151
|
Yin P, Wang S, Wei Y, Wang X, Zhang J, Yin X, Feng J, Zhu M. Maresin1 Decreased Microglial Chemotaxis and Ameliorated Inflammation Induced by Amyloid-β42 in Neuron-Microglia Co-Culture Models. J Alzheimers Dis 2020; 73:503-515. [PMID: 31796671 DOI: 10.3233/jad-190682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Shuang Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jingdian Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
152
|
Quintana DD, Garcia JA, Anantula Y, Rellick SL, Engler-Chiurazzi EB, Sarkar SN, Brown CM, Simpkins JW. Amyloid-β Causes Mitochondrial Dysfunction via a Ca2+-Driven Upregulation of Oxidative Phosphorylation and Superoxide Production in Cerebrovascular Endothelial Cells. J Alzheimers Dis 2020; 75:119-138. [PMID: 32250296 PMCID: PMC7418488 DOI: 10.3233/jad-190964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebrovascular pathology is pervasive in Alzheimer's disease (AD), yet it is unknown whether cerebrovascular dysfunction contributes to the progression or etiology of AD. In human subjects and in animal models of AD, cerebral hypoperfusion and hypometabolism are reported to manifest during the early stages of the disease and persist for its duration. Amyloid-β is known to cause cellular injury in both neurons and endothelial cells by inducing the production of reactive oxygen species and disrupting intracellular Ca2+ homeostasis. We present a mechanism for mitochondrial degeneration caused by the production of mitochondrial superoxide, which is driven by increased mitochondrial Ca2+ uptake. We found that persistent superoxide production injures mitochondria and disrupts electron transport in cerebrovascular endothelial cells. These observations provide a mechanism for the mitochondrial deficits that contribute to cerebrovascular dysfunction in patients with AD.
Collapse
Affiliation(s)
- Dominic D Quintana
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Jorge A Garcia
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Yamini Anantula
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Stephanie L Rellick
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Saumyendra N Sarkar
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Candice M Brown
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Center of Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
153
|
Afzal M, Redha A, AlHasan R. Anthocyanins Potentially Contribute to Defense against Alzheimer's Disease. Molecules 2019; 24:E4255. [PMID: 31766696 PMCID: PMC6930593 DOI: 10.3390/molecules24234255] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
Anthocyanins (ANTs) are plant pigments that belong to a flavanol class of polyphenols and have diverse pharmacological properties. These compounds are primarily found in fruits and vegetables, with an average daily intake of 180 mgd-1 of these compounds in the developed world. ANTs are potent antioxidants that might regulate the free radical-mediated generation of amyloid peptides (Abeta-amyloids) in the brain, which causes Alzheimer's disease (AD). This study presents a literature review of ANTs from different berries and their potential therapeutic value, with particular emphasis on neurodegenerative AD, which owing to oxidative stress. This review also highlights reactive oxygen species (ROS) generation through energy metabolism, nitrogen reactive species, the role of transition metals in generating ROS, and the radical-quenching mechanisms of natural antioxidants, including ANTs. The current status of the bioavailability, solubility, and structure activity relationship of ANTs is discussed herein.
Collapse
Affiliation(s)
- Mohammad Afzal
- Biological Sciences Department, Faculty of Science, Kuwait University, Safat-13060, Kuwait; (A.R.); (R.A.)
| | | | | |
Collapse
|
154
|
Sun X, Liang S, Fu L, Zhang X, Feng T, Li P, Zhang T, Wang L, Yin X, Zhang W, Hu Y, Liu H, Zhao S, Nie B, Xu B, Shan B. A human brain tau PET template in MNI space for the voxel-wise analysis of Alzheimer's disease. J Neurosci Methods 2019; 328:108438. [PMID: 31542346 DOI: 10.1016/j.jneumeth.2019.108438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Positron emission tomography (PET) imaging techniques of tau retention in the human brain are important for mechanistic studies of Alzheimer's disease (AD). However, the method for effectively conducting voxel-wise analysis on tau PET images still needs to be improved. In the present study, we introduced a tau PET template for the human brain in Montreal Neurological Institute (MNI) space for the convenient and reliable voxel-wise analysis of tau PET images in AD studies. NEW METHOD Twenty-four AD patients and 22 controls were used to construct the tau PET template, and an additional 22 subjects (11 AD patients and 11 controls) were enrolled to evaluate the performance of the template. Thirty regions (28 cortical and 2 subcortical regions) throughout the brain were used to evaluate the accuracy of the tau PET template. RESULTS A significant relationship (R2 = 0.848, P < 0.001) was found between the standardized uptake value ratios (SUVRs) obtained by the tau PET template and magnetic resonance imaging (MRI)-aided approach, and the paired-sample t-test showed no significant difference (P = 0.62) between the values. These two approaches revealed consistent brain regions with high tau retention. COMPARISON WITH EXISTING METHODS The tau PET template was comparable with the traditional MRI-aided strategy. Furthermore, compared to the MRI-aided approach, the tau PET template was more convenient and easier to use. More importantly, in most clinical settings, AD patients who underwent PET/computed tomography (CT) typically do not have MR images, in which case the traditional MRI-aided approach would not be applicable. Our tau PET template overcame this deficiency and may serve as a useful tool in AD research. CONCLUSIONS This tau PET template performed well and may serve as a useful tool in future AD studies.
