151
|
Ali R, Alminderej FM, Saleh SM. A simple, quantitative method for spectroscopic detection of metformin using gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118744. [PMID: 32717648 DOI: 10.1016/j.saa.2020.118744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
We synthesized bovine serum albumin (BSA)-stabilized gold nanoclusters (BSA-GNCs) and confirmed their ultra-small size using HRTEM (High-resolution Transmission Electron Microscope) and DLS (Dynamic Light Scattering). The fluorescence intensity of BSA-GNCs is "turned off" in the presence of Cu(II) metal ions. The resulting Cu(II)-mediated BSA-GNCs were utilized to detect metformin, a drug used to control diabetes. Metformin binds to and displaces Cu(II) ions from the BSA on the surface of the nanoclusters, which turns on the fluorescence of the nanoclusters. The interactions between the protein-stabilized nanoclusters were investigated in the absence and presence of Cu(II) using circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR). Cu(II)-quenched BSA-GNCs had an extremely high sensitivity to detect metformin, with a low limit of detection (LOD) of 0.068 μM and a dynamic range of limit of quantification (LOQ = 10/3 LOD) of 0.22 to 11 μM. The ability of this novel "turn-on" nanosensor to detect metformin in human serum and urine samples was confirmed: the percentage recovery in fluorescence for spiked analyte ranged from 96.00-98.50% and 92.60-96.62% in human serum and urine samples, respectively. Thus, BSA-GNCs provide a valid, sensitive, specific fluorometric methodology for the detection of metformin in biomedical applications.
Collapse
Affiliation(s)
- Reham Ali
- Chemistry Department, Science College, Suez University, 43518 Suez, Egypt; Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt
| |
Collapse
|
152
|
Chen X, Wang DD, Li ZP. Time course and dose effect of metformin on weight in patients with different disease states. Expert Rev Clin Pharmacol 2020; 13:1169-1177. [PMID: 32940086 DOI: 10.1080/17512433.2020.1822164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The present study was to quantitate and compare the efficacy of metformin on weight in different disease states using model-based meta-analysis (MBMA). METHODS Randomized controlled trials (RCT) of metformin effects on weight in different disease states were collected by searching the public databases. The change rate of weight from baseline was selected as the efficacy indicator. RESULTS A total 21 RCTs containing 1885 patients including patients with type 2 diabetes mellitus, patients with antipsychotic induced weight gain, patients with obesity, were included into the present study. After deducting placebo effect, the maximal effect (Emax) of metformin on weight in patients with type 2 diabetes mellitus, patients with antipsychotic induced weight gain, patients with obesity were -6.86%, -8.82%, and -4.14%, respectively. The treatment duration to reach half of the maximal effect (ET50) were 107, 45.5, and 15.1 weeks, respectively. Within the metformin dose range from 21 RCTs, no significant dose-response relationship was observed. However, the time-course relationship is obvious for efficacy of metformin on weight. CONCLUSIONS The present study firstly provided quantitative information for metformin effects on weight in different disease states, including patients with type 2 diabetes mellitus, patients with antipsychotic induced weight gain, patients with obesity.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| | - Dong-Dong Wang
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| | - Zhi-Ping Li
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| |
Collapse
|
153
|
Gu Y, Zhang B, Gu G, Yang X, Qian Z. Metformin Increases the Chemosensitivity of Pancreatic Cancer Cells to Gemcitabine by Reversing EMT Through Regulation DNA Methylation of miR-663. Onco Targets Ther 2020; 13:10417-10429. [PMID: 33116621 PMCID: PMC7569251 DOI: 10.2147/ott.s261570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic cancer is a devastating malignancy with poor prognosis. Metformin, a classic anti-diabetes drug, seems to improve survival of pancreatic cancer patients in some studies. Methods Cell counting kit-8 assay was used to detect the BxPC-3 and MIAPaCa-2 cell viability after treatment with gemcitabine only or with different concentrations of metformin. The methylation state and expression level of miR-663 were detected by methylation analysis and RT-PCR. Dual-luciferase reporter gene analysis, Western blot and RT-PCR were used to confirm the target of miR-663. Moreover, xenograft experiment was also performed to validate the role of metformin in chemosensitivity in vivo. Results We found that metformin increased the chemosensitivity of pancreatic cancer cells to gemcitabine, and epithelial-mesenchymal transition (EMT) progress caused by gemcitabine was suppressed by metformin. We further explored the possible molecular mechanisms and it was demonstrated that CpG islands of miR-663 were hypomethylated and relative expression level of miR-663 was up-regulated after treatment of metformin. miR-663, an important cancer suppressor miRNA, was confirmed to increase the chemosensitivity of pancreatic cancer cells by reversing EMT directly targeted TGF-β1. Moreover, we identified that metformin increased the chemosensitivity through up-regulating expression of miR-663. Conclusion We demonstrated that metformin increased the chemosensitivity of pancreatic cancer cells to gemcitabine by reversing EMT through regulation DNA methylation of miR-663.
Collapse
Affiliation(s)
- Yuqing Gu
- Pancreas Center, The Second Affiliated Hospital to Nanjing Medical University, Nanjing 210003, People's Republic of China
| | - Bin Zhang
- Pancreas Center, The Second Affiliated Hospital to Nanjing Medical University, Nanjing 210003, People's Republic of China
| | - Guangliang Gu
- Pancreas Center, The Second Affiliated Hospital to Nanjing Medical University, Nanjing 210003, People's Republic of China
| | - Xiaojun Yang
- Pancreas Center, The Second Affiliated Hospital to Nanjing Medical University, Nanjing 210003, People's Republic of China
| | - Zhuyin Qian
- Pancreas Center, The Second Affiliated Hospital to Nanjing Medical University, Nanjing 210003, People's Republic of China
| |
Collapse
|
154
|
Role of metformin in various pathologies: state-of-the-art microcapsules for improving its pharmacokinetics. Ther Deliv 2020; 11:733-753. [PMID: 32967584 DOI: 10.4155/tde-2020-0102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metformin was originally derived from a botanical ancestry and became the most prescribed, first-line therapy for Type 2 diabetes in most countries. In the last century, metformin was discovered twice for its antiglycemic properties in addition to its antimalarial and anti-influenza effects. Metformin exhibits flip-flop pharmacokinetics with limited oral bioavailability. This review outlines metformin pharmacokinetics, pharmacodynamics and recent advances in polymeric particulate delivery systems as a potential tool to target metformin delivery to specific tissues/organs. This interesting biguanide is being rediscovered this century for multiple clinical indications as anticancer, anti-aging, anti-inflammatory, anti-Alzheimer's and much more. Microparticulate delivery systems of metformin may improve its oral bioavailability and optimize the therapeutic goals expected.
Collapse
|
155
|
Soliman GA, Shukla SK, Etekpo A, Gunda V, Steenson SM, Gautam N, Alnouti Y, Singh PK. The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Curr Dev Nutr 2020; 4:nzaa131. [PMID: 32908958 PMCID: PMC7467276 DOI: 10.1093/cdn/nzaa131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sharalyn M Steenson
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
156
|
Teufelsbauer M, Rath B, Plangger A, Staud C, Nanobashvili J, Huk I, Neumayer C, Hamilton G, Radtke C. Effects of metformin on adipose-derived stromal cell (ADSC) - Breast cancer cell lines interaction. Life Sci 2020; 261:118371. [PMID: 32882267 DOI: 10.1016/j.lfs.2020.118371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
AIMS Metformin is a clinical drug administered to patients to treat type 2 diabetes mellitus that was found to be associated with a lower risk of occurrence of cancer and cancer-related death. The present study investigated the effects of metformin on human adipose-derived stromal cells (ADSC) - breast cancer cell line interactions. MAIN METHODS ADSCs grown from lipoaspirates were tested for growth-stimulating and migration-controlling activity on breast cancer cell lines after pretreatment with metformin. Furthermore, secreted proteins of ADSCs, phosphorylation of intracellular proteins and the effect of metformin on adipocytic differentiation of ADSCs were assayed. KEY FINDINGS Compared to breast cancer cell lines (4.0 ± 3.5% reduction of proliferation), 2 mM metformin significantly inhibited the proliferation of ADSC lines (19.2 ± 8.4% reduction of proliferation). This effect on ADSCs seems to be mediated by altered phosphorylation of GSK-3, CREB and PRAS40. Furthermore, treatment with metformin abolished the induction of differentiation of three ADSC lines to adipocytes. 1 and 2 mM metformin significantly impaired the migration of breast cancer cell lines MDA-MB-231 and MDA-MB-436 in scratch assays. SIGNIFICANCE Metformin showed low direct inhibitory effects on breast cancer cell lines at physiological concentrations but exerted a significant retardation of the growth and the adipocytic differentiation of ADSCs. Thus, the anticancer activity of metformin in breast cancer at physiological drug concentrations seems to be mediated by an indirect mechanism that lowers the supportive activity of ADSCs.
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Josif Nanobashvili
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria.
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
157
|
Mu N, Xu T, Gao M, Dong M, Tang Q, Hao L, Wang G, Li Z, Wang W, Yang Y, Hou J. Therapeutic effect of metformin in the treatment of endometrial cancer. Oncol Lett 2020; 20:156. [PMID: 32934724 DOI: 10.3892/ol.2020.12017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The present review aims at reviewing the role of metformin in the treatment of endometrial cancer (EC). According to the literature, excessive estrogen levels and insulin resistance are established risk factors of EC. As a traditional insulin sensitizer and newly discovered anticancer agent, metformin directly and indirectly inhibits the development of EC. The direct mechanisms of metformin include inhibition of the LKB1-AMP-activated protein kinase-mTOR, PI3K-Akt and insulin-like growth factor 1-related signaling pathways, which reduces the proliferation and promotes the apoptosis of EC cells. In the indirect mechanism, metformin increases the insulin sensitivity of body tissues and decreases circulating insulin levels. Decreased levels of insulin increase the blood levels of sex hormone binding globulin, which leads to reductions in circulating estrogen and androgens. The aforementioned findings suggest that metformin serves an important role in the treatment of EC. Increased understanding of the mechanism of metformin in EC may provide novel insights into the treatment of this malignancy.
