151
|
Abstract
Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany.,Faculty of Biology, Ludwig-Maximilians Universität, 82152 München, Germany
| |
Collapse
|
152
|
Centromere chromatin structure - Lessons from neocentromeres. Exp Cell Res 2020; 389:111899. [PMID: 32044308 DOI: 10.1016/j.yexcr.2020.111899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 11/22/2022]
Abstract
Centromeres are highly specialized genomic loci that function during mitosis to maintain genome stability. Formed primarily on repetitive α-satellite DNA sequence characterisation of native centromeric chromatin structure has remained challenging. Fortuitously, neocentromeres are formed on a unique DNA sequence and represent an excellent model to interrogate centromeric chromatin structure. This review uncovers the specific findings from independent neocentromere studies that have advanced our understanding of canonical centromere chromatin structure.
Collapse
|
153
|
Hori T, Fukagawa T. Artificial generation of centromeres and kinetochores to understand their structure and function. Exp Cell Res 2020; 389:111898. [PMID: 32035949 DOI: 10.1016/j.yexcr.2020.111898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 01/19/2023]
Abstract
The centromere is an essential genomic region that provides the surface to form the kinetochore, which binds to the spindle microtubes to mediate chromosome segregation during mitosis and meiosis. Centromeres of most organisms possess highly repetitive sequences, making it difficult to study these loci. However, an unusual centromere called a "neocentromere," which does not contain repetitive sequences, was discovered in a patient and can be generated experimentally. Recent advances in genome biology techniques allow us to analyze centromeric chromatin using neocentromeres. In addition to neocentromeres, artificial kinetochores have been generated on non-centromeric loci, using protein tethering systems. These are powerful tools to understand the mechanism of the centromere specification and kinetochore assembly. In this review, we introduce recent studies utilizing the neocentromeres and artificial kinetochores and discuss current problems in centromere biology.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
154
|
Zhang Y, Zhao C, Cao B, Ye J, Huang H, Hu L, Tian W, He X. Structural insights into the intramolecular interactions of centromere protein CENP-I. J Mol Recognit 2020; 33:e2837. [PMID: 32017295 DOI: 10.1002/jmr.2837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/14/2020] [Indexed: 01/04/2023]
Abstract
In mitosis, the accurate segregation of sister chromosomes relies on kinetochore, a multiple subunits complex assembled on centromere of each sister chromosome. As a core component of inner kinetochore, CENP-I plays important functions to mediate kinetochore assembly and supports the faithful chromosome segregation. The structures of the N-terminus and C-terminus of CENP-I homologs in complex with CENP-H/K have been reported, respectively. Unfortunately, the intramolecular interactions of CENP-I are poorly understood, and how CENP-I interacts with CENP-M remains unknown. Here, we verified a unique helix α11, which forms the intramolecular interactions with N-terminal HEAT repeats in fungal CENP-I. Deletion of the helix α11 exposed the hydrophobic surface and resulted in the in vitro protein aggregation of N-terminal HEAT repeats of fungal CENP-I. The corresponding helix and its intramolecular interaction are highly conserved in human CENP-I. Deletion of the corresponding helix in human CENP-I dramatically reduced the functional activity to interact with CENP-H and CENP-M. Mutations of the conserved residues on the helix in human CENP-I significantly weakened the binding to CENP-M, but not CENP-H, in HeLa cells. Therefore, our findings for the first time unveiled a conserved helix of CENP-I, which is important for the intramolecular interaction and function, and would be helpful for understanding the structure basis of how CENP-I mediates the kinetochore assembly during cell cycle and mitosis.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
155
|
Singh PP, Shukla M, White SA, Lafos M, Tong P, Auchynnikava T, Spanos C, Rappsilber J, Pidoux AL, Allshire RC. Hap2-Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin. Genes Dev 2020; 34:226-238. [PMID: 31919190 PMCID: PMC7000912 DOI: 10.1101/gad.332536.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Collapse
Affiliation(s)
- Puneet P. Singh
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Manu Shukla
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Sharon A. White
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcel Lafos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom;,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
156
|
Centromeric Non-Coding RNAs: Conservation and Diversity in Function. Noncoding RNA 2020; 6:ncrna6010004. [PMID: 31963472 PMCID: PMC7151564 DOI: 10.3390/ncrna6010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Chromosome segregation is strictly regulated for the proper distribution of genetic material to daughter cells. During this process, mitotic chromosomes are pulled to both poles by bundles of microtubules attached to kinetochores that are assembled on the chromosomes. Centromeres are specific regions where kinetochores assemble. Although these regions were previously considered to be silent, some experimental studies have demonstrated that transcription occurs in these regions to generate non-coding RNAs (ncRNAs). These centromeric ncRNAs (cenRNAs) are involved in centromere functions. Here, we describe the currently available information on the functions of cenRNAs in several species.
Collapse
|
157
|
Dumont M, Gamba R, Gestraud P, Klaasen S, Worrall JT, De Vries SG, Boudreau V, Salinas‐Luypaert C, Maddox PS, Lens SMA, Kops GJPL, McClelland SE, Miga KH, Fachinetti D. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J 2020; 39:e102924. [PMID: 31750958 PMCID: PMC6960447 DOI: 10.15252/embj.2019102924] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Intrinsic genomic features of individual chromosomes can contribute to chromosome-specific aneuploidy. Centromeres are key elements for the maintenance of chromosome segregation fidelity via a specialized chromatin marked by CENP-A wrapped by repetitive DNA. These long stretches of repetitive DNA vary in length among human chromosomes. Using CENP-A genetic inactivation in human cells, we directly interrogate if differences in the centromere length reflect the heterogeneity of centromeric DNA-dependent features and whether this, in turn, affects the genesis of chromosome-specific aneuploidy. Using three distinct approaches, we show that mis-segregation rates vary among different chromosomes under conditions that compromise centromere function. Whole-genome sequencing and centromere mapping combined with cytogenetic analysis, small molecule inhibitors, and genetic manipulation revealed that inter-chromosomal heterogeneity of centromeric features, but not centromere length, influences chromosome segregation fidelity. We conclude that faithful chromosome segregation for most of human chromosomes is biased in favor of centromeres with high abundance of DNA-dependent centromeric components. These inter-chromosomal differences in centromere features can translate into non-random aneuploidy, a hallmark of cancer and genetic diseases.
