151
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
152
|
Abstract
Microtubules are dynamic cytoskeletal filaments composed of αβ-tubulin heterodimers. Historically, the dynamics of single tubulin interactions at the growing microtubule tip have been inferred from steady-state growth kinetics. However, recent advances in the production of recombinant tubulin and in high-resolution optical and cryo-electron microscopies have opened new windows into understanding the impacts of specific intermolecular interactions during growth. The microtubule lattice is held together by lateral and longitudinal tubulin-tubulin interactions, and these interactions are in turn regulated by the GTP hydrolysis state of the tubulin heterodimer. Furthermore, tubulin can exist in either an extended or a compacted state in the lattice. Growing evidence has led to the suggestion that binding of microtubule-associated proteins (MAPs) or motors can induce changes in tubulin conformation and that this information can be communicated through the microtubule lattice. Progress in understanding how dynamic tubulin-tubulin interactions control dynamic instability has benefitted from visualizing structures of growing microtubule plus ends and through stochastic biochemical models constrained by experimental data. Here, we review recent insights into the molecular basis of microtubule growth and discuss how MAPs and regulatory proteins alter tubulin-tubulin interactions to exert their effects on microtubule growth and stability.
Collapse
Affiliation(s)
- Joseph M Cleary
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
153
|
Mdivi-1 induces spindle abnormalities and augments taxol cytotoxicity in MDA-MB-231 cells. Cell Death Discov 2021; 7:118. [PMID: 34016960 PMCID: PMC8137698 DOI: 10.1038/s41420-021-00495-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/03/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Taxol is a first-line chemotherapeutic for numerous cancers, including the highly refractory triple-negative breast cancer (TNBC). However, it is often associated with toxic side effects and chemoresistance in breast cancer patients, which greatly limits the clinical utility of the drug. Hence, compounds that act in concert with taxol to promote cytotoxicity may be useful to improve the efficacy of taxol-based chemotherapy. In this study, we demonstrated that mdivi-1, a putative inhibitor of mitochondrial fission protein Drp1, enhances the anticancer effects of taxol and overcomes taxol resistance in a TNBC cell line (MDA-MB-231). Not only did mdivi-1 induce mitotic spindle abnormalities and mitotic arrest when used alone, but it also enhanced taxol-induced antimitotic effects when applied in combination. In addition, mdivi-1 induced pronounced spindle abnormalities and cytotoxicity in a taxol-resistant cell line, indicating that it can overcome taxol resistance. Notably, the antimitotic effects of mdivi-1 were not accompanied by prominent morphological or functional alterations in mitochondria and were Drp1-independent. Instead, mdivi-1 exhibited affinity to tubulin at μM level, inhibited tubulin polymerization, and immediately disrupted spindle assembly when cells entered mitosis. Together, our results show that mdivi-1 associates with tubulin and impedes tubulin polymerization, actions which may underlie its antimitotic activity and its ability to enhance taxol cytotoxicity and overcome taxol resistance in MDA-MB-231 cells. Furthermore, our data imply a possibility that mdivi-1 could be useful to improve the therapeutic efficacy of taxol in breast cancer.
Collapse
|
154
|
Nolasco S, Bellido J, Serna M, Carmona B, Soares H, Zabala JC. Colchicine Blocks Tubulin Heterodimer Recycling by Tubulin Cofactors TBCA, TBCB, and TBCE. Front Cell Dev Biol 2021; 9:656273. [PMID: 33968934 PMCID: PMC8100514 DOI: 10.3389/fcell.2021.656273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Colchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics. Here, we investigated how colchicine impacts in tubulin folding cofactors TBCA, TBCB, and TBCE activities. We show that TBCA is abundant in mouse heart insoluble protein extracts. Also, a decrease of the TBCA/β-tubulin complex followed by an increase of free TBCA is observed in human cells treated with colchicine. The presence of free TBCA is not observed in cells treated with other anti-mitotic agents such as nocodazole or cold shock, neither after translation inhibition by cycloheximide. In vitro assays show that colchicine inhibits tubulin heterodimer dissociation by TBCE/TBCB, probably by interfering with interactions of TBCE with tubulin dimers, leading to free TBCA. Manipulation of TBCA levels, either by RNAi or overexpression results in decreased levels of tubulin heterodimers. Together, these data strongly suggest that TBCA is mainly receiving β-tubulin from the dissociation of pre-existing heterodimers instead of newly synthesized tubulins. The TBCE/TBCB+TBCA system is crucial for controlling the critical concentration of free tubulin heterodimers and MT dynamics in the cells by recycling the tubulin heterodimers. It is conceivable that colchicine affects tubulin heterodimer recycling through the TBCE/TBCB+TBCA system producing the known benefits in the treatment of pericardium inflammation.