Collapse
Affiliation(s)
- Nan Mu
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Tingting Xu
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Mingxiao Gao
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Mei Dong
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Qing Tang
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Li Hao
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Guiqing Wang
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zenghui Li
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenshuang Wang
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ying Yang
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jianqing Hou
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
158
|
Wen KC, Sung PL, Wu ATH, Chou PC, Lin JH, Huang CYF, Yeung SCJ, Lee MH. Neoadjuvant metformin added to conventional chemotherapy synergizes anti-proliferative effects in ovarian cancer. J Ovarian Res 2020; 13:95. [PMID: 32825834 PMCID: PMC7442990 DOI: 10.1186/s13048-020-00703-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background Ovarian cancer is the leading cause of cancer-related death among women. Complete cytoreductive surgery followed by platinum-taxene chemotherapy has been the gold standard for a long time. Various compounds have been assessed in an attempt to combine them with conventional chemotherapy to improve survival rates or even overcome chemoresistance. Many studies have shown that an antidiabetic drug, metformin, has cytotoxic activity in different cancer models. However, the synergism of metformin as a neoadjuvant formula plus chemotherapy in clinical trials and basic studies remains unclear for ovarian cancer. Methods We applied two clinical databases to survey metformin use and ovarian cancer survival rate. The Cancer Genome Atlas dataset, an L1000 microarray with Gene Set Enrichment Analysis (GSEA) analysis, Western blot analysis and an animal model were used to study the activity of the AKT/mTOR pathway in response to the synergistic effects of neoadjuvant metformin combined with chemotherapy. Results We found that ovarian cancer patients treated with metformin had significantly longer overall survival than patients treated without metformin. The protein profile induced by low- concentration metformin in ovarian cancer predominantly involved the AKT/mTOR pathway. In combination with chemotherapy, the neoadjuvant metformin protocol showed beneficial synergistic effects in vitro and in vivo. Conclusions This study shows that neoadjuvant metformin at clinically relevant dosages is efficacious in treating ovarian cancer, and the results can be used to guide clinical trials.
Collapse
Affiliation(s)
- Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pi-Lin Sung
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, Huei-Sheng Clinic, New Taipei City, 23561, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Jun-Hung Lin
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, Division of Internal Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, P.R. China.
| |
Collapse
|
159
|
Ye YQ, Zeng B, Liao YG, Liu MS, Hua ZR. Molecular mechanism for metformin to enhance pro-apoptotic effect of sorafenib in HepG2 cells. Shijie Huaren Xiaohua Zazhi 2020; 28:581-586. [DOI: 10.11569/wcjd.v28.i14.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prolonging the survival time of patients with advanced liver cancer is a major clinical challenge. Sorafenib (Sor) is the only targeted drug for the treatment of advanced liver cancer, but drug resistance has become a problem.
AIM To explore the effect and molecular mechanism of metformin (Met) in enhancing pro-apoptotic effect of Sor in HepG2 cells.
METHODS MTT assay was used to evaluate the anti-proliferation effects of Met and Sor, alone or in combination. Flow cytometry was employed to analyze cell cycle and cell apoptosis. The expression of Caspase-3, Bax, AMPK, P53, and mTORC1 was evaluated by Western blot.
RESULTS MTT assay showed that both Met and Sor decreased HepG2 cells viability, and Met combined with Sor had a synergistic inhibitory effect. The relative cell viability rates of the control group, Met group, Sor group, and combination group were 100%, 79.96% ± 4.41%, 85.33% ± 1.00%, and 68.60% ± 4.02%, respectively. Flow cytometry showed that both Met and Sor induced HepG2 cell apoptosis, and Met combined with Sor had a synergistic effect. The apoptosis rates of the control group, Met group, Sor group, and combination group were 4.47% ± 1.93%, 13.73% ± 1.18%, 9.50% ± 0.20%, and 29.03% ± 0.35%, respectively. Western blot analysis showed that both Met and Sor increased the expression of Caspase-3, Bax, P53, and AMPK and decreased the expression of mTORC1.
CONCLUSION Met can enhance the pro-apoptotic effect of Sor in HepG2 cells.
Collapse
Affiliation(s)
- Yan-Qing Ye
- Department of Gastroenterology, the First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Bin Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yue-Guang Liao
- Department of Gastroenterology, the First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, the First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Zong-Rong Hua
- Department of Gastroenterology, the First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
160
|
Drug Repositioning of the α 1-Adrenergic Receptor Antagonist Naftopidil: A Potential New Anti-Cancer Drug? Int J Mol Sci 2020; 21:ijms21155339. [PMID: 32727149 PMCID: PMC7432507 DOI: 10.3390/ijms21155339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
Failure of conventional treatments is often observed in cancer management and this requires the development of alternative therapeutic strategies. However, new drug development is known to be a high-failure process because of the possibility of a lower efficacy than expected for the drug or appearance of non-manageable side effects. Another way to find alternative therapeutic drugs consists in identifying new applications for drugs already approved for a particular disease: a concept named "drug repurposing". In this context, several studies demonstrated the potential anti-tumour activity exerted by α1-adrenergic receptor antagonists and notably renewed interest for naftopidil as an anti-cancer drug. Naftopidil is used for benign prostatic hyperplasia management in Japan and a retrospective study brought out a reduced incidence of prostate cancer in patients that had been prescribed this drug. Further studies showed that naftopidil exerted anti-proliferative and cytotoxic effects on prostate cancer as well as several other cancer types in vitro, as well as ex vivo and in vivo. Moreover, naftopidil was demonstrated to modulate the expression of Bcl-2 family pro-apoptotic members which could be used to sensitise cancer cells to targeting therapies and to overcome resistance of cancer cells to apoptosis. For most of these anti-cancer effects, the molecular pathway is either not fully deciphered or shown to involve α1-adrenergic receptor-independent pathway, suggesting off target transduction signals. In order to improve its efficacy, naftopidil analogues were designed and shown to be effective in several studies. Thereby, naftopidil appears to display anti-cancer properties on different cancer types and could be considered as a candidate for drug repurposing although its anti-cancerous activities need to be studied more deeply in prospective randomized clinical trials.
Collapse
|
161
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
162
|
Mercurio V, Cuomo A, Cadeddu Dessalvi C, Deidda M, Di Lisi D, Novo G, Manganaro R, Zito C, Santoro C, Ameri P, Spallarossa P, Arboscello E, Tocchetti CG, Penna C. Redox Imbalances in Ageing and Metabolic Alterations: Implications in Cancer and Cardiac Diseases. An Overview from the Working Group of Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology (SIC). Antioxidants (Basel) 2020; 9:E641. [PMID: 32708201 PMCID: PMC7402085 DOI: 10.3390/antiox9070641] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a well established risk factor for cardiovascular (CV) diseases. In addition, several studies indicate that MetS correlates with the increased risk of cancer in adults. The mechanisms linking MetS and cancer are not fully understood. Several risk factors involved in MetS are also cancer risk factors, such as the consumption of high calorie-food or high fat intake, low fibre intake, and sedentary lifestyle. Other common aspects of both cancer and MetS are oxidative stress and inflammation. In addition, some anticancer treatments can induce cardiotoxicity, including, for instance, left ventricular (LV) dysfunction and heart failure (HF), endothelial dysfunction and hypertension. In this review, we analyse several aspects of MetS, cancer and cardiotoxicity from anticancer drugs. In particular, we focus on oxidative stress in ageing, cancer and CV diseases, and we analyse the connections among CV risk factors, cancer and cardiotoxicity from anticancer drugs.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (C.C.D.); (M.D.)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (C.C.D.); (M.D.)
| | - Daniela Di Lisi
- Cardiology Unit AUOP Policlinico, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.N.)
| | - Giuseppina Novo
- Cardiology Unit AUOP Policlinico, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.N.)
| | - Roberta Manganaro
- Cardiology with Coronary Intensive Care Unit, Department of Clinical and Experimental Medicine, University Hospital Policlinico “G. Martino”, University of Messina, 98124 Messina, Italy; (R.M.); (C.Z.)
| | - Concetta Zito
- Cardiology with Coronary Intensive Care Unit, Department of Clinical and Experimental Medicine, University Hospital Policlinico “G. Martino”, University of Messina, 98124 Messina, Italy; (R.M.); (C.Z.)
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy;
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Eleonora Arboscello
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
- Interdepartmental Center of Clinical and Translational Sciences, Federico II University, 80131 Naples, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Torino, Italy
| |
Collapse
|
163
|
Wu HD, Zhang JJ, Zhou BJ. The effect of metformin on esophageal cancer risk in patients with type 2 diabetes mellitus: a systematic review and meta‑analysis. Clin Transl Oncol 2020; 23:275-282. [PMID: 32507907 DOI: 10.1007/s12094-020-02415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recently, numerous studies have yielded inconsistent results regarding the effect of metformin on esophageal cancer risk in type 2 diabetes mellitus patients. The purpose of this study is to systematically assess this effect using meta-analysis. METHODS We searched clinical studies on metformin and esophageal cancer risk in PubMed, Embase, and the Cochrane Library. After literature screening, a series of meta-analyses were conducted using RevMan 5.3 software. The pooled hazard ratio (HR) and the corresponding 95% confidence interval (CI) were used as the effect size. RESULTS Five eligible studies (four cohort studies and one case-control study) were included for our meta-analysis using a random-effect model. The analysis showed that metformin could not reduce esophageal cancer risk in type 2 diabetes mellitus patients (HR 0.88, 95% CI 0.60-1.28, P > 0.05). Subgroup analyses by geographic location showed that metformin significantly reduced esophageal cancer risk in Asian patients with type 2 diabetes mellitus (HR 0.59, 95% CI 0.39-0.91, P = 0.02), without heterogeneity between studies (P = 0.80 and I2 = 0%). CONCLUSIONS Overall, our systematic review and meta-analysis demonstrate that metformin does not reduce esophageal cancer risk in type 2 diabetes mellitus patients. However, a significant reduction in esophageal cancer risk in Asian populations remains to be clarified.