Collapse
Affiliation(s)
- Xi Sun
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Liping Fu
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China
| | - Ting Feng
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Panlong Li
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luying Wang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Yin
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichao Hu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Information Engineering, Xiangtan University, Hunan 411105, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Baixuan Xu
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China.
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
155
|
Liu X, Cao P, Wang J, Kong J, Zhao D. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease. Neuroinformatics 2019; 17:271-294. [PMID: 30284672 DOI: 10.1007/s12021-018-9398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from MRI measures. Recently, multi-task based feature learning (MTFL) methods with sparsity-inducing [Formula: see text]-norm have been widely studied to select a discriminative feature subset from MRI features by incorporating inherent correlations among multiple clinical cognitive measures. However, existing MTFL assumes the correlation among all tasks is uniform, and the task relatedness is modeled by encouraging a common subset of features via sparsity-inducing regularizations that neglect the inherent structure of tasks and MRI features. To address this issue, we proposed a fused group lasso regularization to model the underlying structures, involving 1) a graph structure within tasks and 2) a group structure among the image features. To this end, we present a multi-task feature learning framework with a mixed norm of fused group lasso and [Formula: see text]-norm to model these more flexible structures. For optimization, we employed the alternating direction method of multipliers (ADMM) to efficiently solve the proposed non-smooth formulation. We evaluated the performance of the proposed method using the Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets. The experimental results demonstrate that incorporating the two prior structures with fused group lasso norm into the multi-task feature learning can improve prediction performance over several competing methods, with estimated correlations of cognitive functions and identification of cognition-relevant imaging markers that are clinically and biologically meaningful.
Collapse
Affiliation(s)
- Xiaoli Liu
- Computer Science and Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China.
| | - Jianzhong Wang
- College of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Jun Kong
- College of Information Science and Technology, Northeast Normal University, Changchun, China.,Key Laboratory of Applied Statistics of MOE, Changchun, China
| | - Dazhe Zhao
- Computer Science and Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
156
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
157
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
158
|
Computational insight into the anticholinesterase activities and electronic properties of physostigmine analogs. Future Med Chem 2019; 11:1907-1928. [DOI: 10.4155/fmc-2018-0421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is known to be themajor cause of dementia among the elderly. The structural properties and binding interactions of the AD drug physostigmine (-)-phy, and its analogues (-)-hex and (-)-phe and (+)-phe, were examined, as well as their impact on the conformational changes of two different AD target enzymes AChE and BChE. Materials & methods: The conformational changes were studied using molecular dynamics and structural properties using Quantum mechanics. Results & conclusions: The binding free energy (ΔGbind) and the change in the free energy surface (FES) computed from the funnel metadynamics (FMD) simulation, both support the idea that inhibitors (-)-phe and (-)-hex have better binding activities toward enzyme AChE, and that (-)-phe is stronger in binding than the present AD drug (-)-phy.