Collapse
Affiliation(s)
- Marie Dumont
- Institut CuriePSL Research UniversityCNRSUMR144ParisFrance
| | - Riccardo Gamba
- Institut CuriePSL Research UniversityCNRSUMR144ParisFrance
| | - Pierre Gestraud
- Institut CuriePSL Research UniversityCNRSUMR144ParisFrance
- PSL Research UniversityInstitut Curie Research CenterINSERM U900ParisFrance
- MINES ParisTechPSL Research UniversityCBIO‐Centre for Computational BiologyParisFrance
| | - Sjoerd Klaasen
- Oncode InstituteHubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences)UtrechtThe Netherlands
| | | | - Sippe G De Vries
- Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Vincent Boudreau
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | | | - Paul S Maddox
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | - Susanne MA Lens
- Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Geert JPL Kops
- Oncode InstituteHubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences)UtrechtThe Netherlands
| | | | - Karen H Miga
- Center for Biomolecular Science & EngineeringUniversity of California Santa CruzSanta CruzCAUSA
| | | |
Collapse
|
158
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
159
|
Takizawa Y, Ho CH, Tachiwana H, Matsunami H, Kobayashi W, Suzuki M, Arimura Y, Hori T, Fukagawa T, Ohi MD, Wolf M, Kurumizaka H. Cryo-EM Structures of Centromeric Tri-nucleosomes Containing a Central CENP-A Nucleosome. Structure 2020; 28:44-53.e4. [DOI: 10.1016/j.str.2019.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
|
160
|
Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P. Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. Int J Mol Sci 2019; 20:ijms20235823. [PMID: 31756960 PMCID: PMC6929194 DOI: 10.3390/ijms20235823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
The centromere, in which kinetochore proteins are assembled, plays an important role in the accurate congression and segregation of chromosomes during cell mitosis. Although the function of the centromere and kinetochore is conserved from monocentric to holocentric, the DNA sequences of the centromere and components of the kinetochore are varied among different species. Given the lack of core centromere protein A (CENP-A) and CENP-C in the lepidopteran silkworm Bombyx mori, which possesses holocentric chromosomes, here we investigated the role of CENP-N, another important member of the centromere protein family essential for kinetochore assembly. For the first time, cellular localization and RNA interference against CENP-N have confirmed its kinetochore function in silkworms. To gain further insights into the regulation of CENP-N in the centromere, we analyzed the affinity-purified complex of CENP-N by mass spectrometry and identified 142 interacting proteins. Among these factors, we found that the chaperone protein heat shock cognate 70 (HSC70) is able to regulate the stability of CENP-N by prohibiting ubiquitin-proteasome pathway, indicating that HSC70 could control cell cycle-regulated degradation of CENP-N at centromeres. Altogether, the present work will provide a novel clue to understand the regulatory mechanism for the kinetochore activity of CENP-N during the cell cycle.
Collapse
Affiliation(s)
- Bingqian Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
161
|
Lawrimore J, Doshi A, Walker B, Bloom K. AI-Assisted Forward Modeling of Biological Structures. Front Cell Dev Biol 2019; 7:279. [PMID: 31799251 PMCID: PMC6868055 DOI: 10.3389/fcell.2019.00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
The rise of machine learning and deep learning technologies have allowed researchers to automate image classification. We describe a method that incorporates automated image classification and principal component analysis to evaluate computational models of biological structures. We use a computational model of the kinetochore to demonstrate our artificial-intelligence (AI)-assisted modeling method. The kinetochore is a large protein complex that connects chromosomes to the mitotic spindle to facilitate proper cell division. The kinetochore can be divided into two regions: the inner kinetochore, including proteins that interact with DNA; and the outer kinetochore, comprised of microtubule-binding proteins. These two kinetochore regions have been shown to have different distributions during metaphase in live budding yeast and therefore act as a test case for our forward modeling technique. We find that a simple convolutional neural net (CNN) can correctly classify fluorescent images of inner and outer kinetochore proteins and show a CNN trained on simulated, fluorescent images can detect difference in experimental images. A polymer model of the ribosomal DNA locus serves as a second test for the method. The nucleolus surrounds the ribosomal DNA locus and appears amorphous in live-cell, fluorescent microscopy experiments in budding yeast, making detection of morphological changes challenging. We show a simple CNN can detect subtle differences in simulated images of the ribosomal DNA locus, demonstrating our CNN-based classification technique can be used on a variety of biological structures.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ayush Doshi
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin Walker
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
162
|
Watanabe R, Hara M, Okumura EI, Hervé S, Fachinetti D, Ariyoshi M, Fukagawa T. CDK1-mediated CENP-C phosphorylation modulates CENP-A binding and mitotic kinetochore localization. J Cell Biol 2019; 218:4042-4062. [PMID: 31676716 PMCID: PMC6891089 DOI: 10.1083/jcb.201907006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Kinetochore localization of CENP-C, which is a key and conserved kinetochore component, is regulated during cell cycle progression. Watanabe et al. demonstrate that CDK1-mediated CENP-C phosphorylation regulates mitotic kinetochore localization via binding of CENP-C to the CENP-A nucleosome. The kinetochore is essential for faithful chromosome segregation during mitosis. To form a functional kinetochore, constitutive centromere-associated network (CCAN) proteins are assembled on the centromere chromatin that contains the centromere-specific histone CENP-A. CENP-C, a CCAN protein, directly interacts with the CENP-A nucleosome to nucleate the kinetochore structure. As CENP-C is a hub protein for kinetochore assembly, it is critical to address how the CENP-A–CENP-C interaction is regulated during cell cycle progression. To address this question, we investigated the CENP-C C-terminal region, including a conserved CENP-A–binding motif, in both chicken and human cells and found that CDK1-mediated phosphorylation of CENP-C facilitates its binding to CENP-A in vitro and in vivo. We observed that CENP-A binding is involved in CENP-C kinetochore localization during mitosis. We also demonstrate that the CENP-A–CENP-C interaction is critical for long-term viability in human RPE-1 cells. These results provide deeper insights into protein-interaction network plasticity in centromere proteins during cell cycle progression.