Collapse
Affiliation(s)
- Sofia Nolasco
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Marina Serna
- Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
155
|
Waites C, Qu X, Bartolini F. The synaptic life of microtubules. Curr Opin Neurobiol 2021; 69:113-123. [PMID: 33873059 DOI: 10.1016/j.conb.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
In neurons, control of microtubule dynamics is required for multiple homeostatic and regulated activities. Over the past few decades, a great deal has been learned about the role of the microtubule cytoskeleton in axonal and dendritic transport, with a broad impact on neuronal health and disease. However, significantly less attention has been paid to the importance of microtubule dynamics in directly regulating synaptic function. Here, we review emerging literature demonstrating that microtubules enter synapses and control central aspects of synaptic activity, including neurotransmitter release and synaptic plasticity. The pleiotropic effects caused by a dysfunctional synaptic microtubule cytoskeleton may thus represent a key point of vulnerability for neurons and a primary driver of neurological disease.
Collapse
Affiliation(s)
- Clarissa Waites
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Xiaoyi Qu
- Department of Pathology & Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA.
| |
Collapse
|
156
|
Bigman LS, Levy Y. Modulating Microtubules: A Molecular Perspective on the Effects of Tail Modifications. J Mol Biol 2021; 433:166988. [PMID: 33865866 DOI: 10.1016/j.jmb.2021.166988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Microtubules (MTs), an essential component of the eukaryotic cytoskeleton, are a lattice of polymerized tubulin dimers and are crucial for various cellular processes. The genetic and chemical diversity of tubulin and their disordered tails gives rise to a "tubulin code". The functional role of tubulin post-translational modifications (PTMs), which contribute to the chemical diversity of the tubulin code, is gradually being unraveled. However, variation in the length and spatial organization of tubulin poly-modifications leads to an enormous combinatorial PTM space, which is difficult to study experimentally. Hence, the impact of the combinatorial tubulin PTM space on the biophysical properties of tubulin tails and their interactions with other proteins remains elusive. Here, we combine all-atom and coarse-grained molecular dynamics simulations to elucidate the biophysical implications of the large combinatorial tubulin PTM space in the context of an MT lattice. We find that tail-body interactions are more dominant in the tubulin dimer than in an MT lattice, and are more significant for the tails of α compared with β tubulin. In addition, polyglutamylation, but not polyglycylation, expands the dimensions of the tubulin tails. Polyglutamylation also leads to a decrease in the diffusion rate of MT-associated protein EB1 on MTs, while polyglycylation often increases diffusion rate. These observations are generally not sensitive to the organization of the polymodifications. The effect of PTMs on MT charge density and tail dynamics are also discussed. Overall, this study presents a molecular quantification of the biophysical properties of tubulin tails and their polymodifications, and provides predictions on the functional importance of tubulin PTMs.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
157
|
Müller M, Ringer K, Hub F, Kamm N, Worzfeld T, Jacob R. TTL-Expression Modulates Epithelial Morphogenesis. Front Cell Dev Biol 2021; 9:635723. [PMID: 33614664 PMCID: PMC7892909 DOI: 10.3389/fcell.2021.635723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Hub
- Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Thomas Worzfeld
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany.,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
158
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
159
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
160
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
161
|
Arnold J, Schattschneider J, Blechner C, Krisp C, Schlüter H, Schweizer M, Nalaskowski M, Oliveira-Ferrer L, Windhorst S. Tubulin Tyrosine Ligase Like 4 (TTLL4) overexpression in breast cancer cells is associated with brain metastasis and alters exosome biogenesis. J Exp Clin Cancer Res 2020; 39:205. [PMID: 32998758 PMCID: PMC7528497 DOI: 10.1186/s13046-020-01712-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The survival rate is poor in breast cancer patients with brain metastases. Thus, new concepts for therapeutic approaches are required. During metastasis, the cytoskeleton of cancer cells is highly dynamic and therefore cytoskeleton-associated proteins are interesting targets for tumour therapy. METHODS Screening for genes showing a significant correlation with brain metastasis formation was performed based on microarray data from breast cancer patients with long-term follow up information. Validation of the most interesting target was performed by MTT-, Scratch- and Transwell-assay. In