Collapse
Affiliation(s)
- H-D Wu
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Heping Western Road No.215, Shijiazhuang, 050000, Hebei, China
| | - J-J Zhang
- Department of General Practice, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - B-J Zhou
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Heping Western Road No.215, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
164
|
Malinowski B, Musiała N, Wiciński M. Metformin's Modulatory Effects on miRNAs Function in Cancer Stem Cells-A Systematic Review. Cells 2020; 9:cells9061401. [PMID: 32512882 PMCID: PMC7348732 DOI: 10.3390/cells9061401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) have been reported in various hematopoietic and solid tumors, therefore, are considered to promote cancer progression, metastasis, recurrence and drug resistance. However, regulation of CSCs at the molecular level is not fully understood. microRNAs (miRNAs) have been identified as key regulators of CSCs by modulating their major functions: self-renewal capacity, invasion, migration and proliferation. Various studies suggest that metformin, an anti-diabetic drug, has an anti-tumor activity but its precise mechanism of action has not been understood. The present article was written in accordance to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We systematically reviewed evidence for metformin’s ability to eradicate CSCs through modulating the expression of miRNAs in various solid tumors. PubMed and MEDLINE were searched from January 1990 to January 2020 for in vitro studies. Two authors independently selected and reviewed articles according to predefined eligibility criteria and assessed risk of bias of included studies. Four papers met the inclusion criteria and presented low risk bias. All of the included studies reported a suppression of CSCs’ major function after metformin dosage. Moreover, it was showed that metformin anti-tumor mechanism of action is based on regulation of miRNAs expression. Metformin inhibited cell survival, clonogenicity, wound-healing capacity, sphere formation and promotes chemosensitivity of tumor cells. Due to the small number of publications, aforementioned evidences are limited but may be consider as background for clinical studies.
Collapse
|
165
|
Linhares ND, Pereira DA, Conceição IM, Franco GR, Eckalbar WL, Ahituv N, Luizon MR. Noncoding SNPs associated with increased GDF15 levels located in a metformin-activated enhancer region upstream of GDF15. Pharmacogenomics 2020; 21:509-520. [PMID: 32427048 DOI: 10.2217/pgs-2020-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: GDF15 levels are a biomarker for metformin use. We performed the functional annotation of noncoding genome-wide association study (GWAS) SNPs for GDF15 levels and the Genotype-Tissue Expression (GTEx)-expression quantitative trait loci (eQTLs) for GDF15 expression within metformin-activated enhancers around GDF15. Materials & methods: These enhancers were identified using chromatin immunoprecipitation followed by sequencing data for active (H3K27ac) and silenced (H3K27me3) histone marks on human hepatocytes treated with metformin, Encyclopedia of DNA Elements data and cis-regulatory elements assignment tools. Results: The GWAS lead SNP rs888663, the SNP rs62122429 associated with GDF15 levels in the Outcome Reduction with Initial Glargine Intervention trial, and the GTEx-expression quantitative trait locus rs4808791 for GDF15 expression in whole blood are located in a metformin-activated enhancer upstream of GDF15 and tightly linked in Europeans and East Asians. Conclusion: Noncoding variation within a metformin-activated enhancer may increase GDF15 expression and help to predict GDF15 levels.
Collapse
Affiliation(s)
- Natália D Linhares
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniela A Pereira
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela McA Conceição
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Walter L Eckalbar
- Institute for Human Genetics, The University of California, San Francisco, CA 94143, USA.,Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Institute for Human Genetics, The University of California, San Francisco, CA 94143, USA.,Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marcelo R Luizon
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
166
|
Chen Y, Qiu F, Yu B, Chen Y, Zuo F, Zhu X, Nandakumar KS, Xiao C. Metformin, an AMPK Activator, Inhibits Activation of FLSs but Promotes HAPLN1 Secretion. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1202-1214. [PMID: 32518807 PMCID: PMC7275116 DOI: 10.1016/j.omtm.2020.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is essential for maintaining energy balance and has a crucial role in various inflammatory pathways. In this study, AMPK levels positively correlated with many inflammatory indexes in rheumatoid arthritis (RA) patients, especially in the affected synovium. In RA sera, a positive correlation between phosphorylated (p-)AMPK-α1 levels and DAS28 (disease activity score 28) activity (r = 0.270, p < 0.0001) was found. Similarly, a positive correlation was observed between AMPK-α1 and tumor necrosis factor α (TNF-α) levels (r = 0.460, p = 0.0002). Differentially expressed genes between osteoarthritis (OA) and RA synovium from NCBI GEO profiles and our RNA sequencing data suggested activation of metabolic pathways specific to RA-fibroblast-like synoviocytes (FLSs). AMPK-α1 was highly expressed in the synovium of RA but not OA patients. An AMPK activator, metformin, inhibited FLS proliferation at higher but not lower concentrations, whereas the inhibitor dorsomorphin promoted the proliferation of RA-FLSs. Interestingly, both metformin and dorsomorphin inhibited the migration of RA-FLSs. After metformin treatment, expression of interleukin 6 (IL-6), TNF-α, and IL-1β were significantly downregulated in RA-FLSs; however, increased expression of p-AMPK-α1, protein kinase A (PKA)-α1, and HAPLN1 (hyaluronan and proteoglycan link protein 1) was observed. Increased levels of HAPLN1 in RA-FLSs by an AMPK activator could potentially be beneficial in protecting the joints. Hence, our results demonstrate the potential of an AMPK activator as a therapeutic for RA.
Collapse
Affiliation(s)
- Yong Chen
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510330, P.R. China
| | - Fujuan Qiu
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510330, P.R. China
| | - Beijia Yu
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510330, P.R. China
| | - Yanjuan Chen
- School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Fangfang Zuo
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510330, P.R. China
| | - XiaoYu Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Changhong Xiao
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510330, P.R. China
| |
Collapse
|
167
|
Papadopoli DJ, Ma EH, Roy D, Russo M, Bridon G, Avizonis D, Jones RG, St-Pierre J. Methotrexate elicits pro-respiratory and anti-growth effects by promoting AMPK signaling. Sci Rep 2020; 10:7838. [PMID: 32398698 PMCID: PMC7217946 DOI: 10.1038/s41598-020-64460-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
One-carbon metabolism fuels the high demand of cancer cells for nucleotides and other building blocks needed for increased proliferation. Although inhibitors of this pathway are widely used to treat many cancers, their global impact on anabolic and catabolic processes remains unclear. Using a combination of real-time bioenergetics assays and metabolomics approaches, we investigated the global effects of methotrexate on cellular metabolism. We show that methotrexate treatment increases the intracellular concentration of the metabolite AICAR, resulting in AMPK activation. Methotrexate-induced AMPK activation leads to decreased one-carbon metabolism gene expression and cellular proliferation as well as increased global bioenergetic capacity. The anti-proliferative and pro-respiratory effects of methotrexate are AMPK-dependent, as cells with reduced AMPK activity are less affected by methotrexate treatment. Conversely, the combination of methotrexate with the AMPK activator, phenformin, potentiates its anti-proliferative activity in cancer cells. These data highlight a reciprocal effect of methotrexate on anabolic and catabolic processes and implicate AMPK activation as a metabolic determinant of methotrexate response.
Collapse
Affiliation(s)
- David J Papadopoli
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Eric H Ma
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
- Center for Cancer and Cell Biology, Program in Metabolic and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Dominic Roy
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Mariana Russo
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Daina Avizonis
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
| | - Russell G Jones
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
- Center for Cancer and Cell Biology, Program in Metabolic and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Julie St-Pierre
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada.
- Goodman Cancer Research Centre, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
168
|
Lee YN, Chowdhury TA. Diabetes: an Overview for Clinical Oncologists. Clin Oncol (R Coll Radiol) 2020; 32:579-590. [PMID: 32299722 DOI: 10.1016/j.clon.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022]
Abstract
Diabetes and cancer are common conditions highly prevalent in the general population. The co-existence of diabetes and cancer in a patient is therefore not unexpected. Diabetes increases the risk of mortality from cancer and morbidity from the treatment of cancer. Furthermore, many cancer chemotherapeutic regimens increase glucose levels, especially those involving glucocorticoids. Many clinical oncologists will deal with patients with diabetes in their clinical work, and some working knowledge of diabetes diagnosis and management is helpful when managing such patients. This overview aims to summarise the clinical diagnosis and management of diabetes, review the potential links between diabetes and cancer, and provide some practical guidance on the management of hyperglycaemia in patients undergoing cancer therapy.
