151
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
152
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
153
|
Matucci A, Nencini F, Pratesi S, Maggi E, Vultaggio A. An overview on safety of monoclonal antibodies. Curr Opin Allergy Clin Immunol 2017; 16:576-581. [PMID: 27749360 DOI: 10.1097/aci.0000000000000315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Biological agents have been a treatment option for many chronic immune-mediated diseases as well as oncological conditions. The issue of infusion reactions is of particular importance and at least in some cases related to the immunogenicity of these drugs with the production of antidrug antibodies. Infectious diseases are a well described side-effect of certain biological agents, even if, at least regarding the biological agents used for the treatment of allergic diseases and immune-mediated diseases, the risk has been reduced. Biological agents clearly impact the physiological functions of the immune system also those connected to immunosurveillance against cancers. This review discusses the safety profile to the main biological agents currently in use in allergic and chronic immune-mediated diseases. RECENT FINDINGS By reducing chronic inflammation in immune-mediated diseases, biological agents decrease mortality, cardiovascular events without increasing significantly the risk of cancer. In addition, specific clinical procedure enables the identification of potentially reactive patients and the prevention of acute severe reactions. Overall, the ratio between therapeutic and side-effects is clearly in favor of the former. SUMMARY The safety profile of biological agents is, just as much as their efficacy, one of the fundamental criteria justifying their clinical broad use.
Collapse
Affiliation(s)
- Andrea Matucci
- aImmunoallergology Unit, AOU Careggi bDepartment of Experimental and Clinical Medicine, Centre of Excellence DENOTHE, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
154
|
Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nat Commun 2017; 8:15976. [PMID: 28706306 PMCID: PMC5519985 DOI: 10.1038/ncomms15976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand–receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling. The contribution of ligands for cytokine receptor dimerization is still not fully understood. Here, the authors show the efficient ligand-induced dimerization of type II interleukin-4 receptor at the plasma membrane and the kinetic trapping of signalling complexes by actin-dependent membrane microdomains.
Collapse
|
155
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
156
|
Jayakumar A, Bothwell ALM. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response. Neoplasia 2017; 19:595-605. [PMID: 28654863 PMCID: PMC5487300 DOI: 10.1016/j.neo.2017.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022] Open
Abstract
Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4–induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4–induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor–BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process.
Collapse
MESH Headings
- Adenomatous Polyposis Coli/etiology
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Animals
- Becaplermin
- Biomarkers
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Disease Models, Animal
- Disease Progression
- Gene Deletion
- Gene Expression
- Interleukin-4/metabolism
- Interleukin-4/pharmacology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Mice
- Mice, Knockout
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Asha Jayakumar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520.
| |
Collapse
|
157
|
Park MH, Kwon HJ, Kim JR, Lee B, Lee SJ, Bae YK. Elevated Interleukin-13 Receptor Alpha 1 Expression in Tumor Cells Is Associated with Poor Prognosis in Patients with Invasive Breast Cancer. Ann Surg Oncol 2017. [PMID: 28634667 DOI: 10.1245/s10434-017-5907-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Interleukin (IL)-13 is an immunoregulatory, anti-inflammatory cytokine that is produced by numerous immune cells, and plasma membrane receptor for IL-13 (IL-13R) is known to be expressed in various human malignancies and in immune cells. METHODS The authors evaluated the expression of IL-13R alpha 1 (IL-13Rα1, an IL-13R subtype) by immunohistochemistry in tissue microarrays of 1213 invasive breast cancer (IBC) samples to determine the prognostic value of IL-13Rα1 expression. RESULTS High IL-13Rα1 expression was observed in 619 (51%) cases and was found to be associated with an older (≥50 years) age (p = 0.022), lymph node metastasis (p = 0.015), ductal and micropapillary histologic subtypes (p < 0.001), lymphovascular invasion (p = 0.012), HER2 positivity (p < 0.001), and a high (>20%) Ki-67 index (p = 0.039). No significant correlation was found between IL-13Rα1 expression and clinicopathological variables, including tumor size, histological grade, hormone receptor expressions, and tumor-infiltrating lymphocyte levels. Patients with high IL-13Rα1 expression showed poorer overall survival (p = 0.044) and disease-free survival (DFS, p = 0.001) than those with low/negative expression. Subgroup analysis revealed an association between IL-13Rα1 expression and survival for HER2-negative, but not for HER2-positive tumors. Multivariate analysis showed high IL-13Rα1 expression was an independent negative prognostic factor of DFS (p = 0.019). CONCLUSIONS The results of this study suggest the IL-13 and IL-13Rα1 interaction promotes cancer cell growth and metastasis, and IL-13Rα1 expression is a potential prognostic marker in IBC.