Collapse
|
159
|
Zdarova Karasova J, Soukup O, Korabecny J, Hroch M, Krejciova M, Hrabinova M, Misik J, Novotny L, Hepnarova V, Kuca K. Tacrine and its 7-methoxy derivate; time-change concentration in plasma and brain tissue and basic toxicological profile in rats. Drug Chem Toxicol 2019; 44:207-214. [PMID: 31257938 DOI: 10.1080/01480545.2019.1566350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The search for tacrine derivatives, as potential Alzheimer´s disease treatment, is still being at the forefront of scientific efforts. 7-MEOTA was found to be a potent, centrally active acetylcholinesterase inhibitor free of the serious side effects observed for tacrine. Unfortunately, a relevant argumentation about pharmacokinetics and potential toxicity is incomplete; information about tacrine derivatives absorption and especially CNS penetration are still rare as well as detailed toxicological profile in vivo. Although the structural changes between these compounds are not so distinctive, differences in plasma profile and CNS targeting were found. The maximum plasma concentration were attained at 18th min (tacrine; 38.20 ± 3.91 ng/ml and 7-MEOTA; 88.22 ± 15.19 ng/ml) after i.m. application in rats. Although the brain profiles seem to be similar; tacrine achieved 19.34 ± 0.71 ng/ml in 27 min and 7-MEOTA 15.80 ± 1.13 ng/ml in 22 min; the tacrine Kp (AUCbrain/AUCplasma) fit 1.20 and was significantly higher than 7-MEOTA Kp 0.10. Administration of tacrine and 7-MEOTA showed only mild elevation of some biochemical markers following single p.o. application in 24 hours and 7 days. Also histopathology revealed only mild-to-moderate changes following repeated p.o. administration for 14 days. It seems that small change in tacrine molecule leads to lower ability to penetrate through the biological barriers. The explanation that lower p.o. acute toxicity of 7-MEOTA depends only on differences in metabolic pathways may be now revised to newly described differences in pharmacokinetic and toxicological profiles.
Collapse
Affiliation(s)
- Jana Zdarova Karasova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Faculty of Medicine, Department of Medicinal Biochemistry, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Marketa Krejciova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Misik
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | | | - Vendula Hepnarova
- Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL, USA
| |
Collapse
|
160
|
Verkhratsky A. Astroglial Calcium Signaling in Aging and Alzheimer's Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035188. [PMID: 31110130 DOI: 10.1101/cshperspect.a035188] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocytes are the homeostatic and protective cells of the central nervous system (CNS). In neurological diseases, astrocytes undergo complex changes, which are subclassified into (1) reactive astrogliosis, an evolutionary conserved defensive rearrangement of cellular phenotype aimed at neuroprotection; (2) pathological remodeling, when astrocytes acquire new features driving pathology; and (3) astrodegeneration, which is manifested by astroglial atrophy and loss of homeostatic functions. In aging brains as well as in the brains affected by Alzheimer's disease (AD), astrocytes acquire both atrophic and reactive phenotypes in a region- and disease-stage-dependent manner. Prevalence of atrophy overreactivity, observed in certain brain regions and in terminal stages of the disease, arguably facilitates the development of neurological deficits. Astrocytes exhibit ionic excitability mediated by changes in intracellular concentration of ions, most importantly of Ca2+ and Na+, with intracellular ion dynamics triggered by the activity of neural networks. AD astrocytes associated with senile plaques demonstrate Ca2+ hyperactivity in the form of aberrant Ca2+ oscillations and pathological long-range Ca2+ waves. Astroglial Ca2+ signaling originating from Ca2+ release from the endoplasmic reticulum is a key factor in initiating astrogliotic response; deficient Ca2+ signaling toolkits observed in entorhinal and prefrontal cortices of AD model animals may account for vulnerability of these regions to the pathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
161
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
162
|
Ogunleye AJ, Olanrewaju AJ, Arowosegbe M, Omotuyi OI. Molecular docking based screening analysis of GSK3B. Bioinformation 2019; 15:201-208. [PMID: 31354196 PMCID: PMC6637402 DOI: 10.6026/97320630015201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
GSK3B has been an interesting drug target in the pharmaceutical industry. Its dysfunctional expression has prognostic significance in the top 3 cause of death associated with non-communicable diseases (cancer, Alzheimer's disease and type 2 diabetes). Previous studies have shown clearly that inhibiting GSK3B has proven therapeutic significance in Alzheimer's disease, but its contribution to various cancers has not been clearly resolved. In this study we report the contribution and prognostic significance of GSK3B to two breast cancer subtypes; ductal carcinoma in-situ (DCIS) and invasive ductal carcinoma (IDC) using the Oncomine platform. We performed high throughput screening using molecular docking. We identified BT-000775, a compound that was subjected to further computational hit optimization protocols. Through computational predictions, BT-000775 is a highly selective GSK3B inhibitor, with superior binding affinity and robust ADME profiles suitable for the patho-physiological presentations.