Collapse
Affiliation(s)
- Y-N Lee
- Department of Diabetes and Metabolism, The Royal London Hospital, London, UK
| | - T A Chowdhury
- Department of Diabetes and Metabolism, The Royal London Hospital, London, UK.
| |
Collapse
|
169
|
Liu C, Liu Q, Yan A, Chang H, Ding Y, Tao J, Qiao C. Metformin revert insulin-induced oxaliplatin resistance by activating mitochondrial apoptosis pathway in human colon cancer HCT116 cells. Cancer Med 2020; 9:3875-3884. [PMID: 32248666 PMCID: PMC7286444 DOI: 10.1002/cam4.3029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have suggested that drug resistance in colon cancer patients with diabetes may be associated with long-term insulin administration, which in turn decreases the survival rate. Metformin is a commonly used drug to treat diabetes but has been recently demonstrated to have a potential therapeutic effect on colon cancer. This study aimed to elucidate the underlying mechanism by which metformin reverts insulin-induced oxaliplatin resistance in human colon cancer HCT116 cells. METHODS Two colon cancer cell lines (HCT116 and LoVo) were used to verify whether the expression of insulin receptor substrate 1 (IRS-1) could impact the half maximal inhibitory concentration (IC50) of oxaliplatin after chronic insulin treatment. The IC50 of oxaliplatin in both cell lines was measured to identify metformin sensitization to oxaliplatin. The adenosine monophosphate-activated protein kinase (AMPK) inhibitor, namely AMPK small interfering RNA, was used to block AMPK activation to identify critical proteins in the AMPK/Erk signaling pathway. Bcl-2 is a vital antiapoptotic protein involved in the mitochondrial apoptosis pathway. Finally, immunofluorescence and electron microscopy were performed to investigate how metformin affects the ultrastructural integrity of mitochondria. RESULTS The IC50 of oxaliplatin in HCT116 cells was noticeably increased. After the cells were treated with metformin, oxaliplatin resistance was reversed. According to the results of the western blotting assay of vital proteins involved in the classical apoptosis pathway, cleaved caspase-9 was noticeably upregulated, suggesting that the mitochondrial apoptosis pathway was activated. These results were verified by imaging of mitochondria using electron microscopy. The AMPK/Erk signaling pathway experiments revealed that the upregulation of Bcl-2 induced by insulin through Erk phosphorylation was inhibited by metformin and that such inhibition could be mitigated by the inhibition of AMPK. CONCLUSIONS Insulin-induced oxaliplatin resistance was reversed by metformin-mediated AMPK activation. Accordingly, metformin is likely to sensitize patients with diabetes to chemotherapeutic drugs used to treat colon cancer.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aiwen Yan
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Chang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyin Ding
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junye Tao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Qiao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
170
|
Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020; 12:E862. [PMID: 32252351 PMCID: PMC7226606 DOI: 10.3390/cancers12040862] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
171
|
|
172
|
Ghiasi B, Sarokhani D, Najafi F, Motedayen M, Dehkordi AH. The Relationship Between Prostate Cancer and Metformin Consumption: A Systematic Review and Meta-analysis Study. Curr Pharm Des 2020; 25:1021-1029. [PMID: 30767734 DOI: 10.2174/1381612825666190215123759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer is the most common malignant cancer in men worldwide and after lung cancer, it is the second leading cause of cancer mortality in men. The purpose of this study was to investigate the relationship between prostate cancer and metformin consumption in men. METHODS The current study is a systematic and meta-analysis review based on the PRISMA statement. To access the studies of domestic and foreign databases, Iran Medex, SID, Magiran, Iran Doc, Medlib, ProQuest, Science Direct, PubMed, Scopus, Web of Science and the Google Scholar search engine were searched during the 2009- 2018 period for related keywords. In order to evaluate the heterogeneity of the studies, Q test and I2 indicator were used. The data were analyzed using the STATA 15.1 software. RESULTS In 11 studies with a sample size of 877058, the odds ratio of metformin consumption for reducing prostate cancer was estimated at 0.89 (95%CI: 0.67-1.17). Meta-regression also showed there was no significant relationship between the odds ratio and the publication year of the study. However, there was a significant relationship between the odds ratio and the number of research samples. CONCLUSION Using metformin in men reduces the risk of prostate cancer but it is not statistically significant.
Collapse
Affiliation(s)
- Bahareh Ghiasi
- Department of Nephrology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Diana Sarokhani
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah Uninversity of Medical Sciences, Kermanshah, Iran
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah Uninversity of Medical Sciences, Kermanshah, Iran
| | - Morteza Motedayen
- Cardiology Department, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hasanpour Dehkordi
- Department of Medical-Surgical, Faculty of Nursing and Midwifery, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
173
|
Capece D, Verzella D, Di Francesco B, Alesse E, Franzoso G, Zazzeroni F. NF-κB and mitochondria cross paths in cancer: mitochondrial metabolism and beyond. Semin Cell Dev Biol 2020; 98:118-128. [PMID: 31132468 DOI: 10.1016/j.semcdb.2019.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
NF-κB plays a pivotal role in oncogenesis. This transcription factor is best known for promoting cancer cell survival and tumour-driving inflammation. However, several lines of evidence support a crucial role for NF-κB in governing energy homeostasis and mediating cancer metabolic reprogramming. Mitochondria are central players in many metabolic processes altered in cancer. Beyond their bioenergetic activity, several facets of mitochondria biology, including mitochondrial dynamics and oxidative stress, promote and sustain malignant transformation. Recent reports revealed an intimate connection between NF-κB pathway and the oncogenic mitochondrial functions. NF-κB can impact mitochondrial respiration and mitochondrial dynamics, and, reciprocally, mitochondria can sense stress signals and convert them into cell biological responses leading to NF-κB activation. In this review we discuss their emerging reciprocal regulation and the significance of this interplay for anticancer therapy.
Collapse
Affiliation(s)
- Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
174
|
Elizalde-Velázquez GA, Gómez-Oliván LM. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134924. [PMID: 31726346 DOI: 10.1016/j.scitotenv.2019.134924] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 05/20/2023]
Abstract
Metformin (MET) is the most common drug used to treat type 2 diabetes, but also it is used as an anticancer agent and as a treatment for polycystic ovary syndrome. This drug is not metabolized in the human body, and may enter into the environment through different pathways. In wastewater treatments plants (WWTPs), this contaminant is mainly transformed to guanylurea (GUA). However, three further transformation products (TPs): (a) 2,4- diamino-1,3,5-triazine, 4-DAT; (b) 2-amino-4-methylamino-1,3,5-triazine, 2,4-AMT; and (c) methylbiguanide, MBG; have also been associated with its metabolism. MET, GUA and MBG have been found in WWTPs influents, effluents and surface waters. Furthermore, MET and GUA bioaccumulate in edible plants species, fish and mussels potentially contaminating the human food web. MET is also a potential endocrine disruptor in fish. Phytoremediation, adsorption and biodegradation have shown a high removal efficiency of MET, in laboratory. Nonetheless, these removal methods had less efficiency when tried in WWTPs. Therefore, MET and its TPs are a threat to the human being as well as to our environment. This review comprehensively discuss the (1) pathways of MET to the environment and its life-cycle, (2) occurrence of MET and its transformation products (3) removal, (4) toxic effects and (5) future trends and perspectives of possible methods of elimination in water in order to provide potential options for managing these contaminants.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
175
|
Jin D, Guo J, Wu Y, Chen W, Du J, Yang L, Wang X, Gong K, Dai J, Miao S, Li X, Su G. Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. J Exp Clin Cancer Res 2020; 39:6. [PMID: 31906986 PMCID: PMC6945774 DOI: 10.1186/s13046-019-1503-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent evidence indicates that metformin inhibits mammalian cancer growth and metastasis through the regulation of microRNAs. Metformin regulates miR-381 stability, which plays a vital role in tumor progression. Moreover, increased YAP expression and activity induce non-small cell lung cancer (NSCLC) tumor growth and metastasis. However, the molecular mechanism underpinning how metformin-induced upregulation of miR-381 directly targets YAP or its interactions with the epithelial-mesenchymal transition (EMT) marker protein Snail in NSCLC is still unknown. METHODS Levels of RNA and protein were analyzed using qPCR, western blotting and immunofluorescence staining. Cellular proliferation was detected using a CCK8 assay. Cell migration and invasion were analyzed using wound healing and transwell assays. Promoter activity and transcription were investigated using the luciferase reporter assay. Chromatin immunoprecipitation was used to detect the binding of YAP to the promoter of Snail. The interaction between miR-381 and the 3'UTR of YAP mRNA was analyzed using the MS2 expression system and co-immunoprecipitation with biotin. RESULTS We observed that miR-381 expression is negatively correlated with YAP expression and plays an opposite role to YAP in the regulation of cellular proliferation, invasion, migration, and EMT of NSCLC cells. The miR-381 function as a tumor suppressor was significantly downregulated in lung cancer tissue specimens and cell lines, which decreased the expression of its direct target YAP. In addition, metformin decreased cell growth, migration, invasion, and EMT via up-regulation of miR-381. Moreover, YAP, which functions as a co-transcription factor, enhanced NSCLC progression and metastasis by upregulation of Snail. Snail knockdown downregulated the mesenchymal marker vimentin and upregulated the epithelial marker E-cadherin in lung cancer cells. Furthermore, miR-381, YAP, and Snail constitute the miR-381-YAP-Snail signal axis, which is repressed by metformin, and enhances cancer cell invasiveness by directly regulating EMT. CONCLUSIONS Metformin-induced repression of miR-381-YAP-Snail axis activity disrupts NSCLC growth and metastasis. Thus, we believe that the miR-381-YAP-Snail signal axis may be a suitable diagnostic marker and a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Dan Jin
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China.
| | - Yan Wu
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Weiwei Chen
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Jing Du
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Lijuan Yang
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Kaikai Gong
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Juanjuan Dai
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Shuang Miao
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Xuelin Li
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Guoming Su
- Department of Nursing, Binzhou Polytechnic University, Binzhou, 256603, People's Republic of China
| |
Collapse
|
176
|
Wang Y, Fu T, Liu Y, Yang G, Yu C, Zhang ZJ. The Association between Metformin and Survival of Head and Neck Cancer: A Systematic Review and Meta-Analysis of 7 Retrospective Cohort Studies. Curr Pharm Des 2020; 26:3161-3170. [PMID: 32067604 DOI: 10.2174/1381612826666200218095310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metformin has been associated with improved survival outcomes in various malignancies. However, observational studies in head and neck cancer are inconsistent. OBJECTIVE The study aimed to summarize and quantify the relationship between metformin use and the survival of head and neck cancer. METHODS A meta-analysis based on cohort studies was systematically conducted (published up to Jan 18, 2020), identified from PubMed, Embase, Web of Science, Cochrane Library, Google Scholar, and Scopus databases. Summary hazard ratios (HR) and 95% confidence intervals (CI) were calculated using a random-effects model. RESULTS Seven retrospective cohort studies including 3,285 head and neck cancer patients were included. The association between the use of metformin and cancer survival was not statistically significant: summarized HR of 0.89 (95% CI 0.66-1.18, P=0.413, I2=64.0%) for overall survival, summarized HR of 0.65 (95% CI 0.31-1.35, P=0.246, I2=60.3%) for disease-free survival, and summarized HR of 0.69 (95% CI 0.40-1.20, P=0.191, I2=73.1%) for disease-specific survival. CONCLUSION In this meta-analysis of 7 retrospective cohort studies, there was not a statistically significant association between the use of metformin and better survival for head and neck cancer. However, the analysis may have been underpowered. More studies of prospective designs with larger sample sizes are needed to investigate the effect of metformin on the survival of head and neck cancer.
