robustly to odors of widely diverse chemical or temporal structure. One mutant gave a greater physiological and behavioral response to an odorant that affects oviposition. Our results support a model in which many sensilla can respond to odorants in the absence of Obps, and many Obps are not essential for olfactory response, but that some Obps can modulate olfactory physiology and the behavior that it drives.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
197
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
198
|
Pregitzer P, Jiang X, Lemke RS, Krieger J, Fleischer J, Breer H. A Subset of Odorant Receptors from the Desert Locust Schistocerca gregaria Is Co-Expressed with the Sensory Neuron Membrane Protein 1. INSECTS 2019; 10:insects10100350. [PMID: 31627262 PMCID: PMC6835626 DOI: 10.3390/insects10100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
In the desert locust Schistocerca gregaria (S. gregaria), pheromones are considered to be crucial for governing important behaviors and processes, including phase transition, reproduction, aggregation and swarm formation. The receptors mediating pheromone detection in olfactory sensory neurons (OSNs) on the antenna of S. gregaria are unknown. Since pheromone receptors in other insects belong to the odorant receptor (OR) family and are typically co-expressed with the “sensory neuron membrane protein 1” (SNMP1), in our search for putative pheromone receptors of S. gregaria, we have screened the OR repertoire for receptor types that are expressed in SNMP1-positive OSNs. Based on phylogenetic analyses, we categorized the 119 ORs of S. gregaria into three groups (I–III) and analyzed a substantial number of ORs for co-expression with SNMP1 by two-color fluorescence in situ hybridization. We have identified 33 ORs that were co-expressed with SNMP1. In fact, the majority of ORs from group I and II were found to be expressed in SNMP1-positive OSNs, but only very few receptors from group III, which comprises approximately 60% of all ORs from S. gregaria, were co-expressed with SNMP1. These findings indicate that numerous ORs from group I and II could be important for pheromone communication. Collectively, we have identified a broad range of candidate pheromone receptors in S. gregaria that are not randomly distributed throughout the OR family but rather segregate into phylogenetically distinct receptor clades.
Collapse
Affiliation(s)
- Pablo Pregitzer
- Institute of Physiology (230), University of Hohenheim, 70599 Stuttgart, Germany.
| | - Xingcong Jiang
- Institute of Physiology (230), University of Hohenheim, 70599 Stuttgart, Germany.
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - René-Sebastian Lemke
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Heinz Breer
- Institute of Physiology (230), University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
199
|
The olfactory coreceptor IR8a governs larval feces-mediated competition avoidance in a hawkmoth. Proc Natl Acad Sci U S A 2019; 116:21828-21833. [PMID: 31591212 PMCID: PMC6815144 DOI: 10.1073/pnas.1913485116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Finding a suitable oviposition site is a challenging task for a gravid female moth. At the same time, it is of paramount importance considering the limited capability of most caterpillars to relocate to alternative host plants. The hawkmoth, Manduca sexta, oviposits on solanaceous plants. Larvae hatching on a plant that is already attacked by conspecific caterpillars face food competition. Here, we show that feces from conspecific caterpillars are sufficient to deter a female M. sexta from ovipositing on a plant. Furthermore, we not only identify the responsible compound in the feces but also localize the population of sensory neurons that governs the female’s avoidance. Hence, our work increases the understanding of how animals cope with a competitive environment. Finding a suitable oviposition site is a challenging task for a gravid female moth. At the same time, it is of paramount importance considering the limited capability of most caterpillars to relocate to alternative host plants. The hawkmoth, Manduca sexta (Sphingidae), oviposits on solanaceous plants. Larvae hatching on a plant that is already attacked by conspecific caterpillars can face food competition, as well as an increased exposure to predators and induced plant defenses. Here, we show that feces from conspecific caterpillars are sufficient to deter a female M. sexta from ovipositing on a plant and that this deterrence is based on the feces-emitted carboxylic acids 3-methylpentanoic acid and hexanoic acid. Using a combination of genome editing (CRISPR-Cas9), electrophysiological recordings, calcium imaging, and behavioral analyses, we demonstrate that ionotropic receptor 8a (IR8a) is essential for acid-mediated feces avoidance in ovipositing hawkmoths.
Collapse
|
200
|
Kaur R, Surala M, Hoger S, Grössmann N, Grimm A, Timaeus L, Kallina W, Hummel T. Pioneer interneurons instruct bilaterality in the Drosophila olfactory sensory map. SCIENCE ADVANCES 2019; 5:eaaw5537. [PMID: 31681838 PMCID: PMC6810332 DOI: 10.1126/sciadv.aaw5537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Interhemispheric synaptic connections, a prominent feature in animal nervous systems for the rapid exchange and integration of neuronal information, can appear quite suddenly during brain evolution, raising the question about the underlying developmental mechanism. Here, we show in the Drosophila olfactory system that the induction of a bilateral sensory map, an evolutionary novelty in dipteran flies, is mediated by a unique type of commissural pioneer interneurons (cPINs) via the localized activity of the cell adhesion molecule Neuroglian. Differential Neuroglian signaling in cPINs not only prepatterns the olfactory contralateral tracts but also prevents the targeting of ingrowing sensory axons to their ipsilateral synaptic partners. These results identified a sensitive cellular interaction to switch the sequential assembly of diverse neuron types from a unilateral to a bilateral brain circuit organization.
Collapse
Affiliation(s)
- Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Michael Surala
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Sebastian Hoger
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Nicole Grössmann
- Ludwig Boltzmann Institute, Health Technology Assessment (LBI-HTA), Garnisongasse7/20, 1090 Vienna, Austria
- Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alexandra Grimm
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Lorin Timaeus
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Wolfgang Kallina
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| |
Collapse
|