Collapse
Affiliation(s)
- Adewale J Ogunleye
- Centre for Biocomputing and Drug Discovery, Adekunle Ajasin University, Nigeria
- BIOTRUST BIOTRUST Scientific, Nigeria, Nigeria
| | | | | | - Olaposi I Omotuyi
- Centre for Biocomputing and Drug Discovery, Adekunle Ajasin University, Nigeria
| |
Collapse
|
163
|
Vemula P, Jing Y, Zhang H, Hunt JB, Sandusky‑Beltran LA, Lee DC, Liu P. Altered brain arginine metabolism in a mouse model of tauopathy. Amino Acids 2019; 51:513-528. [PMID: 30604097 PMCID: PMC6431576 DOI: 10.1007/s00726-018-02687-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022]
Abstract
Tauopathies consist of intracellular accumulation of hyperphosphorylated and aggregated microtubule protein tau, which remains a histopathological feature of Alzheimer's disease (AD) and frontotemporal dementia. L-Arginine is a semi-essential amino acid with a number of bioactive molecules. Its downstream metabolites putrescine, spermidine, and spermine (polyamines) are critically involved in microtubule assembly and stabilization. Recent evidence implicates altered arginine metabolism in the pathogenesis of AD. Using high-performance liquid chromatographic and mass spectrometric assays, the present study systematically determined the tissue concentrations of L-arginine and its nine downstream metabolites in the frontal cortex, hippocampus, parahippocampal region, striatum, thalamus, and cerebellum in male PS19 mice-bearing human tau P301S mutation at 4, 8, and 12-14 months of age. As compared to their wild-type littermates, PS19 mice displayed early and/or prolonged increases in L-ornithine and altered polyamine levels with age. There were also genotype- and age-related changes in L-arginine, L-citrulline, glutamine, glutamate, and γ-aminobutyric acid in a region- and/or chemical-specific manner. The results demonstrate altered brain arginine metabolism in PS19 mice with the most striking changes in L-ornithine, polyamines, and glutamate, indicating a shift of L-arginine metabolism to favor the arginase-polyamine pathway. Given the role of polyamines in maintaining microtubule stability, the functional significance of these changes remains to be explored in future research.
Collapse
Affiliation(s)
- Pranav Vemula
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| | - Hu Zhang
- School of Pharmacy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| | - Jerry B. Hunt
- Byrd Alzheimer’s Institute, College of Pharmacy and Pharmaceutical Sciences, University of South Florida, Florida, USA
| | - Leslie A. Sandusky‑Beltran
- Byrd Alzheimer’s Institute, College of Pharmacy and Pharmaceutical Sciences, University of South Florida, Florida, USA
| | - Daniel C. Lee
- Byrd Alzheimer’s Institute, College of Pharmacy and Pharmaceutical Sciences, University of South Florida, Florida, USA
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- School of Pharmacy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| |
Collapse
|
164
|
Abstract
In a somewhat narrow diagnostic lens, Alzheimer disease (AD) has been considered a brain-specific disease characterized by the presence of Aβ (β-amyloid) plaques and tau neural fibrillary tangles and neural inflammation; these pathologies lead to neuronal death and consequently clinical symptoms, such as memory loss, confusion, and impaired cognitive function. However, for decades, researchers have noticed a link between various cardiovascular abnormalities and AD-such as heart failure, coronary artery disease, atrial fibrillation, and vasculopathy. A considerable volume of work has pointed at this head to heart connection, focusing mainly on associations between cerebral hypoperfusion and neuronal degradation. However, new evidence of a possible systemic or metastatic profile to AD calls for further analysis of this connection. Aβ aggregations-biochemically and structurally akin to those found in the typical AD pathology-are now known to be present in the hearts of individuals with idiopathic dilated cardiomyopathy, as well as the hearts of patients with AD. These findings suggest a potential systemic profile of proteinopathies and a new hypothesis for the link between peripheral and central symptoms of heart failure and AD. Herein, we provide an overview of the cardiovascular links to Alzheimer disease.