Collapse
Affiliation(s)
- Yongbo Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Tao Fu
- Renmin Hospital, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Yu Liu
- Department of Statistics and Management, School of Management, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guifang Yang
- Zhongnan Hospital, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Zhi-Jiang Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
177
|
Sun Y, Chen X, Zhou Y, Qiu S, Wu Y, Xie M, Zhu G, Liang S, Li H, Zhou D, Ju Z, Wang F, Han F, Wang Z, Wang R. Metformin reverses the drug resistance of cisplatin in irradiated CNE-1 human nasopharyngeal carcinoma cells through PECAM-1 mediated MRPs down-regulation. Int J Med Sci 2020; 17:2416-2426. [PMID: 33029084 PMCID: PMC7532475 DOI: 10.7150/ijms.48635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: To explore a way to reverse the drug resistance for irradiated CNE-1 human nasopharyngeal carcinoma cells and try to develop a new high efficacy with low toxicity therapeutic approach. Methods: 300 Gy irradiated the CNE-1 human nasopharyngeal carcinoma cells, and then treated with single-agent cisplatin or metformin, or combination of both drugs. MTT assay and FCM were applied to detect cell viability and apoptosis. Western blot and RT-PCR were used to characterize the protein and mRNA expression after various drug administrations. Results: The results presented single-agent metformin was capable of arresting the tumor growth and inducing apoptosis in irradiated CNE-1 cells and also demonstrated a synergy effect with cisplatin. Furthermore, metformin down-regulates the PECAM-1 expression, which could regulate Multi-drug Resistance-associate Proteins (MRPs) expression leading to cisplatin resistance of irradiated CNE-1 cells. A pan-MRP inhibitor, probenecid, can resecure cisplatin resistance leading by radiation. Conclusions: Metformin, due to its independent effects on PECAM-1, had a unique anti-proliferative effect on irradiated CNE-1 cells. It would be a new therapeutic option to conquer cisplatin resistance for advanced NPC patients after radiotherapy.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Medical and Radiation Oncology, Sanming First Hospital of Fujian Medical University. Sanming 365001, China.,Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Xiaochuan Chen
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350001, China
| | - Yajuan Zhou
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, 430074, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350001, China
| | - Yongyang Wu
- Department of Urology Surgery, Sanming First Hospital of Fujian Medical University. Sanming 365001, China
| | - Min Xie
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Guofang Zhu
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Shanshan Liang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Heming Li
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Dong Zhou
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Zaishuang Ju
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Fuguang Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Fang Han
- Department of Medical Imaging, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
178
|
Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:413-433. [PMID: 31637624 DOI: 10.1007/s13679-019-00364-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development. RECENT FINDINGS Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis. Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Nikolaos Spyrou
- 251 Airforce General Hospital, 3 Kanellopoulou, 11525, Athens, Greece
| | - Jona Kadillari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Sotiria Psallida
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
179
|
Lende TH, Austdal M, Varhaugvik AE, Skaland I, Gudlaugsson E, Kvaløy JT, Akslen LA, Søiland H, Janssen EAM, Baak JPA. Influence of pre-operative oral carbohydrate loading vs. standard fasting on tumor proliferation and clinical outcome in breast cancer patients ─ a randomized trial. BMC Cancer 2019; 19:1076. [PMID: 31703648 PMCID: PMC6842165 DOI: 10.1186/s12885-019-6275-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background Conflicting results have been reported on the influence of carbohydrates in breast cancer. Objective To determine the influence of pre-operative per-oral carbohydrate load on proliferation in breast tumors. Design Randomized controlled trial. Setting University hospital with primary and secondary care functions in South-West Norway. Patients Sixty-one patients with operable breast cancer from a population-based cohort. Intervention Per-oral carbohydrate load (preOp™) 18 and 2–4 h before surgery (n = 26) or standard pre-operative fasting with free consumption of tap water (n = 35). Measurements The primary outcome was post-operative tumor proliferation measured by the mitotic activity index (MAI). The secondary outcomes were changes in the levels of serum insulin, insulin-c-peptide, glucose, IGF-1, and IGFBP3; patients’ well-being, and clinical outcome over a median follow-up of 88 months (range 33–97 months). Results In the estrogen receptor (ER) positive subgroup (n = 50), high proliferation (MAI ≥ 10) occurred more often in the carbohydrate group (CH) than in the fasting group (p = 0.038). The CH group was more frequently progesterone receptor (PR) negative (p = 0.014). The CH group had a significant increase in insulin (+ 24.31 mIE/L, 95% CI 15.34 mIE/L to 33.27 mIE/L) and insulin c-peptide (+ 1.39 nM, 95% CI 1.03 nM to 1.77 nM), but reduced IGFBP3 levels (− 0.26 nM; 95% CI − 0.46 nM to − 0.051 nM) compared to the fasting group. CH-intervention ER-positive patients had poorer relapse-free survival (73%) than the fasting group (100%; p = 0.012; HR = 9.3, 95% CI, 1.1 to 77.7). In the ER-positive patients, only tumor size (p = 0.021; HR = 6.07, 95% CI 1.31 to 28.03) and the CH/fasting subgrouping (p = 0.040; HR = 9.30, 95% CI 1.11 to 77.82) had independent prognostic value. The adverse clinical outcome of carbohydrate loading occurred only in T2 patients with relapse-free survival of 100% in the fasting group vs. 33% in the CH group (p = 0.015; HR = inf). The CH group reported less pain on days 5 and 6 than the control group (p < 0.001) but otherwise exhibited no factors related to well-being. Limitation Only applicable to T2 tumors in patients with ER-positive breast cancer. Conclusions Pre-operative carbohydrate load increases proliferation and PR-negativity in ER-positive patients and worsens clinical outcome in ER-positive T2 patients. Trial registration CliniTrials.gov; NCT03886389. Retrospectively registered March 22, 2019.
Collapse
Affiliation(s)
- Tone Hoel Lende
- Department of Breast & Endocrine Surgery, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway. .,Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 87, N-5012, Bergen, Norway.
| | - Marie Austdal
- Department of Research, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway.,Department of Pathology, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway
| | - Anne Elin Varhaugvik
- Department of Pathology, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway.,Department of Pathology, Helse Møre og Romsdal HF, P.O. Box 1600, N-6026, Ålesund, Norway
| | - Ivar Skaland
- Department of Pathology, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway
| | - Jan Terje Kvaløy
- Department of Research, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway.,Department of Mathematics and Physics, University of Stavanger, P.O. Box 8600 Forus, N-4036, Stavanger, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 87, N-5012, Bergen, Norway.,Gades Institute, Laboratory Medicine Pathology, University of Bergen, Jonas Lies vei 87, N-5012, Bergen, Norway
| | - Håvard Søiland
- Department of Breast & Endocrine Surgery, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5012, Bergen, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway.,Department of Mathematics and Physics, University of Stavanger, P.O. Box 8600 Forus, N-4036, Stavanger, Norway
| | - Jan P A Baak
- Department of Pathology, Stavanger University Hospital, Helse Stavanger HF, P.O. Box 8100, N-4068, Stavanger, Norway.,, Risavegen 66, N-4056, Tananger, Norway.,, Vierhuysen 6, 1921 SB, Akersloot, Netherlands
| |
Collapse
|
180
|
Allen SA, Datta S, Sandoval J, Tomilov A, Sears T, Woolard K, Angelastro JM, Cortopassi GA. Cetylpyridinium chloride is a potent AMP-activated kinase (AMPK) inducer and has therapeutic potential in cancer. Mitochondrion 2019; 50:19-24. [PMID: 31654752 DOI: 10.1016/j.mito.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a eukaryotic energy sensor and protector from mitochondrial/energetic stress that is also a therapeutic target for cancer and metabolic disease. Metformin is an AMPK inducer that has been used in cancer therapeutic trials. Through screening we isolated cetylpyridinium chloride (CPC), a drug known to dose-dependently inhibit mitochondrial complex 1, as a potent and dose-dependent AMPK stimulator. Mitochondrial biogenesis and bioenergetics changes have also been implicated in glioblastoma, which is the most aggressive form of brain tumors. Cetylpyridinium chloride has been administered in humans as a safe drug-disinfectant for several decades, and we report here that under in vitro conditions, cetylpyridinium chloride kills glioblastoma cells in a dose dependent manner at a higher efficacy compared to current standard of care drug, temozolomide.