Collapse
Affiliation(s)
- Reito Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ei-Ichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Solène Hervé
- Institute Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique, UMR 144, Paris, France
| | - Daniele Fachinetti
- Institute Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique, UMR 144, Paris, France
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
163
|
Haploid Induction and Genome Instability. Trends Genet 2019; 35:791-803. [DOI: 10.1016/j.tig.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022]
|
164
|
Centromere repositioning causes inversion of meiosis and generates a reproductive barrier. Proc Natl Acad Sci U S A 2019; 116:21580-21591. [PMID: 31597736 PMCID: PMC6815110 DOI: 10.1073/pnas.1911745116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in inner kinetochore components induce centromere repositioning without alteration in the centromeric DNA sequence, revealing a feedback mechanism underlying the high epigenetic stability of the centromere. This also provides a desirable experimental system to explore the functional significance of centromere positioning in meiosis. We discovered that in a heterozygotic meiosis, a repositioned centromere generates a reproductive barrier, suggesting a functional role of evolutionary new centromeres in speciation; furthermore, in a homozygotic meiosis, chromosomes carrying repositioned centromeres frequently undergo the 2 stages of meiotic segregation in an inverted order, demonstrating high flexibility in the meiotic process. The chromosomal position of each centromere is determined epigenetically and is highly stable, whereas incremental cases have supported the occurrence of centromere repositioning on an evolutionary time scale (evolutionary new centromeres, ENCs), which is thought to be important in speciation. The mechanisms underlying the high stability of centromeres and its functional significance largely remain an enigma. Here, in the fission yeast Schizosaccharomyces pombe, we identify a feedback mechanism: The kinetochore, whose assembly is guided by the centromere, in turn, enforces centromere stability. Upon going through meiosis, specific inner kinetochore mutations induce centromere repositioning—inactivation of the original centromere and formation of a new centromere elsewhere—in 1 of the 3 chromosomes at random. Repositioned centromeres reside asymmetrically in the pericentromeric regions and cells carrying them are competent in mitosis and homozygotic meiosis. However, when cells carrying a repositioned centromere are crossed with those carrying the original centromere, the progeny suffer severe lethality due to defects in meiotic chromosome segregation. Thus, repositioned centromeres constitute a reproductive barrier that could initiate genetic divergence between 2 populations with mismatched centromeres, documenting a functional role of ENCs in speciation. Surprisingly, homozygotic repositioned centromeres tend to undergo meiosis in an inverted order—that is, sister chromatids segregate first, and homologous chromosomes separate second—whereas the original centromeres on other chromosomes in the same cell undergo meiosis in the canonical order, revealing hidden flexibility in the perceived rigid process of meiosis.
Collapse
|
165
|
Liskovykh M, Goncharov NV, Petrov N, Aksenova V, Pegoraro G, Ozbun LL, Reinhold WC, Varma S, Dasso M, Kumeiko V, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission. Genome Res 2019; 29:1719-1732. [PMID: 31515286 PMCID: PMC6771407 DOI: 10.1101/gr.254276.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022]
Abstract
One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolay V. Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laurent L. Ozbun
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William C. Reinhold
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d, Japan
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
166
|
Asymmetric Centromeres Differentially Coordinate with Mitotic Machinery to Ensure Biased Sister Chromatid Segregation in Germline Stem Cells. Cell Stem Cell 2019; 25:666-681.e5. [PMID: 31564548 DOI: 10.1016/j.stem.2019.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Many stem cells utilize asymmetric cell division (ACD) to produce a self-renewed stem cell and a differentiating daughter cell. How non-genic information could be inherited differentially to establish distinct cell fates is not well understood. Here, we report a series of spatiotemporally regulated asymmetric components, which ensure biased sister chromatid attachment and segregation during ACD of Drosophila male germline stem cells (GSCs). First, sister centromeres are differentially enriched with proteins involved in centromere specification and kinetochore function. Second, temporally asymmetric microtubule activities and polarized nuclear envelope breakdown allow for the preferential recognition and attachment of microtubules to asymmetric sister kinetochores and sister centromeres. Abolishment of either the asymmetric sister centromeres or the asymmetric microtubule activities results in randomized sister chromatid segregation. Together, these results provide the cellular basis for partitioning epigenetically distinct sister chromatids during stem cell ACDs, which opens new directions to study these mechanisms in other biological contexts.
Collapse
|
167
|
Andronov L, Michalon J, Ouararhni K, Orlov I, Hamiche A, Vonesch JL, Klaholz BP. 3DClusterViSu: 3D clustering analysis of super-resolution microscopy data by 3D Voronoi tessellations. Bioinformatics 2019; 34:3004-3012. [PMID: 29635310 DOI: 10.1093/bioinformatics/bty200] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/02/2018] [Indexed: 11/14/2022] Open
Abstract
Motivation Single-molecule localization microscopy (SMLM) can play an important role in integrated structural biology approaches to identify, localize and determine the 3D structure of cellular structures. While many tools exist for the 3D analysis and visualization of crystal or cryo-EM structures little exists for 3D SMLM data, which can provide unique insights but are particularly challenging to analyze in three dimensions especially in a dense cellular context. Results We developed 3DClusterViSu, a method based on 3D Voronoi tessellations that allows local density estimation, segmentation and quantification of 3D SMLM data and visualization of protein clusters within a 3D tool. We show its robust performance on microtubules and histone proteins H2B and CENP-A with distinct spatial distributions. 3DClusterViSu will favor multi-scale and multi-resolution synergies to allow integrating molecular and cellular levels in the analysis of macromolecular complexes. Availability and impementation 3DClusterViSu is available under http://cbi-dev.igbmc.fr/cbi/voronoi3D. Supplementary information Supplementary figures are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leonid Andronov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jonathan Michalon
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ali Hamiche
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jean-Luc Vonesch
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.,Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
168
|
Pan D, Walstein K, Take A, Bier D, Kaiser N, Musacchio A. Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing. Nat Commun 2019; 10:4046. [PMID: 31492860 PMCID: PMC6731319 DOI: 10.1038/s41467-019-12019-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Nucleosomes containing the histone H3 variant CENP-A are the epigenetic mark of centromeres, the kinetochore assembly sites required for chromosome segregation. HJURP is the CENP-A chaperone, which associates with Mis18α, Mis18β, and M18BP1 to target centromeres and deposit new CENP-A. How these proteins interact to promote CENP-A deposition remains poorly understood. Here we show that two repeats in human HJURP proposed to be functionally distinct are in fact interchangeable and bind concomitantly to the 4:2:2 Mis18α:Mis18β:M18BP1 complex without dissociating it. HJURP binds CENP-A:H4 dimers, and therefore assembly of CENP-A:H4 tetramers must be performed by two Mis18αβ:M18BP1:HJURP complexes, or by the same complex in consecutive rounds. The Mis18α N-terminal tails blockade two identical HJURP-repeat binding sites near the Mis18αβ C-terminal helices. These were identified by photo-cross-linking experiments and mutated to separate Mis18 from HJURP centromere recruitment. Our results identify molecular underpinnings of eukaryotic chromosome inheritance and shed light on how centromeres license CENP-A deposition. The CENP-A chaperone HJURP associates with Mis18α, Mis18β, and M18BP1 to target centromeres and deposit new CENP-A. Here the authors provide evidence that two repeats in human HJURP previously proposed to be functionally distinct are interchangeable and bind concomitantly to the 4:2:2 Mis18α:Mis18β:M18BP1 complex without dissociating it.