Collapse
Affiliation(s)
- Joshua M Tublin
- From the College of Nursing (J.M.T., J.M.A., L.E.W.), The Ohio State University, Columbus
| | - Jeremy M Adelstein
- From the College of Nursing (J.M.T., J.M.A., L.E.W.), The Ohio State University, Columbus
| | | | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks (C.K.C.)
| | - Loren E Wold
- From the College of Nursing (J.M.T., J.M.A., L.E.W.), The Ohio State University, Columbus
- Department of Physiology and Cell Biology, College of Medicine (L.E.W.), The Ohio State University, Columbus
| |
Collapse
|
165
|
Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer's disease. Mol Neurodegener 2018; 13:66. [PMID: 30572908 PMCID: PMC6302500 DOI: 10.1186/s13024-018-0298-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for the disease. Genetic predisposition is considerable, with heritability estimates of 60-80%. Genetic factors such as rare variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their consequences in both animal models and in human studies. In this review, we summarize increases in our understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic strategies targeting the immune system to influence AD pathogenesis.
Collapse
Affiliation(s)
- Maud Gratuze
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Cheryl E. G. Leyns
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
166
|
Sun Q, Wei LL, Zhang M, Li TX, Yang C, Deng SP, Zeng QC. Rapamycin inhibits activation of AMPK-mTOR signaling pathway-induced Alzheimer's disease lesion in hippocampus of rats with type 2 diabetes mellitus. Int J Neurosci 2018; 129:179-188. [PMID: 29962282 DOI: 10.1080/00207454.2018.1491571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is strongly correlated with Alzheimer's disease (AD). Rapamycin has important uses in oncology, cardiology and transplantation medicine. This study aims to investigate effects of rapamycin on AD in hippocampus of T2DM rat by AMPK/mTOR signaling pathway. METHODS Morris water maze test was applied to evaluate the learning and memory abilities. The fasting plasma glucose (FBG), glycosylated haemoglobin, total cholesterol, triglyceride and serum insulin level were measured. RT-qPCR and Western blot analysis were performed to test expression of AMPK and mTOR. Immunohistochemistry was used to detect the Aβ deposition and immunoblotting to test the total tau, p-tau and Aβ precursor APP expressions. RESULTS After treated with rapamycin, T2DM rats and rats with T2DM and AD showed increased learning-memory ability, and decreased levels of FBG, glycosylated hemoglobin, total cholesterol, triglyceride and serum insulin, decreased expression of APP and p-tau, increased AMPK mRNA expression and p-AMPK and decreased Aβ deposition, mTOR mRNA expression and p-mTOR. CONCLUSION The study demonstrated that rapamycin reduces the risk of AD in T2DM rats and inhibits activation of AMPK-mTOR signaling pathway, thereby improving AD lesion in hippocampus of T2DM rats.
Collapse
Affiliation(s)
- Qin Sun
- a Department of Geratology, Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine , University of Electronic Science and Technology of China , Chengdu , Sichuan Province , PR China
| | - Ling-Ling Wei
- b Department of Organ Transplantation , Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu, Sichuan Province , PR China
| | - Min Zhang
- c Department of Geratology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , PR China
| | - Ting-Xin Li
- d Department of General Medicine , Health Management Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , PR China
| | - Chun Yang
- e Department of Gastrointestinal Surgery , Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu , Chengdu , PR China
| | - Shao-Ping Deng
- b Department of Organ Transplantation , Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu, Sichuan Province , PR China
| | - Qing-Cui Zeng
- c Department of Geratology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , PR China
| |
Collapse
|
167
|
LI K, WEI S, LIU Z, HU L, LIN J, TAN S, MAI Y, PENG W, MAI H, HOU Q, TU G. The Prevalence of Alzheimer's Disease in China: A Systematic Review and Meta-analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1615-1626. [PMID: 30581776 PMCID: PMC6294855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several studies have investigated the prevalence of Alzheimer's disease (AD) among the general population in several parts of China. However, the results have been inconsistent. This meta-analysis was conducted to estimate the overall prevalence of AD between 2007 and 2017 in China. METHODS English and Chinese electronic databases were searched with a date range from Nov 2007 to Nov 2017 and the reference lists of the included studies were screened as well. Cross-sectional studies addressing the prevalence of AD among the general Chinese population were retrieved irrespective of the age, location or sex of the participants. Study quality was assessed using the recommended checklist of STROBE. RESULTS Overall, 184058 subjects and 7445 patients with AD were included from 17 studies in this meta-analysis. The overall prevalence of AD in China was calculated to be 0.04(95% CI:0.04-0.05). The prevalence was higher in older age groups, among females, and in the rural areas of the country, with an increasing trend in recent years. CONCLUSION AD is a common problem among those in the Chinese population older than 65 yr. Furthermore, an increasing trend of the disease over the past 10 years is indicative of a critical public health problem in China in the near future. Further evidence based on a national survey is needed to estimate the exact prevalence of the disease in the country.