Collapse
Affiliation(s)
- Sonia A Allen
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA 95616, USA.
| | - Sandipan Datta
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA 95616, USA.
| | - Jose Sandoval
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA 95616, USA.
| | - Alexey Tomilov
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA 95616, USA.
| | - Thomas Sears
- Department of Pathology, Microbiology, and Immunology, 4206 Veterinary Medicine Dr., VM3A, UC Davis, CA 95616, USA.
| | - Kevin Woolard
- Department of Pathology, Microbiology, and Immunology, 4206 Veterinary Medicine Dr., VM3A, UC Davis, CA 95616, USA.
| | - James M Angelastro
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA 95616, USA.
| | - Gino A Cortopassi
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA 95616, USA.
| |
Collapse
|
181
|
Hussain S, Chowdhury TA. The Impact of Comorbidities on the Pharmacological Management of Type 2 Diabetes Mellitus. Drugs 2019; 79:231-242. [PMID: 30742277 DOI: 10.1007/s40265-019-1061-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus affects over 20% of people aged > 65 years. With the population of older people living with diabetes growing, the condition may be only one of a number of significant comorbidities that increases the complexity of their care, reduces functional status and inhibits their ability to self-care. Coexisting comorbidities may compete for the attention of the patient and their healthcare team, and therapies to manage comorbidities may adversely affect a person's diabetes. The presence of renal or liver disease reduces the types of antihyperglycemic therapies available for use. As a result, insulin and sulfonylurea-based therapies may have to be used, but with caution. There may be a growing role for sodium-glucose co-transporter 2 (SGLT-2) inhibitors in diabetic renal disease and for glucagon-like peptide (GLP)-1 therapy in renal and liver disease (nonalcoholic steatohepatitis). Cancer treatments pose considerable challenges in glucose therapy, especially the use of cyclical chemotherapy or glucocorticoids, and cyclical antihyperglycemic regimens may be required. Clinical trials of glucose lowering show reductions in microvascular and, to a lesser extent, cardiovascular complications of diabetes, but these benefits take many years to accrue, and evidence specifically in older people is lacking. Guidelines recognize that clinicians managing patients with type 2 diabetes mellitus need to be mindful of comorbidity, particularly the risks of hypoglycemia, and ensure that patient-centered therapeutic management of diabetes is offered. Targets for glucose control need to be carefully considered in the context of comorbidity, life expectancy, quality of life, and patient wishes and expectations. This review discusses the role of chronic kidney disease, chronic liver disease, cancer, severe mental illness, ischemic heart disease, and frailty as comorbidities in the therapeutic management of hyperglycemia in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shazia Hussain
- Department of Diabetes and Metabolism, Barts and the London School of Medicine and Dentistry, The Royal London Hospital, 7th Floor, John Harrison House, Whitechapel, London, E1 1BB, UK
| | - Tahseen A Chowdhury
- Department of Diabetes and Metabolism, Barts and the London School of Medicine and Dentistry, The Royal London Hospital, 7th Floor, John Harrison House, Whitechapel, London, E1 1BB, UK.
| |
Collapse
|
182
|
Abstract
Background The anticancer activity of metformin has been confirmed against several cancer types in vitro and in vivo. However, the underlying mechanisms of metformin in the treatment of cancer are not fully understood. This systematic review aims to discuss the possible anticancer mechanism of action of metformin. Method A search through different databases was conducted, including Medline and EMBASE. Results A total of 96 articles were identified of which 56 were removed for duplication and 24 were excluded after reviewing the title and abstract. A total of 12 research articles were included that describe different antiproliferative mechanisms that may contribute to the antineoplastic effects of metformin. Conclusion This analysis discussed the potential anticancer activity of metformin and highlighted the importance of AMPK as a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
183
|
Chowdhury TA, Jacob P. Challenges in the management of people with diabetes and cancer. Diabet Med 2019; 36:795-802. [PMID: 30706527 DOI: 10.1111/dme.13919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
Although micro- and macrovascular complications of diabetes are the most important cause of mortality and morbidity in people with diabetes, it is increasingly recognized that diabetes increases the risk of developing cancer. Diabetes and cancer commonly co-exist, and outcomes in people with both conditions are poorer than in those who have cancer but no diabetes. There is no randomized trial evidence that treating hyperglycaemia in people with cancer improves outcomes, but therapeutic nihilism should be avoided, and a personalized approach to managing hyperglycaemia in people with cancer is needed. This review aims to outline the link between diabetes therapies and cancer, and discuss the reasons why glucose should be actively managed people with both. In addition, we discuss clinical challenges in the management of hyperglycaemia in cancer, specifically in relation to glucocorticoids, enteral feeding and end-of-life care.
Collapse
Affiliation(s)
- T A Chowdhury
- Department of Diabetes and Metabolism, Barts and the London School of Medicine and Dentistry, London, UK
| | - P Jacob
- Department of Diabetes and Metabolism, Barts and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
184
|
Tseng CH. Metformin reduces risk of benign nodular goiter in patients with type 2 diabetes mellitus. Eur J Endocrinol 2019; 180:365-372. [PMID: 30986765 DOI: 10.1530/eje-19-0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
Abstract
Background Whether metformin might affect the risk of benign nodular goiter in patients with type 2 diabetes mellitus has not been investigated. Methods Patients with new-onset type 2 diabetes mellitus during 1999-2005 were enrolled from Taiwan's National Health Insurance database. Analyses were conducted in a propensity score matched-pairs of 20,048 ever users and 20,048 never users of metformin. The patients were followed until December 31, 2011, for the incidence of benign nodular goiter. Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using the propensity score. Results Among the never users and ever users of metformin, 392 and 221 cases were diagnosed of benign nodular goiter during follow-up, with incidence of 457.88 and 242.45 per 100,000 person-years, respectively. The overall hazard ratio for ever versus never users was 0.527 (95% confidence interval: 0.447-0.621). When cumulative duration of metformin therapy was divided into tertiles, the hazard ratios for the first (<25.3 months), second (25.3-57.3 months) and third (>57.3 months) tertiles were 0.815 (0.643-1.034), 0.648 (0.517-0.812) and 0.255 (0.187-0.348), respectively. Sensitivity analyses estimating the overall hazard ratios for patients enrolled in each specific year from 1999 to 2005 consistently showed a lower risk of benign nodular goiter among users of metformin. Conclusion Metformin use is associated with a lower risk of benign nodular goiter in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
185
|
Wang Y, Maurer MJ, Larson MC, Allmer C, Feldman AL, Bennani NN, Thompson CA, Porrata LF, Habermann TM, Witzig TE, Ansell SM, Slager SL, Nowakowski GS, Cerhan JR. Impact of metformin use on the outcomes of newly diagnosed diffuse large B-cell lymphoma and follicular lymphoma. Br J Haematol 2019; 186:820-828. [PMID: 31135975 DOI: 10.1111/bjh.15997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
The diabetes mellitus (DM) drug metformin targets mechanistic/mammalian target of rapamycin and inhibits lymphoma growth in vitro. We investigated whether metformin affected outcomes of newly diagnosed diffuse large B-cell (DLBCL, n = 869) and follicular lymphoma (FL, n = 895) patients enrolled in the Mayo component of the Molecular Epidemiology Resource cohort study between 2002 and 2015. Hazard ratios (HR) and 95% confidence intervals (CIs) adjusted for age, sex, body mass index, prognostic index and treatment were used to estimate the association of metformin exposure (No DM/No metformin; DM/No metformin; DM/Metformin) with event-free (EFS), lymphoma-specific (LSS) and overall (OS) survival. Compared to No DM/No metformin DLBCL patients, there was no association of DM/Metformin (n = 48; HR = 1·05, 95% CI 0·59-1·89) or DM/No metformin(n = 54; HR = 1·41, 95% CI 0·88-2·26) with EFS; results were similar for LSS and OS. Compared to No DM/No metformin FL patients, there was no association of DM/Metformin (n = 37; HR = 1·16, 95% CI 0·71-1·89) or DM/No metformin (n = 19; HR = 1·16, 95% CI 0·66-2·04) with EFS; results were similar for LSS. However, DM/Metformin was associated with inferior OS (HR = 2·17; 95% CI 1·19-3·95) compared to No DM/No metformin. In conclusion, we found no evidence that metformin use was associated with improved outcomes in newly diagnosed DLBCL and FL.
Collapse
Affiliation(s)
- Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Cristine Allmer
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
186
|
Yan JH, Xiao Y, Tan DQ, Shao XT, Wang Z, Wang DG. Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China. CHEMOSPHERE 2019; 222:688-695. [PMID: 30735969 DOI: 10.1016/j.chemosphere.2019.01.151] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Metformin has been widely used as an oral drug for the treatment of diabetes mellitus. However, its consumption can be influenced by many economic and social factors. In this study, we investigated the spatial consumption pattern of metformin in China through wastewater-based epidemiology (WBE) approach. Influent wastewater samples were collected from 21 wastewater treatment plants (WWTPs) in 19 cities of the northeast China. A method using solid-phase extraction combined with N-Methyl-bis (trifluoroacetamide) derivatization for GC-MS detection was applied for metformin analysis. In 21 days, metformin showed high stability in wastewater at 24 °C and -20 °C. The mean concentrations of metformin in all WWTPs ranged from 2.42 μg L-1 to 53.6 μg L-1. The consumption of metformin was 0.66-15.6 mg d-1 capita-1 with the mean value of 5.54 ± 4.28 mg d-1 capita-1. The prevalence of metformin ranged from 0.09% to 2.10% with an average of 0.74%. Both the consumption and prevalence of metformin displays significant spatial variations in northeast China. A statistical correlation analysis indicated that the consumption of metformin increases with the decrease of per capita disposable income of urban residents. To further predict the use of metformin in China, we developed a regress model and depicted a consumption map. The annual consumption of urban residents in Chinese provinces range from 1085-63,828 kg yr-1 with mean value of 25,347 kg yr-1, which would provide a certain reference value for public health care and diabetes control.
Collapse
Affiliation(s)
- Ji-Hao Yan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China.
| | - Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, China.
| |
Collapse
|
187
|
Garnier D, Renoult O, Alves-Guerra MC, Paris F, Pecqueur C. Glioblastoma Stem- Like Cells, Metabolic Strategy to Kill a Challenging Target. Front Oncol 2019; 9:118. [PMID: 30895167 PMCID: PMC6415584 DOI: 10.3389/fonc.2019.00118] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 01/25/2023] Open
Abstract
Over the years, substantial evidence has definitively confirmed the existence of cancer stem-like cells within tumors such as Glioblastoma (GBM). The importance of Glioblastoma stem-like cells (GSCs) in tumor progression and relapse clearly highlights that cancer eradication requires killing of GSCs that are intrinsically resistant to conventional therapies as well as eradication of the non-GSCs cells since GSCs emergence relies on a dynamic process. The past decade of research highlights that metabolism is a significant player in tumor progression and actually might orchestrate it. The growing interest in cancer metabolism reprogrammation can lead to innovative approaches exploiting metabolic vulnerabilities of cancer cells. These approaches are challenging since they require overcoming the compensatory and adaptive responses of GSCs. In this review, we will summarize the current knowledge on GSCs with a particular focus on their metabolic complexity. We will also discuss potential approaches targeting GSCs metabolism to potentially improve clinical care.