Collapse
Affiliation(s)
- Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Annika Take
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - David Bier
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Nadine Kaiser
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany. .,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141, Essen, Germany.
| |
Collapse
|
169
|
Su H, Liu Y, Liu C, Shi Q, Huang Y, Han F. Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. THE PLANT CELL 2019; 31:2035-2051. [PMID: 31311836 PMCID: PMC6751130 DOI: 10.1105/tpc.19.00133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
Centromeres mediate the pairing of homologous chromosomes during meiosis; this pairing is particularly challenging for polyploid plants such as hexaploid bread wheat (Triticum aestivum), as their meiotic machinery must differentiate homologs from similar homoeologs. However, the sequence compositions (especially functional centromeric satellites) and evolutionary history of wheat centromeres are largely unknown. Here, we mapped T. aestivum centromeres by chromatin immunoprecipitation sequencing using antibodies to the centromeric-specific histone H3 variant (CENH3); this identified two types of functional centromeric satellites that are abundant in two of the three subgenomes. These centromeric satellites had unit sizes greater than 500 bp and contained specific sites with highly phased binding to CENH3 nucleosomes. Phylogenetic analysis revealed that the satellites have diverged in the three T. aestivum subgenomes, and the more homogeneous satellite arrays are associated with CENH3. Satellite signals decreased and the degree of satellites variation increased from diploid to hexaploid wheat. Moreover, several T. aestivum centromeres lack satellite repeats. Rearrangements, including local expansion and satellite variations, inversions, and changes in gene expression, occurred during the evolution from diploid to tetraploid and hexaploid wheat. These results reveal the asymmetry in centromere organization among the wheat subgenomes, which may play a role in proper homolog pairing during meiosis.
Collapse
Affiliation(s)
- Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
170
|
Centromere Dysfunction Compromises Mitotic Spindle Pole Integrity. Curr Biol 2019; 29:3072-3080.e5. [DOI: 10.1016/j.cub.2019.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
|
171
|
Hu L, Huang H, Hei M, Yang Y, Li S, Liu Y, Dou Z, Wu M, Li J, Wang GZ, Yao X, Liu H, He X, Tian W. Structural analysis of fungal CENP-H/I/K homologs reveals a conserved assembly mechanism underlying proper chromosome alignment. Nucleic Acids Res 2019; 47:468-479. [PMID: 30407575 PMCID: PMC6326798 DOI: 10.1093/nar/gky1108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
The kinetochore is a proteinaceous complex that is essential for proper chromosome segregation. As a core member of the inner kinetochore, defects of each subunit in the CENP-H/I/K complex cause dysfunction of kinetochore that leads to chromosome mis-segregation and cell death. However, how the CENP-H/I/K complex assembles and promotes kinetochore function are poorly understood. We here determined the crystal structures of CENP-I N-terminus alone from Chaetomium thermophilum and its complex with CENP-H/K from Thielavia terrestris, and verified the identified interactions. The structures and biochemical analyses show that CENP-H and CENP-K form a heterodimer through both N- and C-terminal interactions. CENP-I integrates into the CENP-H/K complex by binding to the C-terminus of CENP-H, leading to formation of the ternary complex in which CENP-H is sandwiched between CENP-K and CENP-I. Our sequence comparisons and mutational analyses showed that this architecture of the CENP–H/I/K complex is conserved in human. Mutating the binding interfaces of CENP-H for either CENP-K or CENP-I significantly reduced their localizations at centromeres and induced massive chromosome alignment defects during mitosis, suggesting that the identified interactions are critical for CENP-H/I/K complex assembly at the centromere and kinetochore function. Altogether, our findings unveil the evolutionarily conserved assembly mechanism of the CENP-H/I/K complex that is critical for proper chromosome alignment.
Collapse
Affiliation(s)
- Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mohan Hei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Yang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yunshan Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Dou
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Research Center for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Mengying Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Research Center for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
172
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
173
|
Scelfo A, Fachinetti D. Keeping the Centromere under Control: A Promising Role for DNA Methylation. Cells 2019; 8:cells8080912. [PMID: 31426433 PMCID: PMC6721688 DOI: 10.3390/cells8080912] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
In order to maintain cell and organism homeostasis, the genetic material has to be faithfully and equally inherited through cell divisions while preserving its integrity. Centromeres play an essential task in this process; they are special sites on chromosomes where kinetochores form on repetitive DNA sequences to enable accurate chromosome segregation. Recent evidence suggests that centromeric DNA sequences, and epigenetic regulation of centromeres, have important roles in centromere physiology. In particular, DNA methylation is abundant at the centromere, and aberrant DNA methylation, observed in certain tumors, has been correlated to aneuploidy and genomic instability. In this review, we evaluate past and current insights on the relationship between centromere function and the DNA methylation pattern of its underlying sequences.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
174
|
Sreekumar L, Jaitly P, Chen Y, Thimmappa BC, Sanyal A, Sanyal K. Cis- and Trans-chromosomal Interactions Define Pericentric Boundaries in the Absence of Conventional Heterochromatin. Genetics 2019; 212:1121-1132. [PMID: 31142612 PMCID: PMC6707466 DOI: 10.1534/genetics.119.302179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023] Open
Abstract
The diploid budding yeast Candida albicans harbors unique CENPA-rich 3- to 5-kb regions that form the centromere (CEN) core on each of its eight chromosomes. The epigenetic nature of these CENs does not permit the stabilization of a functional kinetochore on an exogenously introduced CEN plasmid. The flexible nature of such centromeric chromatin is exemplified by the reversible silencing of a transgene upon its integration into the CENPA-bound region. The lack of a conventional heterochromatin machinery and the absence of defined boundaries of CENPA chromatin makes the process of CEN specification in this organism elusive. Additionally, upon native CEN deletion, C. albicans can efficiently activate neocentromeres proximal to the native CEN locus, hinting at the importance of CEN-proximal regions. In this study, we examine this CEN-proximity effect and identify factors for CEN specification in C. albicans We exploit a counterselection assay to isolate cells that can silence a transgene when integrated into the CEN-flanking regions. We show that the frequency of reversible silencing of the transgene decreases from the central core of CEN7 to its peripheral regions. Using publicly available C. albicans high-throughput chromosome conformation capture data, we identify a 25-kb region centering on the CENPA-bound core that acts as CEN-flanking compact chromatin (CFCC). Cis- and trans-chromosomal interactions associated with the CFCC spatially segregates it from bulk chromatin. We further show that neocentromere activation on chromosome 7 occurs within this specified region. Hence, this study identifies a specialized CEN-proximal domain that specifies and restricts the centromeric activity to a unique region.