Collapse
Affiliation(s)
- Min Hui Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hee Jung Kwon
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
158
|
Jensen‐Jarolim E, Bax HJ, Bianchini R, Capron M, Corrigan C, Castells M, Dombrowicz D, Daniels‐Wells TR, Fazekas J, Fiebiger E, Gatault S, Gould HJ, Janda J, Josephs DH, Karagiannis P, Levi‐Schaffer F, Meshcheryakova A, Mechtcheriakova D, Mekori Y, Mungenast F, Nigro EA, Penichet ML, Redegeld F, Saul L, Singer J, Spicer JF, Siccardi AG, Spillner E, Turner MC, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy 2017; 72:866-887. [PMID: 28032353 PMCID: PMC5498751 DOI: 10.1111/all.13119] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment.
Collapse
Affiliation(s)
- E. Jensen‐Jarolim
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - H. J. Bax
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - R. Bianchini
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
| | - M. Capron
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - C. Corrigan
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
| | - M. Castells
- Division of Rheumatology, Immunology and AllergyDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - D. Dombrowicz
- INSERMCHU LilleEuropean Genomic Institute of DiabetesInstitut Pasteur de LilleU1011 – récepteurs nucléaires, maladies cardiovasculaires et diabèteUniversité de LilleLilleFrance
| | - T. R. Daniels‐Wells
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - J. Fazekas
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition ResearchDepartment of Medicine ResearchChildren's University Hospital BostonBostonMAUSA
| | - S. Gatault
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - H. J. Gould
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - J. Janda
- Center PigmodInstitute of Animal Physiology and GeneticsAcademy of Sciences of Czech RepublicLibechovCzech Republic
| | - D. H. Josephs
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - P. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - F. Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitFaculty of MedicineSchool of PharmacyThe Institute for Drug ResearchThe Hebrew University of JerusalemJerusalemIsrael
| | - A. Meshcheryakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - D. Mechtcheriakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - Y. Mekori
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - F. Mungenast
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. A. Nigro
- IRCCS San Raffaele Scientific InstituteMilanItaly
| | - M. L. Penichet
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCAUSA
| | - F. Redegeld
- Division of PharmacologyFaculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - L. Saul
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - J. Singer
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - J. F. Spicer
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | | | - E. Spillner
- Immunological EngineeringDepartment of EngineeringAarhus UniversityAarhusDenmark
| | - M. C. Turner
- ISGlobalCentre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaONCanada
| | - E. Untersmayr
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - L. Vangelista
- Department of Biomedical SciencesNazarbayev University School of MedicineAstanaKazakhstan
| | - S. N. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| |
Collapse
|
159
|
Zilio S, Vella JL, De la Fuente AC, Daftarian PM, Weed DT, Kaifer A, Marigo I, Leone K, Bronte V, Serafini P. 4PD Functionalized Dendrimers: A Flexible Tool for In Vivo Gene Silencing of Tumor-Educated Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4166-4177. [PMID: 28396317 DOI: 10.4049/jimmunol.1600833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Myeloid cells play a key role in tumor progression and metastasis by providing nourishment and immune protection, as well as facilitating cancer invasion and seeding to distal sites. Although advances have been made in understanding the biology of these tumor-educated myeloid cells (TEMCs), their intrinsic plasticity challenges our further understanding of their biology. Indeed, in vitro experiments only mimic the in vivo setting, and current gene-knockout technologies do not allow the simultaneous, temporally controlled, and cell-specific silencing of multiple genes or pathways. In this article, we describe the 4PD nanoplatform, which allows the in vivo preferential transfection and in vivo tracking of TEMCs with the desired RNAs. This platform is based on the conjugation of CD124/IL-4Rα-targeting peptide with G5 PAMAM dendrimers as the loading surface and can convey therapeutic or experimental RNAs of interest. When injected i.v. in mice bearing CT26 colon carcinoma or B16 melanoma, the 4PD nanoparticles predominantly accumulate at the tumor site, transfecting intratumoral myeloid cells. The use of 4PD to deliver a combination of STAT3- and C/EBPβ-specific short hairpin RNA or miR-142-3p confirmed the importance of these genes and microRNAs in TEMC biology and indicates that silencing of both genes is necessary to increase the efficacy of immune interventions. Thus, the 4PD nanoparticle can rapidly and cost effectively modulate and assess the in vivo function of microRNAs and mRNAs in TEMCs.