Collapse
Affiliation(s)
| | | | | | - François Paris
- CRCINA, INSERM CNRS, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest - René Gauducheau, St Herblain, France
| | - Claire Pecqueur
- CRCINA, INSERM CNRS, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
188
|
Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019; 92:121-135. [PMID: 30445141 DOI: 10.1016/j.metabol.2018.11.001] [Citation(s) in RCA: 870] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Continuously rising trends in obesity-related malignancies render this disease spectrum a public health priority. Worldwide, the burden of cancer attributable to obesity, expressed as population attributable fraction, is 11.9% in men and 13.1% in women. There is convincing evidence that excess body weight is associated with an increased risk for cancer of at least 13 anatomic sites, including endometrial, esophageal, renal and pancreatic adenocarcinomas; hepatocellular carcinoma; gastric cardia cancer; meningioma; multiple myeloma; colorectal, postmenopausal breast, ovarian, gallbladder and thyroid cancers. We first synopsize current epidemiologic evidence; the obesity paradox in cancer risk and mortality; the role of weight gain and weight loss in the modulation of cancer risk; reliable somatometric indicators for obesity and cancer research; and gender differences in obesity related cancers. We critically summarize emerging biological mechanisms linking obesity to cancer encompassing insulin resistance and abnormalities of the IGF-I system and signaling; sex hormones biosynthesis and pathway; subclinical chronic low-grade inflammation and oxidative stress; alterations in adipokine pathophysiology; factors deriving from ectopic fat deposition; microenvironment and cellular perturbations including vascular perturbations, epithelial-mesenchymal transition, endoplasmic reticulum stress and migrating adipose progenitor cells; disruption of circadian rhythms; dietary nutrients; factors with potential significance such as the altered intestinal microbiome; and mechanic factors in obesity and cancer. Future perspectives regarding prevention, diagnosis and therapeutics are discussed. The aim of this review is to investigate how the interplay of these main potential mechanisms and risk factors, exerts their effects on target tissues provoking them to acquire a cancerous phenotype.
Collapse
Affiliation(s)
| | - Nikolaos Spyrou
- 251 Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece.
| |
Collapse
|
189
|
|
190
|
Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, Chiu HY. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol 2019; 54:1271-1281. [PMID: 30720062 PMCID: PMC6411354 DOI: 10.3892/ijo.2019.4704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin is commonly used to treat patients with type 2 diabetes and is associated with a decreased risk of cancer. Previous studies have demonstrated that metformin can act alone or in synergy with certain anticancer agents to achieve anti-neoplastic effects on various types of tumors via adenosine monophosphate-activated protein kinase (AMPK) signaling. However, the role of metformin in AMPK-mediated apoptosis of human gastric cancer cells is poorly understood. In the current study, metformin exhibited a potent anti-proliferative effect and induced apoptotic characteristics in human AGS gastric adenocarcinoma cells, as demonstrated by MTT assay, morphological observation method, terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase-3/7 assay kits. Western blot analysis demonstrated that treatment with metformin increased the phosphorylation of AMPK, and decreased the phosphorylation of AKT, mTOR and p70S6k. Compound C (an AMPK inhibitor) suppressed AMPK phosphorylation and significantly abrogated the effects of metformin on AGS cell viability. Metformin also reduced the phosphorylation of mitogen-activated protein kinases (ERK, JNK and p38). Additionally, metformin significantly increased the cellular ROS level and included loss of mitochondrial membrane potential (ΔΨm). Metformin altered apoptosis-associated signaling to downregulate the BAD phosphorylation and Bcl-2, pro-caspase-9, pro-caspase-3 and pro-caspase-7 expression, and to upregulate BAD, cytochrome c, and Apaf-1 proteins levels in AGS cells. Furthermore, z-VAD-fmk (a pan-caspase inhibitor) was used to assess mitochondria-mediated caspase-dependent apoptosis in metformin-treated AGS cells. The findings demonstrated that metformin induced AMPK-mediated apoptosis, making it appealing for development as a novel anticancer drug for the treating gastric cancer.
Collapse
Affiliation(s)
- Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40404, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi 62241, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan, R.O.C
| |
Collapse
|
191
|
Varghese S, Samuel SM, Varghese E, Kubatka P, Büsselberg D. High Glucose Represses the Anti-Proliferative and Pro-Apoptotic Effect of Metformin in Triple Negative Breast Cancer Cells. Biomolecules 2019; 9:E16. [PMID: 30626087 PMCID: PMC6359242 DOI: 10.3390/biom9010016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 02/08/2023] Open
Abstract
Metformin, the most widely prescribed anti-diabetic drug, is shown to possess anti-cancer potential in treatment of cancers, including breast cancer; decreases breast cancer risk; and improves overall survival. However, reports suggest that higher glucose concentrations may negatively impact the anti-cancer efficacy of metformin. Therefore, we examined the anti-cancer potential of metformin in triple-negative breast cancer cells (TNBCs) exposed to different glucose (25 mM, 5.5 mM and zero glucose/glucose-starved) conditions. Our data indicates that a high glucose (25 mM) concentration (mimicking diabetes) significantly abrogated the effect of metformin on cell proliferation, cell death and cell cycle arrest in addition to loss of efficacy in inhibition of the mTOR pathway, a key metabolic pathway in TNBC cells. The mTOR pathway is activated in TNBCs compared to other subtypes of breast cancer, regulates the synthesis of proteins that are critical for the growth and survival of cancer cells and its activation is correlated to poor outcomes among TNBC patients, while also contributing to metastatic progression and development of resistance to chemotherapy/radiotherapy. Our studies were performed in two different types of TNBCs, MDA-MB-231 cells (mesenchymal stem cell-like (MSL)) and MDA-MB-468 (basal like-1 (BL-1)). Interestingly, lower concentrations of metformin (50, 100, 250, and 500 μM) significantly increased cell proliferation in 25 mM glucose exposed MDA-MB-231 cells, an effect which was not observed in MDA-MB-468 cells, indicating that the effective concentration of metformin when used as anti-cancer drug in TNBCs may have to be determined based on cell type and blood glucose concentration. Our data indicates that metformin treatment was most effective under zero glucose/glucose-starved conditions in MDA-MB-468 with a significant increase in the apoptotic population (62.3 ± 1.5%; p-value < 0.01). Under 5.5 mM glucose conditions in both MDA-MB-231 and MDA-MB-468 cells our data showed reduced viability of 73.56 ± 2.53%; p-value < 0.05 and 70.49 ± 1.68%; p-value < 0.001, respectively, along with a significant increase in apoptotic populations of both cell types. Furthermore, metformin (2 mM) inhibited the mTOR pathway and its downstream components under zero glucose/glucose-starved conditions indicating that using metformin in combination with agents that inhibit the glycolytic pathway should be more beneficial for the treatment of triple-negative breast cancers in diabetic individuals.
Collapse
Affiliation(s)
- Sharon Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Bratislava, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
192
|
Vial G, Detaille D, Guigas B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front Endocrinol (Lausanne) 2019; 10:294. [PMID: 31133988 PMCID: PMC6514102 DOI: 10.3389/fendo.2019.00294] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Metformin is a drug from the biguanide family that is used for decades as the first-line therapeutic choice for the treatment of type 2 diabetes. Despite its worldwide democratization, owing to its clinical efficacy, high safety profile and cheap cost, the exact mechanism(s) of action of this anti-hyperglycemic molecule with pleiotropic properties still remains to be fully elucidated. The concept that metformin would exert some of its actions though modulation of the mitochondrial bioenergetics was initially forged in the 50s but undeniably revived at the beginning of the twenty-first century when it was shown to induce a weak but specific inhibition of the mitochondrial respiratory-chain complex 1. Furthermore, metformin has been reported to reduce generation of reactive oxygen species at the complex 1 and to prevent mitochondrial-mediated apoptosis, suggesting that it can protect against oxidative stress-induced cell death. Nevertheless, despite some recent progress and the demonstration of its key role in the inhibition of hepatic gluconeogenesis, the exact nature of the mitochondrial interaction between the drug and the complex 1 is still poorly characterized. Recent studies reported that metformin may also have anti-neoplastic properties by inhibiting cancer cell growth and proliferation, at least partly through its mitochondrial action. As such, many trials are currently conducted for exploring the repositioning of metformin as a potential drug for cancer therapy. In this mini-review, we discuss both historical and more recent findings on the central role played by the interaction between metformin and the mitochondria in its cellular mechanism of action.