Collapse
Affiliation(s)
- Kanglan LI
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shouchao WEI
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Zhou LIU
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China,Corresponding Author:
| | - Li HU
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Jiajing LIN
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Shiting TAN
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Yingren MAI
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wanjuan PENG
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Hui MAI
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi HOU
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Guifeng TU
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
168
|
Sensi SL, Granzotto A, Siotto M, Squitti R. Copper and Zinc Dysregulation in Alzheimer's Disease. Trends Pharmacol Sci 2018; 39:1049-1063. [PMID: 30352697 DOI: 10.1016/j.tips.2018.10.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia. Despite a wealth of knowledge on the molecular mechanisms involved in AD, current treatments have mainly focused on targeting amyloid β (Aβ) production, but have failed to show significant effects and efficacy. Therefore, a critical reconsideration of the multifactorial nature of the disease is needed. AD is a complex multifactorial disorder in which, along with Aβ and tau, the convergence of polygenic, epigenetic, environmental, vascular, and metabolic factors increases the global susceptibility to the disease and shapes its course. One of the cofactors converging on AD is the dysregulation of brain metals. In this review, we focus on the role of AD-related neurodegeneration and cognitive decline triggered by the imbalance of two endogenous metals: copper and zinc.
Collapse
Affiliation(s)
- Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine, CeSI-MeT, Chieti, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy; Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California, Irvine, Irvine, USA.
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine, CeSI-MeT, Chieti, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | | | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
169
|
Zhang T, Han Y, Wang J, Hou D, Deng H, Deng YL, Song Z. Comparative Epidemiological Investigation of Alzheimer's Disease and Colorectal Cancer: The Possible Role of Gastrointestinal Conditions in the Pathogenesis of AD. Front Aging Neurosci 2018; 10:176. [PMID: 30323761 PMCID: PMC6172982 DOI: 10.3389/fnagi.2018.00176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects approximately 35 million people worldwide, and diet has been reported to influence the prevalence/incidence of AD. Colorectal cancer is among the most common cancers in Western populations, and the correlation between constipation and the occurrence of colorectal cancer has been identified in a number of studies, which show that a Westernized diet is a mutual risk factor. Constipation is a growing health problem, particularly in middle-aged and older adults. As the most common gastrointestinal disorder in adults, constipation affects 2-20% of the world population, and it is associated with several diseases, such as diabetes, Parkinson's disease, and others. Comparing the epidemiological data on colorectal cancer and AD, we find that colorectal cancer and AD have similar epidemiologic feature, which is both disease correlate with high prevalence of constipation. Therefore, we hypothesized that constipation may influence Alzheimer's disease in a similar way that it contributes to colorectal cancer. This review aimed to systemically elucidate the evidence that constipation contributes to Alzheimer's disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi Song
- Department of Neurology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
170
|
Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer's Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 2018; 9:362. [PMID: 30250480 PMCID: PMC6139345 DOI: 10.3389/fgene.2018.00362] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
This article reviews research results and ideas presented at a special symposium at the International Association of Gerontology and Geriatrics (IAGG) Congress held in July 2017 in San Francisco. Five researchers presented their results related to infection and Alzheimer's disease (AD). Prof. Itzhaki presented her work on the role of viruses, specifically HSV-1, in the pathogenesis of AD. She maintains that although it is true that most people harbor HSV-1 infection, either latent or active, nonetheless aspects of herpes infection can play a role in the pathogenesis of AD, based on extensive experimental evidence from AD brains and infected cell cultures. Dr. Miklossy presented research on the high prevalence of bacterial infections that correlate with AD, specifically spirochete infections, which have been known for a century to be a significant cause of dementia (e.g., in syphilis). She demonstrated how spirochetes drive senile plaque formation, which are in fact biofilms. Prof. Balin then described the involvement of brain tissue infection by the Chlamydia