Collapse
Affiliation(s)
- Serena Zilio
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | - Jennifer L Vella
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | | | - Pirouz M Daftarian
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | - Donald T Weed
- Department of Otolaryngology, University of Miami, Miami, FL, 33136
| | - Angel Kaifer
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146
| | - Ilaria Marigo
- Istituto Oncologico Veneto-Istituto di Ricovero e Cura a Carattere Scientifico, IOV-IRCCS, 35128 Padova, Italy; and
| | - Kevin Leone
- Istituto Oncologico Veneto-Istituto di Ricovero e Cura a Carattere Scientifico, IOV-IRCCS, 35128 Padova, Italy; and
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136;
| |
Collapse
|
160
|
Hodgkinson JW, Fibke C, Belosevic M. Recombinant IL-4/13A and IL-4/13B induce arginase activity and down-regulate nitric oxide response of primary goldfish (Carassius auratus L.) macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:377-384. [PMID: 27581741 DOI: 10.1016/j.dci.2016.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 05/02/2023]
Abstract
We report on the expression analysis and functional characterization of IL-4/13A and IL-4/13B in goldfish. Quantitative analysis indicated the highest expression in the heart, spleen, brain, and kidney, with comparable expression patterns for both IL-4/13A and IL-4/13B. The mRNA levels of IL-4/13A and IL-4/13B in the immune cells examined were highest in macrophage and monocytes. Assessment of spleen mRNA following infection with Trypanosoma carassii, a prominent protozoan pathogen of fish, revealed decrease in IL-4/13B and arginase expression 14 days post infection, followed by an increase in IL-4/13B and arginase-2 at 28 days post infection. Recombinant forms of IL-4/13A and IL-4/13B induced an increase in arginase activity in macrophages in a dose-dependent manner. Recombinant IL-4/13A and IL-4/13B also induced significant increase in mRNA levels of arginase -2 in macrophages at 6, 12, 18 and 24 h after treatment. Furthermore, treatment with both IL-4/13 recombinants interfered with the IFNγ-induced nitric oxide response of macrophages. Our results suggest a conserved role of IL-4/IL-13 in induction of alternative activation phenotype in teleost macrophages.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chad Fibke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
161
|
Purohit A, Varney M, Rachagani S, Ouellette MM, Batra SK, Singh RK. CXCR2 signaling regulates KRAS(G¹²D)-induced autocrine growth of pancreatic cancer. Oncotarget 2016; 7:7280-96. [PMID: 26771140 PMCID: PMC4872785 DOI: 10.18632/oncotarget.6906] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
Pharmacological inhibition of RAS, the master regulator of pancreatic ductal adenocarcinoma (PDAC), continues to be a challenge. Mutations in various isoforms of RAS gene, including KRAS are known to upregulate CXC chemokines; however, their precise role in KRAS-driven pancreatic cancer remains unclear. In this report, we reveal a previously unidentified tumor cell-autonomous role of KRAS(G12D)-induced CXCR2 signaling in mediating growth of neoplastic PDAC cells. Progressively increasing expression of mCXCR2 and its ligands was detected in the malignant ductal cells of Pdx1-cre;LSL-Kras(G12D) mice. Knocking-down CXCR2 in KRAS(G12D)-bearing human pancreatic duct-derived cells demonstrated a significant decrease in the in vitro and in vivo tumor cell proliferation. Furthermore, CXCR2 antagonists showed selective growth inhibition of KRAS(G12D)-bearing cells in vitro. Intriguingly, both genetic and pharmacological inhibition of CXCR2 signaling in KRAS(G12D)-bearing pancreatic ductal cells reduced the levels of KRAS protein, strongly implying the presence of a KRAS-CXCR2 feed-forward loop. Together, these data demonstrate the role of CXCR2 signaling in KRAS(G12D)-induced growth transformation and progression in PDAC.
Collapse
Affiliation(s)
- Abhilasha Purohit
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Varney
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K Batra
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
162
|
Ye H, Wang Y, Yan J, Jenson AB. Characterization of the anti-inflammation mechanism for the AO herbal extract. Exp Mol Pathol 2016; 101:341-345. [PMID: 27876570 DOI: 10.1016/j.yexmp.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
A broad range of cytokines are secreted during the inflammatory response by the immune system. Some cytokines promote inflammation, while others inhibit inflammation. Inflammatory cytokines work in harmony when they encounter external pathogens or internal dangers. Inflammation is resolved after the cause is eliminated. However, if the cause persists, it can lead to significant diseases. The pro-inflammatory cytokine TNFα is a biomarker for the inflammatory response. The AO herbal mixture extracted from 10 medicinal herbs has been investigated for its ability to control the inflammatory process and to inhibit TNFα activity. To find the treatment for inflammation related diseases, we examined whether the AO herbal extract is able to affect the activities of other cytokines. Here we present that the AO herbal extract is able to inhibit pro-inflammatory factor activities including IL-1α. However, it does not affect the activities of IL-1β and IL-6. Interestingly, it promotes the activity of anti-inflammatory factors including IL-4 and IL-13.