Collapse
Affiliation(s)
- Guillaume Vial
- Laboratoire Hypoxie-Physiopathologies Cardiovasculaires et Respiratoires HP2, Faculté de Médecine et de Pharmacie, INSERM U1042, La Tronche, France
- Laboratoire Hypoxie-Physiopathologies Cardiovasculaires et Respiratoires HP2, Faculté de Médecine et de Pharmacie, Université Grenoble-Alpes, La Tronche, France
| | - Dominique Detaille
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, Bordeaux, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Bruno Guigas
| |
Collapse
|
193
|
Spyrou N, Avgerinos KI, Mantzoros CS, Dalamaga M. Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies. Curr Obes Rep 2018; 7:260-275. [PMID: 30145771 DOI: 10.1007/s13679-018-0318-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this review, we investigate the role of classic and novel adipocytokines in cancer pathogenesis synopsizing the mechanisms underlying the association between adipocytokines and malignancy. Special emphasis is given on novel adipocytokines as new evidence is emerging regarding their entanglement in neoplastic development. RECENT FINDINGS Recent data have emphasized the role of the triad of overweight/obesity, insulin resistance and adipocytokines in cancer. In the setting of obesity, classic and novel adipocytokines present independent and joint effects on activation of major intracellular signaling pathways implicated in cell proliferation, expansion, survival, adhesion, invasion, and metastasis. Until now, more than 15 adipocytokines have been associated with cancer, and this list continues to expand. While the plethora of circulating pro-inflammatory adipocytokines, such as leptin, resistin, extracellular nicotinamide phosphoribosyl transferase, and chemerin are elevated in malignancies, some adipocytokines such as adiponectin and omentin-1 are generally decreased in cancers and are considered protective against carcinogenesis. Elucidating the intertwining of inflammation, cellular bioenergetics, and adiposopathy is significant for the development of preventive, diagnostic, and therapeutic strategies against cancer. Novel more effective and safe adipocytokine-centered therapeutic interventions may pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Nikolaos Spyrou
- 251 Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Section of Endocrinology, VA Boston Healthcare System, Boston, MA, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| |
Collapse
|
194
|
Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res 2018; 202:35-51. [PMID: 30144423 PMCID: PMC6456045 DOI: 10.1016/j.trsl.2018.07.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. Furthermore cancer cells can also modulate energy metabolism within the cancer microenvironment including immune cells and induce "metabolic anergy" of antitumor immune response. Classical approaches targeting the mitochondria of cancer cells usually aim at inducing changing energy metabolism or directly affecting functions of mitochondrial antiapoptotic proteins but most of such approaches miss the required specificity of action and carry important side effects. Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
195
|
Pan YH, Lin CY, Lu CH, Li L, Wang YB, Chen HY, He Y. Metformin synergistically enhances the antitumor activity of the third-generation EGFR-TKI CO-1686 in lung cancer cells through suppressing NF-κB signaling. CLINICAL RESPIRATORY JOURNAL 2018; 12:2642-2652. [PMID: 30307719 DOI: 10.1111/crj.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE Third-generation irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), rociletinib (CO-1686), is great efficacy against EGFR-mutated patients bearing the T790M resistance mutation. However, acquired resistance may emerge. There is a need to characterize acquired resistance mechanism(s) and to devise ways to overcome CO-1686 resistance. EXPERIMENTAL DESIGN MTT assay, ki67 incorporation assay, transwell assay and TUNEL assay were employed to analyze the effects of metformin to reverse CO-1686 resistance in vitro. The NF-κB activity was measured by the antibody of p50, p65, p-IKBɑ, and p-IKKɑ/β. Western blotting was used to analyze the proteins in cells. RESULTS We have established CO-1686-resistant cell lines of PC-9GRCOR and H1975COR from two parental cell lines of PC-9GR and H1975 by long-term exposure to increasing doses of CO-1686. Compared with the parental cells, PC-9GRCOR cells and H1975COR cells showed 90-folds and 20-folds higher resistance to CO-1686, respectively. Critically, we showed that the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecular proteins subunits of p50, p65 and its inhibitor proteins of IKBɑ, IKKɑ/β in phosphorylation levels in resistant cells were higher than parental cells. Accordingly, inhibition of NF-κB activity used TPCA-1 effective in decreasing viability and inducing apoptosis of resistant cells. Moreover, metformin overcame the acquired resistance to CO-1686 by reducing cell proliferation and invasion. Metformin combined with CO-1686 synergistically inhibited the p-IKBɑ, p-IKKɑ/β, p50, and p65. CONCLUSIONS NF-κB signaling activation induced acquired resistance to CO-1686. Metformin sensitized resistant cells to CO-1686 via inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Yong-Hong Pan
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Cai-Yu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Cong-Hua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu-Bo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Heng-Yi Chen
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
196
|
Curry JM, Johnson J, Mollaee M, Tassone P, Amin D, Knops A, Whitaker-Menezes D, Mahoney MG, South A, Rodeck U, Zhan T, Harshyne L, Philp N, Luginbuhl A, Cognetti D, Tuluc M, Martinez-Outschoorn U. Metformin Clinical Trial in HPV+ and HPV- Head and Neck Squamous Cell Carcinoma: Impact on Cancer Cell Apoptosis and Immune Infiltrate. Front Oncol 2018; 8:436. [PMID: 30364350 PMCID: PMC6193523 DOI: 10.3389/fonc.2018.00436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Metformin, an oral anti-hyperglycemic drug which inhibits mitochondrial complex I and oxidative phosphorylation has been reported to correlate with improved outcomes in head and neck squamous cell carcinoma (HNSCC) and other cancers. This effect is postulated to occur through disruption of tumor-driven metabolic and immune dysregulation in the tumor microenvironment (TME). We report new findings on the impact of metformin on the tumor and immune elements of the TME from a clinical trial of metformin in HNSCC. Methods: Human papilloma virus—(HPV–) tobacco+ mucosal HNSCC samples (n = 12) were compared to HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples (n = 17) from patients enrolled in a clinical trial. Apoptosis in tumor samples pre- and post-treatment with metformin was compared by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Metastatic lymph nodes with extra-capsular extension (ECE) in metformin-treated patients (n = 7) were compared to archival lymph node samples with ECE (n = 11) for differences in immune markers quantified by digital image analysis using co-localization and nuclear algorithms (PD-L1, FoxP3, CD163, CD8). Results: HPV–, tobacco + HNSCC (mean Δ 13.7/high power field) specimens had a significantly higher increase in apoptosis compared to HPV+ OPSCC specimens (mean Δ 5.7/high power field) (p < 0.001). Analysis of the stroma at the invasive front in ECE nodal specimens from both HPV—HNSCC and HPV+ OPSCC metformin treated specimens showed increased CD8+ effector T cell infiltrate (mean 22.8%) compared to archival specimens (mean 10.7%) (p = 0.006). Similarly, metformin treated specimens showed an increased FoxP3+ regulatory T cell infiltrate (mean 9%) compared to non-treated archival specimens (mean 5%) (p = 0.019). Conclusions: This study presents novel data demonstrating that metformin differentially impacts HNSCC subtypes with greater apoptosis in HPV—HNSCC compared to HPV+ OPSCC. Moreover, we present the first in vivo human evidence that metformin may also trigger increased CD8+ Teff and FoxP3+ Tregs in the TME, suggesting an immunomodulatory effect in HNSCC. Further research is necessary to assess the effect of metformin on the TME of HNSCC.
Collapse
Affiliation(s)
- Joseph M Curry
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Mehri Mollaee
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Patrick Tassone
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Dev Amin
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Alexander Knops
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Andrew South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Larry Harshyne
- Department of Neurological Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Nancy Philp
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Adam Luginbuhl
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - David Cognetti
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
197
|
de Mey S, Jiang H, Corbet C, Wang H, Dufait I, Law K, Bastien E, Verovski V, Gevaert T, Feron O, De Ridder M. Antidiabetic Biguanides Radiosensitize Hypoxic Colorectal Cancer Cells Through a Decrease in Oxygen Consumption. Front Pharmacol 2018; 9:1073. [PMID: 30337872 PMCID: PMC6178882 DOI: 10.3389/fphar.2018.01073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: The anti-diabetic biguanide drugs metformin and phenformin exhibit antitumor activity in various models. However, their radiomodulatory effect under hypoxic conditions, particularly for phenformin, is largely unknown. This study therefore examines whether metformin and phenformin as mitochondrial complex I blockades could overcome hypoxic radioresistance through inhibition of oxygen consumption. Materials and Methods: A panel of colorectal cancer cells (HCT116, DLD-1, HT29, SW480, and CT26) was exposed to metformin or phenformin for 16 h at indicated concentrations. Afterward, cell viability was measured by MTT and colony formation assays. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) was examined by western blot. Mitochondria complexes activity and oxygen consumption rate (OCR) were measured by seahorse analyzer. The radiosensitivity of tumor cells was assessed by colony formation assay under aerobic and hypoxic conditions. The in vitro findings were further validated in colorectal CT26 tumor model. Results: Metformin and phenformin inhibited mitochondrial complex I activity and subsequently reduced OCR in a dose-dependent manner starting at 3 mM and 30 μM, respectively. As a result, the hypoxic radioresistance of tumor cells was counteracted by metformin and phenformin with an enhancement ratio about 2 at 9 mM and 100 μM, respectively. Regarding intrinsic radioresistance, both of them did not exhibit any effect although there was an increase of phosphorylation of AMPK and ROS production. In tumor-bearing mice, metformin or phenformin alone did not show any anti-tumor effect. While in combination with radiation, both of them substantially delayed tumor growth and enhanced radioresponse, respectively, by 1.3 and 1.5-fold. Conclusion: Our results demonstrate that metformin and phenformin overcome hypoxic radioresistance through inhibition of mitochondrial respiration, and provide a rationale to explore metformin and phenformin as hypoxic radiosensitizers.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kalun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Valeri Verovski
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
198
|
Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev 2018; 70:98-111. [PMID: 30130687 DOI: 10.1016/j.ctrv.2018.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is one of the most common chronic disease worldwide and affects all cross-sections of the society including children, women, youth and adults. Scientific evidence has linked diabetes to higher incidence, accelerated progression and increased aggressiveness of different cancers. Among the different forms of cancer, research has reinforced a link between diabetes and the risk of breast cancer. Some studies have specifically linked diabetes to the highly aggressive, triple negative breast cancers (TNBCs) which do not respond to conventional hormonal/HER2 targeted interventions, have chances of early recurrence, metastasize, tend to be more invasive in nature and develop drug resistance. Commonly used anti-diabetic drugs, such as metformin, have recently gained importance in the treatment of breast cancer due to their proposed anti-cancer properties. Here we discuss the link between diabetes and breast cancer, the metabolic disturbances in diabetes that support the development of breast cancer, the challenges involved and future perspective and directions. We link the three main metabolic disturbances (dyslipidemia, hyperinsulinemia and hyperglycemia) that occur in diabetes to potential aberrant molecular pathways that may lead to the development of an oncogenic phenotype of the breast tissue, thereby leading to acceleration of cell growth, proliferation, migration, inflammation, angiogenesis, EMT and metastasis and inhibition of apoptosis in breast cancer cells. Furthermore, managing diabetes and treating cancer using a combination of anti-diabetic and classical anti-cancer drugs should prove to be more efficient in the treatment diabetes associated cancers.
Collapse
|