Collapse
Affiliation(s)
- Lakshmi Sreekumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Priya Jaitly
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
| | - Bhagya C Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
175
|
Chik JK, Moiseeva V, Goel PK, Meinen BA, Koldewey P, An S, Mellone BG, Subramanian L, Cho US. Structures of CENP-C cupin domains at regional centromeres reveal unique patterns of dimerization and recruitment functions for the inner pocket. J Biol Chem 2019; 294:14119-14134. [PMID: 31366733 DOI: 10.1074/jbc.ra119.008464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
The successful assembly and regulation of the kinetochore are critical for the equal and accurate segregation of genetic material during the cell cycle. CENP-C (centromere protein C), a conserved inner kinetochore component, has been broadly characterized as a scaffolding protein and is required for the recruitment of multiple kinetochore proteins to the centromere. At its C terminus, CENP-C harbors a conserved cupin domain that has an established role in protein dimerization. Although the crystal structure of the Saccharomyces cerevisiae Mif2CENP-C cupin domain has been determined, centromeric organization and kinetochore composition vary greatly between S. cerevisiae (point centromere) and other eukaryotes (regional centromere). Therefore, whether the structural and functional role of the cupin domain is conserved throughout evolution requires investigation. Here, we report the crystal structures of the Schizosaccharomyces pombe and Drosophila melanogaster CENP-C cupin domains at 2.52 and 1.81 Å resolutions, respectively. Although the central jelly roll architecture is conserved among the three determined CENP-C cupin domain structures, the cupin domains from organisms with regional centromeres contain additional structural features that aid in dimerization. Moreover, we found that the S. pombe Cnp3CENP-C jelly roll fold harbors an inner binding pocket that is used to recruit the meiosis-specific protein Moa1. In summary, our results unveil the evolutionarily conserved and unique features of the CENP-C cupin domain and uncover the mechanism by which it functions as a recruitment factor.
Collapse
Affiliation(s)
- Jennifer K Chik
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Vera Moiseeva
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Pavitra K Goel
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ben A Meinen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Philipp Koldewey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Barbara G Mellone
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Lakxmi Subramanian
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
176
|
Anselm E, Thomae AW, Jeyaprakash AA, Heun P. Oligomerization of Drosophila Nucleoplasmin-Like Protein is required for its centromere localization. Nucleic Acids Res 2019; 46:11274-11286. [PMID: 30357352 PMCID: PMC6277087 DOI: 10.1093/nar/gky988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
The evolutionarily conserved nucleoplasmin family of histone chaperones has two paralogues in Drosophila, named Nucleoplasmin-Like Protein (NLP) and Nucleophosmin (NPH). NLP localizes to the centromere, yet molecular underpinnings of this localization are unknown. Moreover, similar to homologues in other organisms, NLP forms a pentamer in vitro, but the biological significance of its oligomerization has not been explored. Here, we characterize the oligomers formed by NLP and NPH in vivo and find that oligomerization of NLP is required for its localization at the centromere. We can further show that oligomerization-deficient NLP is unable to bind the centromeric protein Hybrid Male Rescue (HMR), which in turn is required for targeting the NLP oligomer to the centromere. Finally, using super-resolution microscopy we find that NLP and HMR largely co-localize in domains that are immediately adjacent to, yet distinct from centromere domains defined by the centromeric histone dCENP-A.
Collapse
Affiliation(s)
- Eduard Anselm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | - Andreas W Thomae
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| |
Collapse
|
177
|
Piacentini L, Marchetti M, Bucciarelli E, Casale AM, Cappucci U, Bonifazi P, Renda F, Fanti L. A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres. Chromosoma 2019; 128:503-520. [PMID: 31203392 DOI: 10.1007/s00412-019-00711-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Marcella Marchetti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Paolo Bonifazi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Fioranna Renda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.,Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Laura Fanti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.
| |
Collapse
|
178
|
Oizumi Y, Koga A, Kanoh J. Alpha satellite DNA-repeat OwlAlp1 forms centromeres in Azara's owl monkey. Genes Cells 2019; 24:511-517. [PMID: 31095817 DOI: 10.1111/gtc.12701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Centromeres play crucial roles in faithful chromosome segregation and genome integrity. In simian primates, centromeres possess tandem array of alpha satellite DNA (also referred to as alphoid DNA). Average sizes of alpha satellite repeat units vary between species, for example, 171 bp in human and 343-344 bp in many platyrrhini species (New World monkeys). Interestingly, Azara's owl monkey (Aotus azarae), a platyrrhini species, possesses alpha satellite DNA of two distinct unit sizes, OwlAlp1 (185 bp) and OwlAlp2 (344 bp), both of which present as megasatellite DNAs in the genome. It is, however, unknown which repeat sequence is responsible for functional centromere formation. To investigate the localization of centromeres in vivo, we carried out chromatin immunoprecipitation (ChIP) assay using Azara's owl monkey cells. We found that CENP-A, a histone H3 variant essential for centromere formation, was enriched at OwlAlp1, but not at OwlAlp2. Moreover, CENP-A was detected only at constricted regions of chromosomes by immunofluorescent microscopy. In contrast, trimethylation of histone H3-K9 (H3K9me3), a marker of heterochromatin, was enriched at both OwlAlp1 and OwlAlp2. Our results show that the shorter alpha satellite repeat, OwlAlp1, is selectively used for centromere formation in this monkey.
Collapse
Affiliation(s)
- Yusuke Oizumi
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
179
|
Centromere maintenance during DNA replication. Nat Cell Biol 2019; 21:669-671. [PMID: 31160706 DOI: 10.1038/s41556-019-0335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
180
|
Beh TT, Kalitsis P. The Role of Centromere Defects in Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:541-554. [PMID: 28840252 DOI: 10.1007/978-3-319-58592-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The accurate segregation of chromosomes to daughter cells is essential for healthy development to occur. Imbalances in chromosome number have long been associated with cancers amongst other medical disorders. Little is known whether abnormal chromosome numbers are an early contributor to the cancer progression pathway. Centromere DNA and protein defects are known to impact on the fidelity of chromosome segregation in cell and model systems. In this chapter we discuss recent developments in understanding the contribution of centromere abnormalities at the protein and DNA level and their role in cancer in human and mouse systems.