Collapse
Affiliation(s)
- Hong Ye
- Department of Medicine, James G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Yali Wang
- Department of Medicine, James G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- Department of Medicine, James G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - A Bennett Jenson
- Department of Medicine, James G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
163
|
Tu M, Wange W, Cai L, Zhu P, Gao Z, Zheng W. IL-13 receptor α2 stimulates human glioma cell growth and metastasis through the Src/PI3K/Akt/mTOR signaling pathway. Tumour Biol 2016; 37:14701-14709. [PMID: 27623944 DOI: 10.1007/s13277-016-5346-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
Glioma is a malignant tumor that affects all kinds of people all over the world. It demonstrates remarkable infiltrative and invasive features. The high expression of interleukin-13 receptor subunit alpha-2 (IL-13Rα2) reportedly plays a pivotal role in some cancers. However, whether IL-13Rα2 contributes to glioma remains unknown. This study demonstrates that IL-13Rα2 is significantly up-regulated in human glioma tissue samples. It is also associated with late stages of disease progression and diminished survival in glioma patients. Gain- and loss-of-function studies demonstrate that IL-13Rα2 promotes the growth, migration, and invasion of glioma cells. In addition, mechanistic investigations show that IL-13Rα2 activates Scr, phosphatidylinositol 3 kinase (PI3K), Akt, and mTOR. Also, restraining Scr in glioma cells attenuates the activation of Scr/PI3K/Akt/mTOR pathway by IL-13Rα2, whereas the silencing of Scr markedly rescues the pro-invasive effect of IL-13Rα2. In conclusion, our results suggest that the high expression of IL-13Rα2 is significantly associated with the growth and metastasis of human glioma cells via the Scr/PI3K/Akt/mTOR pathway, while IL-13Rα2 may be a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Wange
- Department of Emergency, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Penglei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhichao Gao
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
164
|
Abstract
The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention.
Collapse
Affiliation(s)
- M Yao
- University of Kansas Medical Center, Kansas City, KS, United States
| | - G Brummer
- University of Kansas Medical Center, Kansas City, KS, United States
| | - D Acevedo
- University of Kansas Medical Center, Kansas City, KS, United States
| | - N Cheng
- University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
165
|
Zeng B, Zhu D, Su Z, Li Z, Yu Z. Tristetraprolin exerts tumor suppressive functions on the tumorigenesis of glioma by targeting IL-13. Int Immunopharmacol 2016; 39:63-70. [PMID: 27424080 DOI: 10.1016/j.intimp.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022]
Abstract
The RNA-binding protein tristetraprolin (TTP) is an adenine/uridine (AU)-rich elements (AREs)-binding protein that can induce the decay of AREs containing mRNAs. In this study, we demonstrated that TTP is significantly down-regulated in human glioma tissue samples and cell lines. It is also associated with diminished survival in glioma patients. Gain- and loss-of-function studies demonstrated that TTP inhibited the growth, migration and invasion of glioma cells through regulation of interleukin (IL)-13. Furthermore, mechanistic investigations showed that TTP attenuated activation of PI3K/Akt/mTOR pathway by IL-13, and the ectopic expression of IL-13 markedly abrogated the anti-invasive effect of TTP. Additionally, TTP were found inversely correlated with IL-13 in glioma specimens. In conclusion, our results suggested that the low expression of TTP is significantly associated with the growth and metastasis of human glioma cells by targeting IL-13, while TTP may be a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Bo Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Danhua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zequn Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
166
|
Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 2016; 36:639-651. [PMID: 27345402 PMCID: PMC5419051 DOI: 10.1038/onc.2016.229] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/14/2016] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Acquired resistance to chemotherapy remains a major stumbling block in cancer treatment. Chronic inflammation plays a crucial role in induction of chemo resistance, and results in part from the induction and expansion of inflammatory cells that include myeloid derived suppressor cells (MDSC) and IL-13+Th2 cells. The mechanisms that lead to induction of activated MDSCs and IL-13+Th2 cells have not yet been identified. Here we demonstrated that doxorubicin treatment of 4T1 breast tumor bearing mice led to the induction of IL-13R+miR-126a+MDSC (DOX-MDSC). DOX-MDSC promote breast tumor lung metastasis through MDSC miR-126a+exosomal mediated induction of IL-13+Th2 cells and tumor angiogenesis. The induction of DOX-MDSC is regulated in a paracrine manner. DOX treatment not only increases IL-33 released from breast tumor cells, which is crucial for the induction of IL-13+Th2 cells, but it also participates in the induction of IL-13 receptors and miR-126a expressed on/in the MDSCs. IL-13 released from IL-13+Th2 cells then promotes the production of DOX-MDSC and MDSC miR-126a+exosomes via MDSC IL-13R. MDSC miR-126a+exosomes further induce IL13+Th2 cells in a positive feed-back loop manner. We also showed that MDSC miR-126a rescues doxorubicin induced MDSC death in a S100A8/A9 dependent manner and promotes tumor angiogenesis. Our findings provide insight into the MDSC exosomal mediated chemo resistance mechanism, which will be useful for the design of inhibitors targeting the blocking of induction of miR-126a+MDSC.