addition, intracellular trafficking was analyzed by live-cell imaging for secretory vesicles, early endosomes and multiple vesicular bodies (MVB) generating extracellular vesicles (EVs). EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Western blotting, mass spectrometry, and ingenuity pathway analysis (IPA). Effect of EVs on the blood-brain-barrier (BBB) was examined by incubating endothelial cells of the BBB (hCMEC/D3) with EVs, and permeability as well as adhesion of breast cancer cells were analyzed. Clinical data of a breast cancer cohort was evaluated by χ2-tests, Kaplan-Meier-Analysis, and log-rank tests while for experimental data Student's T-test was performed. RESULTS Among those genes exhibiting a significant association with cerebral metastasis development, the only gene coding for a cytoskeleton-associated protein was Tubulin Tyrosine Ligase Like 4 (TTLL4). Overexpression of TTLL4 (TTLL4plus) in MDA-MB231 and MDA-MB468 breast cancer cells (TTLL4plus cells) significantly increased polyglutamylation of β-tubulin. Moreover, trafficking of secretory vesicles and MVBs was increased in TTLL4plus cells. EVs derived from TTLL4plus cells promote adhesion of MDA-MB231 and MDA-MB468 cells to hCMEC/D3 cells and increase permeability of hCMEC/D3 cell layer. CONCLUSIONS These data suggest that TTLL4-mediated microtubule polyglutamylation alters exosome homeostasis by regulating trafficking of MVBs. The TTLL4plus-derived EVs may provide a pre-metastatic niche for breast cancer cells by manipulating endothelial cells of the BBB.
Collapse
Affiliation(s)
- Julia Arnold
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Juliana Schattschneider
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility Morphology und Electron Microscopy, Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Marcus Nalaskowski
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
162
|
Knossow M, Campanacci V, Khodja LA, Gigant B. The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies. iScience 2020; 23:101511. [PMID: 32920486 PMCID: PMC7491153 DOI: 10.1016/j.isci.2020.101511] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
Microtubules are cytoskeletal components involved in pivotal eukaryotic functions such as cell division, ciliogenesis, and intracellular trafficking. They assemble from αβ-tubulin heterodimers and disassemble in a process called dynamic instability, which is driven by GTP hydrolysis. Structures of the microtubule and of soluble tubulin have been determined by cryo-EM and by X-ray crystallography, respectively. Altogether, these data define the mechanism of tubulin assembly-disassembly at atomic or near-atomic level. We review here the structural changes that occur during assembly, tubulin switching from a curved conformation in solution to a straight one in the microtubule core. We also present more subtle changes associated with GTP binding, leading to tubulin activation for assembly. Finally, we show how cryo-EM and X-ray crystallography are complementary methods to characterize the interaction of tubulin with proteins involved either in intracellular transport or in microtubule dynamics regulation.
Collapse
Affiliation(s)
- Marcel Knossow
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Liza Ammar Khodja
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
163
|
Li J, Li Y, Liu M, Xie S. Modified heptapeptide from tau binds both tubulin and microtubules. Thorac Cancer 2020; 11:2993-2997. [PMID: 32893987 PMCID: PMC7529580 DOI: 10.1111/1759-7714.13643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Microtubules are the major cytoskeletal component in eukaryotes which are essential for a large spectrum of cellular activities. Monitoring the behavior of microtubules is helpful for a better understanding of the regulatory mechanism governing microtubule architecture and microtubule‐based activities. Here, we characterized the binding capability of a modified heptapeptide from tau to both tubulin and microtubules and sought to develop it as a fluorescent peptide for monitoring microtubules. Methods To deliver the fluorescent peptide into the cells, a cell‐penetrating peptide was conjugated to the modified heptapeptide from tau and synthesized. The affinity of the modified heptapeptide was determined by microscale thermophoresis. The microtubule labeling ability was determined by adding the peptide into the polymerized microtubule solutions or cultured HeLa cells.; Results Affinity determination revealed that the tau‐derived peptide specifically bound to tubulin. In addition, the peptide was able to label polymerized microtubules in solution, although no obvious microtubule filaments were observed clearly in living cells, probably due to the inadequate affinity. Conclusions These results suggest that using a peptide‐based strategy for imaging microtubules might be plausible and attempts to improve its affinity is warranted in the future.
Collapse
Affiliation(s)
- Jingrui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Yuyang Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|