Collapse
Affiliation(s)
- Thian Thian Beh
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Melbourne, 3052, Australia
| | - Paul Kalitsis
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, 3052, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, Melbourne, 3052, Australia.
| |
Collapse
|
181
|
Fischböck-Halwachs J, Singh S, Potocnjak M, Hagemann G, Solis-Mezarino V, Woike S, Ghodgaonkar-Steger M, Weissmann F, Gallego LD, Rojas J, Andreani J, Köhler A, Herzog F. The COMA complex interacts with Cse4 and positions Sli15/Ipl1 at the budding yeast inner kinetochore. eLife 2019; 8:42879. [PMID: 31112132 PMCID: PMC6546395 DOI: 10.7554/elife.42879] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.
Collapse
Affiliation(s)
- Josef Fischböck-Halwachs
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sylvia Singh
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mia Potocnjak
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Götz Hagemann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Victor Solis-Mezarino
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Woike
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Medini Ghodgaonkar-Steger
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Laura D Gallego
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alwin Köhler
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Franz Herzog
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
182
|
Hara M, Fukagawa T. Where is the right path heading from the centromere to spindle microtubules? Cell Cycle 2019; 18:1199-1211. [PMID: 31075048 DOI: 10.1080/15384101.2019.1617008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The kinetochore is a large protein complex that ensures accurate chromosome segregation during mitosis by connecting the centromere and spindle microtubules. One of the kinetochore sub-complexes, the constitutive centromere-associated network (CCAN), associates with the centromere and recruits another sub-complex, the KMN (KNL1, Mis12, and Ndc80 complexes) network (KMN), which binds to spindle microtubules. The CCAN-KMN interaction is mediated by two parallel pathways (CENP-C- and CENP-T-pathways) in the kinetochore, which bridge the centromere and microtubules. Here, we discuss dynamic protein-interaction changes in the two pathways that couple the centromere with spindle microtubules during mitotic progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- a Graduate School of Frontier Biosciences , Osaka University , Suita , Japan
| | - Tatsuo Fukagawa
- a Graduate School of Frontier Biosciences , Osaka University , Suita , Japan
| |
Collapse
|
183
|
The nucleosomes that mark centromere location on chromosomes old and new. Essays Biochem 2019; 63:15-27. [DOI: 10.1042/ebc20180060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
Abstract
Abstract
Proper segregation of chromosomes is an essential component of cell division. The centromere is the locus at which the kinetochore—the proteinaceous complex that ties chromosomes to microtubules—forms during mitosis and meiosis. Thus, the centromere is critical for equal segregation of chromosomes. The centromere is characterized by both protein and DNA elements: the histone H3 variant CENP-A epigenetically defines the location of the centromere while centromeric DNA sequences are neither necessary nor sufficient for centromere function. Paradoxically, the DNA sequences play a critical role in new centromere formation. In this essay, we discuss the contribution of both epigenetics and genetics at the centromere. Understanding these contributions is vital to efforts to control centromere formation on synthetic/artificial chromosomes and centromere strength on natural ones.
Collapse
|
184
|
Arimura Y, Tachiwana H, Takagi H, Hori T, Kimura H, Fukagawa T, Kurumizaka H. The CENP-A centromere targeting domain facilitates H4K20 monomethylation in the nucleosome by structural polymorphism. Nat Commun 2019; 10:576. [PMID: 30718488 PMCID: PMC6362020 DOI: 10.1038/s41467-019-08314-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Centromeric nucleosomes are composed of the centromere-specific histone H3 variant CENP-A and the core histones H2A, H2B, and H4. To establish a functional kinetochore, histone H4 lysine-20 (H4K20) must be monomethylated, but the underlying mechanism has remained enigmatic. To provide structural insights into H4K20 methylation, we here solve the crystal structure of a nucleosome containing an H3.1-CENP-A chimera, H3.1CATD, which has a CENP-A centromere targeting domain and preserves essential CENP-A functions in vivo. Compared to the canonical H3.1 nucleosome, the H3.1CATD nucleosome exhibits conformational changes in the H4 N-terminal tail leading to a relocation of H4K20. In particular, the H4 N-terminal tail interacts with glutamine-76 and aspartate-77 of canonical H3.1 while these interactions are cancelled in the presence of the CENP-A-specific residues valine-76 and lysine-77. Mutations of valine-76 and lysine-77 impair H4K20 monomethylation both in vitro and in vivo. These findings suggest that a CENP-A-mediated structural polymorphism may explain the preferential H4K20 monomethylation in centromeric nucleosomes. Kinetochore function depends on H4K20 monomethylation in centromeric nucleosomes but the underlying mechanism is unclear. Here, the authors provide evidence that the centromere-specific nucleosome subunit CENP-A facilitates H4K20 methylation by enabling a conformational change of the H4 N-terminal tail.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,The Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroki Takagi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
185
|
Niikura Y, Kitagawa R, Kitagawa K. CENP-A Ubiquitylation Contributes to Maintaining the Chromosomal Location of the Centromere. Molecules 2019; 24:molecules24030402. [PMID: 30678315 PMCID: PMC6384693 DOI: 10.3390/molecules24030402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 01/25/2023] Open
Abstract
The centromere plays an essential role in accurate chromosome segregation, and the chromosomal location of the centromere is determined by the presence of a histone H3 variant, centromere protein A (CENP-A), in centromeric nucleosomes. However, the precise mechanisms of deposition, maintenance, and inheritance of CENP-A at centromeres are unclear. We have reported that CENP-A deposition requires ubiquitylation of CENP-A lysine 124 mediated by the E3 ligase activity of Cullin 4A (CUL4A)—RING-box protein 1 (RBX1)—COP9 signalsome complex subunit 8 (COPS8). We have proposed a model of inheritance for CENP-A ubiquitylation, through dimerization between rounds of cell divisions, that maintains the position of centromeres.
Collapse
Affiliation(s)
- Yohei Niikura
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| | - Risa Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
186
|
Barra V, Logsdon GA, Scelfo A, Hoffmann S, Hervé S, Aslanian A, Nechemia-Arbely Y, Cleveland DW, Black BE, Fachinetti D. Phosphorylation of CENP-A on serine 7 does not control centromere function. Nat Commun 2019; 10:175. [PMID: 30635586 PMCID: PMC6329807 DOI: 10.1038/s41467-018-08073-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023] Open
Abstract
CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function.