Collapse
|
167
|
Alipour Talesh G, Ebrahimi Z, Badiee A, Mansourian M, Attar H, Arabi L, Jalali SA, Jaafari MR. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett 2016; 176:57-64. [PMID: 27260485 DOI: 10.1016/j.imlet.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/07/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
Abstract
In the current study we aimed at developing a vaccine delivery/adjuvant system to enhance anti-tumor immunity against the natural multi-epitope HER2/Neu-derived P5 peptide. Polyriboinosinic: polyribocytidylic acid [Poly (I:C)] is a strong immunoadjuvant able to enhance specific antitumor immunity induced by peptide-based vaccines. Nevertheless, delivering the peptide and adjuvant intracellularly into their target site remains a challenging issue. We hypothesized this barrier could be overcome through the use of a cationic nanoliposome carrier system which can carry and protect the antigen and adjuvant in the extracellular environment and augment the induction of antitumor immunity. P5 was encapsulated in cationic nanoliposomes composed of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-Cholesterol either alone or complexed with Poly (I:C). Immunocompetent BALB/c mice were immunized with the formulations 3 times in two-week intervals and the efficiency and type of immune response were then evaluated both in vitro and in vivo. The groups immunized with Lip-P5+PIC (DOTAP-Cholestrol-P5+Poly (I:C)) and Lip+PIC (DOTAP-Cholestrol+Poly (I:C)) enhanced the release of Interferon (IFN)-γ in comparison with other groups. Flow cytometry analysis revealed that Lip-P5+PIC formulation induced the highest level of IFN-γ in CD8(+) lymphocytes. Lip-P5+PIC, Lip+PIC and Lip-P5 (DOTAP-Cholestrol-P5) provided some extent of protection in terms of tumor regression in TUBO tumor mice model during the first 65days post tumor challenge but at the end only the tumors of mice immunized with Lip-P5+PIC were significantly smaller than all other groups. Furthermore, tumors of mice receiving Lip-P5+PIC grew at a significantly slower rate throughout the observation period. Our results showed that the combination of Poly (I:C) and DOTAP with the tumor antigen and without applying additional T-helper epitope induced strong antitumor responses. The observations presented here are of great interest for future vaccine studies.
Collapse
Affiliation(s)
- Ghazal Alipour Talesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Ebrahimi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mercedeh Mansourian
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Attar
- Department of Biochemical Engineering, Science & Research Branch Islamic Azad University, Tehran, Iran
| | - Leila Arabi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Jalali
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
168
|
Haghshenas MR, Khademi B, Ashraf MJ, Ghaderi A, Erfani N. Helper and cytotoxic T-cell subsets (Th1, Th2, Tc1, and Tc2) in benign and malignant salivary gland tumors. Oral Dis 2016; 22:566-72. [DOI: 10.1111/odi.12496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Affiliation(s)
- MR Haghshenas
- Cancer Immunology group; Shiraz Institute for Cancer Research; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| | - B Khademi
- Cancer Immunology group; Shiraz Institute for Cancer Research; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Otolaryngology; Khalili Hospital; Shiraz University of Medical Sciences; Shiraz Iran
| | - MJ Ashraf
- Department of Pathology; Khalili Hospital; Shiraz University of Medical Sciences; Shiraz Iran
| | - A Ghaderi
- Cancer Immunology group; Shiraz Institute for Cancer Research; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| | - N Erfani
- Cancer Immunology group; Shiraz Institute for Cancer Research; School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
169
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
170
|
IL-4 and IL-13: from "supe" to nuts. Cytokine 2015; 75:1-2. [PMID: 26168691 DOI: 10.1016/j.cyto.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/22/2022]
|