Collapse
Affiliation(s)
- Viviana Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
- Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805, Villejuif, France
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - Sebastian Hoffmann
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - Solène Hervé
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - Aaron Aslanian
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yael Nechemia-Arbely
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
187
|
McNulty SM, Sullivan BA. Going the distance: Neocentromeres make long-range contacts with heterochromatin. J Cell Biol 2019; 218:5-7. [PMID: 30538139 PMCID: PMC6314541 DOI: 10.1083/jcb.201811172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neocentromeres are ectopic centromeres that form at noncanonical, usually nonrepetitive, genomic locations. Nishimura et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201805003) explore the three-dimensional architecture of vertebrate neocentromeres, leading to a model for centromere function and maintenance via nuclear clustering with heterochromatin.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, Durham, NC
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, Durham, NC
| |
Collapse
|
188
|
Wang S, Jin W, Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants. PLANT METHODS 2019; 15:42. [PMID: 31057661 PMCID: PMC6485145 DOI: 10.1186/s13007-019-0429-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan reported that haploid Arabidopsis thaliana plants can be efficiently induced through the introduction of a single genetic alteration in centromere histone H3 (CENH3). Subsequent studies demonstrated that haploids can be efficiently induced either through genetic engineering of CENH3 N-terminal tail or histone fold domain or by replacing CENH3 with an ortholog. The mutation of a pollen-specific phospholipase gene, MATRILINEAL (MTL) has been revealed to trigger the haploid induction (HI) in maize, which present another promising HI approach by the editing of MTL in plant. Here, we review the progress of the CENH3-medialed HI and propose a revised centromere-size model by suggesting a competitive loading process between wild-type and mutant CENH3 during HI. This model can explain both the findings of HI failure when wild-type and mutant CENH3 genes are coexpressed and the alien centromere loading of CENH3 in stable hybrids. In addition, we review the current understanding of MTL-mediated HI in plant. The conservation of CENH3 and MTL in plants indicates wide potential application for HI. We discuss the utility and potential of these two methods in crops by comparing their mechanisms and applications to date in plants. This review will promote the study and application of both CENH3- and MTL-mediated haploid induction in plants.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weiwei Jin
- College of Agriculture, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing, 100193 China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
189
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
190
|
Mitotic antipairing of homologous and sex chromosomes via spatial restriction of two haploid sets. Proc Natl Acad Sci U S A 2018; 115:E12235-E12244. [PMID: 30530674 PMCID: PMC6310853 DOI: 10.1073/pnas.1809583115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic recombination must be prevented to maintain genetic stability across daughter cells, but the underlying mechanism remains elusive. We report that mammalian cells impede homologous chromosome pairing during mitosis by keeping the two haploid chromosome sets apart, positioning them to either side of a meridional plane defined by the centrosomes. Chromosome oscillation analysis revealed collective genome behavior of noninteracting chromosome sets. Male translocation mice with a maternal-derived supernumerary chromosome display the tracer chromosome exclusively to the haploid set containing the X chromosome. This haploid set-based antipairing motif is shared by multiple cell types, is doubled in tetraploid cells, and is lost in carcinoma cells. The data provide a model of nuclear polarity through the antipairing of homologous chromosomes during mitosis. Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.
Collapse
|
191
|
Black EM, Giunta S. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases. Genes (Basel) 2018; 9:E615. [PMID: 30544645 PMCID: PMC6315641 DOI: 10.3390/genes9120615] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities. While the centromere has an essential role in chromosome segregation during mitosis, the long and repetitive nature of the highly identical repeats has greatly hindered in-depth genetic studies, and complete annotation of all human centromeres is still lacking. Here, we review our current understanding of human centromere genetics and epigenetics as well as recent investigations into the role of centromere DNA in disease, with a special focus on cancer, aging, and human immunodeficiency⁻centromeric instability⁻facial anomalies (ICF) syndrome. We also highlight the causes and consequences of genomic instability at these large repetitive arrays and describe the possible sources of centromere fragility. The novel connection between alpha-satellite DNA instability and human pathological conditions emphasizes the importance of obtaining a truly complete human genome assembly and accelerating our understanding of centromere repeats' role in physiology and beyond.
Collapse
Affiliation(s)
- Elizabeth M Black
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
192
|
Multiple phosphorylations control recruitment of the KMN network onto kinetochores. Nat Cell Biol 2018; 20:1378-1388. [PMID: 30420662 DOI: 10.1038/s41556-018-0230-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022]
Abstract
To establish a functional kinetochore, the constitutive centromere-associated network (CCAN) forms a foundation on the centromere and recruits the KMN network, which directly binds to spindle microtubules. The CENP-C and CENP-T pathways in the CCAN recruit the KMN network to kinetochores, independently. The CENP-C pathway has been considered the major scaffold for the KMN network in vertebrate CCAN. However, we demonstrate that it is mainly the CENP-T pathway that recruits the KMN network onto the kinetochores and that CENP-T-KMN interactions are essential in chicken DT40 cells. By contrast, less Ndc80 binds to the CENP-C pathway in mitosis and the Mis12-CENP-C association is decreased during mitotic progression, which is consistent with the finding that the Mis12 complex-CENP-C binding is dispensable for cell viability. Furthermore, we find that multiple phosphoregulations of CENP-T and the Mis12 complex make the CENP-T pathway dominant. These results provide key insights into kinetochore dynamics during mitotic progression.
Collapse
|
193
|
Nishimura K, Komiya M, Hori T, Itoh T, Fukagawa T. 3D genomic architecture reveals that neocentromeres associate with heterochromatin regions. J Cell Biol 2018; 218:134-149. [PMID: 30396998 PMCID: PMC6314543 DOI: 10.1083/jcb.201805003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Although centromeres usually associate with heterochromatic repetitive sequences, such repetitive sequences are not detected around neocentromeres. Nishimura et al. performed systematic 4C analysis of cells containing differently positioned neocentromeres and demonstrate that these neocentromeres commonly associate with distant heterochromatin-rich regions at the 3D level. The centromere is an important genomic locus for chromosomal segregation. Although the centromere is specified by sequence-independent epigenetic mechanisms in most organisms, it is usually composed of highly repetitive sequences, which associate with heterochromatin. We have previously generated various chicken DT40 cell lines containing differently positioned neocentromeres, which do not contain repetitive sequences and do not associate with heterochromatin. In this study, we performed systematic 4C analysis using three cell lines containing differently positioned neocentromeres to identify neocentromere-associated regions at the 3D level. This analysis reveals that these neocentromeres commonly associate with specific heterochromatin-rich regions, which were distantly located from neocentromeres. In addition, we demonstrate that centromeric chromatin adopts a compact structure, and centromere clustering also occurs in vertebrate interphase nuclei. Interestingly, the occurrence of centromere–heterochromatin associations depend on CENP-H, but not CENP-C. Our analyses provide an insight into understanding the 3D architecture of the genome, including the centromeres.
Collapse
Affiliation(s)
- Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masataka Komiya
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takehiko Itoh
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
194
|
Association of hereditary angioedema type 1 with developmental anomalies due to a large and unusual de novo pericentromeric rearrangement of chromosome 11 spanning the entire C1 inhibitor gene (SERPING1). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 7:1352-1354.e3. [PMID: 30336291 DOI: 10.1016/j.jaip.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/22/2022]
|
195
|
The Behavior of the Maize B Chromosome and Centromere. Genes (Basel) 2018; 9:genes9100476. [PMID: 30275397 PMCID: PMC6210970 DOI: 10.3390/genes9100476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/16/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
The maize B chromosome is a non-essential chromosome with an accumulation mechanism. The dispensable nature of the B chromosome facilitates many types of genetic studies in maize. Maize lines with B chromosomes have been widely used in studies of centromere functions. Here, we discuss the maize B chromosome alongside the latest progress of B centromere activities, including centromere misdivision, inactivation, reactivation, and de novo centromere formation. The meiotic features of the B centromere, related to mini-chromosomes and the control of the size of the maize centromere, are also discussed.
Collapse
|
196
|
Lu M, He X. Intricate regulation on epigenetic stability of the subtelomeric heterochromatin and the centromeric chromatin in fission yeast. Curr Genet 2018; 65:381-386. [PMID: 30244281 DOI: 10.1007/s00294-018-0886-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/30/2023]
Abstract
In eukaryotes, the integrity of chromatin structure and organization is crucial to diverse key cellular processes from development to disease avoidance. To maintain the cell identity through mitotic cell generations, the genome (the genomic DNA sequence) as well as the epigenome (pertaining various forms of epigenetic information carriers, such as histone modifications, nucleosome positioning and the chromatin organization) is inherited with high fidelity. In comparison to the wealth of knowledge on genetic stability, we know much less on what may control the accuracy of epigenetic inheritance. In our recent work in the fission yeast Schizosaccharomyces pombe, by quantifying the epigenetic fidelity of CENP-A/Cnp1 or H3K9me2 nucleosome inheritance through cell divisions, we demonstrated that Ccp1, a homolog of histone chaperone Vps75 in budding yeast, participates in the modulation of centromeric nucleosomal epigenetic stability as well as proper heterochromatin organization. In this essay, we focus on discussing the uniquely high dynamicity of the subtelomeric heterochromatin regions and the complex mechanisms regulating epigenetic stability of centromeric chromatin.
Collapse
Affiliation(s)
- Min Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
197
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
198
|
Lee HS, Lin Z, Chae S, Yoo YS, Kim BG, Lee Y, Johnson JL, Kim YS, Cantley LC, Lee CW, Yu H, Cho H. The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation. Nat Commun 2018; 9:3848. [PMID: 30242288 PMCID: PMC6155007 DOI: 10.1038/s41467-018-06377-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023] Open
Abstract
Chromatin remodelers regulate the nucleosome barrier during transcription, DNA replication, and DNA repair. The chromatin remodeler RSF1 is enriched at mitotic centromeres, but the functional consequences of this enrichment are not completely understood. Shugoshin (Sgo1) protects centromeric cohesion during mitosis and requires BuB1-dependent histone H2A phosphorylation (H2A-pT120) for localization. Loss of Sgo1 at centromeres causes chromosome missegregation. Here, we show that RSF1 regulates Sgo1 localization to centromeres through coordinating a crosstalk between histone acetylation and phosphorylation. RSF1 interacts with and recruits HDAC1 to centromeres, where it counteracts TIP60-mediated acetylation of H2A at K118. This deacetylation is required for the accumulation of H2A-pT120 and Sgo1 deposition, as H2A-K118 acetylation suppresses H2A-T120 phosphorylation by Bub1. Centromeric tethering of HDAC1 prevents premature chromatid separation in RSF1 knockout cells. Our results indicate that RSF1 regulates the dynamics of H2A histone modifications at mitotic centromeres and contributes to the maintenance of chromosome stability. The chromatin remodeler RSF1 is enriched at mitotic centromeres but its function there is poorly understood. Here, the authors show that RSF1 regulates H2A phosphorylation and acetylation at mitotic centromeres and contributes to chromosome stability.
Collapse
Affiliation(s)
- Ho-Soo Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Zhonghui Lin
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75930, USA.,College of Chemistry, Fuzhou University, 350116, Fujian, China
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Young-Suk Yoo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, UNIST, Ulsan, 44919, Korea
| | - Youngsoo Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chang-Woo Lee
- Department of Molecular Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75930, USA.
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499, Korea. .,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
199
|
Srivastava S, Foltz DR. Posttranslational modifications of CENP-A: marks of distinction. Chromosoma 2018; 127:279-290. [PMID: 29569072 PMCID: PMC6082721 DOI: 10.1007/s00412-018-0665-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Centromeres are specialized chromosome domain that serve as the site for kinetochore assembly and microtubule attachment during cell division, to ensure proper segregation of chromosomes. In higher eukaryotes, the identity of active centromeres is marked by the presence of CENP-A (centromeric protein-A), a histone H3 variant. CENP-A forms a centromere-specific nucleosome that acts as a foundation for centromere assembly and function. The posttranslational modification (PTM) of histone proteins is a major mechanism regulating the function of chromatin. While a few CENP-A site-specific modifications are shared with histone H3, the majority are specific to CENP-A-containing nucleosomes, indicating that modification of these residues contribute to centromere-specific function. CENP-A undergoes posttranslational modifications including phosphorylation, acetylation, methylation, and ubiquitylation. Work from many laboratories have uncovered the importance of these CENP-A modifications in its deposition at centromeres, protein stability, and recruitment of the CCAN (constitutive centromere-associated network). Here, we discuss the PTMs of CENP-A and their biological relevance.
Collapse
Affiliation(s)
- Shashank Srivastava
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
200
|
|