pneumoniae bacterium, with its potential to use the innate immune system in its spread, and its initiation of tissue damage characteristic of AD. Prof. Fülöp described the role of AD-associated amyloid beta (Aβ) peptide as an antibacterial, antifungal and antiviral innate immune effector produced in reaction to microorganisms that attack the brain. Prof. Barron put forward the novel hypothesis that, according to her experiments, there is strong sequence-specific binding between the AD-associated Aβ and another ubiquitous and important human innate immune effector, the cathelicidin peptide LL-37. Given this binding, LL-37 expression in the brain will decrease Aβ deposition via formation of non-toxic, soluble Aβ/LL-37 complexes. Therefore, a chronic underexpression of LL-37 could be the factor that simultaneously permits chronic infections in brain tissue and allows for pathological accumulation of Aβ. This first-of-its-kind symposium opened the way for a paradigm shift in studying the pathogenesis of AD, from the "amyloid cascade hypothesis," which so far has been quite unsuccessful, to a new "infection hypothesis," or perhaps more broadly, "innate immune system dysregulation hypothesis," which may well permit and lead to the discovery of new treatments for AD patients.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth F. Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Brian J. Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
171
|
Bajpai S, Tripathi M, Pandey RM, Dey AB, Nehra A. Development and validation of Cognitive Training Intervention for Alzheimer's disease (CTI-AD): A picture-based interventional program. DEMENTIA 2018; 19:1203-1219. [PMID: 30180764 DOI: 10.1177/1471301218797043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction Alzheimer’s disease is a gradual and progressive disorder which cripples the person’s functionality due to cognitive decline. Many clinicopathological and pharmacological therapy has the potential to slow down the progression of the disease but has limited efficacy. One complimentary approach that has emerged is cognitive training interventions which have shown synergistic effect with the drug therapy. Nevertheless, many cognitive interventions lack on specificities of the intervention due to which its efficacy gets scrutinized. Objective To describe the foundation, content, and development of Cognitive Training Intervention for Alzheimer’s disease (CTI-AD) along with the treatment feasibility based on a pilot study. Materials and methods A culture-specific picture-based eight weeks cognitive training manual was developed based on extensive review and focused group discussions. It was standardized on 63 older participants (48 healthy controls (HC); 15 early Alzheimer’s disease cases). Results All the tasks were progressive in nature and were found effective in discriminating the cognitive performance of early Alzheimer’s disease and HC throughout the intervention period. Moreover, it also improved early Alzheimer’s disease performance on the memory (HC: 1st week/8th week = 21.6 ± 5.7/57.3 ± 19.0; early Alzheimer’s disease: 1st week/8th week = 48.5 ± 22.9/60.5 ± 21.8); attention (HC: 1st week/8th week = 90.2 ± 18.0/196.9 ± 28.0; early Alzheimer’s disease: 1st week/8th week = 216.6 ± 78.2/286.8 ± 87.0) and language (HC: 1st week/8th week = 29.8 ± 9.4/115.3 ± 31.1; early Alzheimer’s disease: 1st week/8th week = 211.8 ± 68.4/270.4 ± 104.9) domains, respectively, from the baseline level. Conclusion The current manual (CTI-AD) is one of the first promising non-pharmacological program developed nationally with a strong theoretical base to cater to the tertiary needs of the older adults with early Alzheimer’s disease.
Collapse
Affiliation(s)
- Swati Bajpai
- Department of Clinical Neuropsychology, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - R M Pandey
- Department of Bio-Statistics, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashima Nehra
- Department of Clinical Neuropsychology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
172
|
Muralidharan A, Josyula VR, Hariharapura RC. Exploring the potential of marine microbes in clinical management of Alzheimer's disease: A road map for bioprospecting and identifying promising isolates. Life Sci 2018; 208:149-160. [PMID: 30031811 DOI: 10.1016/j.lfs.2018.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Pervasiveness of Alzheimer's disease (AD) across the globe is on rise, devitalizing the essential brain functions of the afflicted individual. Multiple neurological pathways viz., cholinergic, amyloidogenic and tau protein pathways underlying the disease and interdependence make it more complex to develop effective treatment strategies. Existing drug treatments for Alzheimer's disease majorly belong to the class of cholinergic inhibitors which improve the behavioral symptoms. But there are no drugs that could arrest the disease progression. Inhibition of beta secretase enzyme could prevent the deposition of amyloid plaques in the neurons, thereby arresting the disease progression. Search for novel drugs to treat the underlying pathogenesis of the disease is pivotal in this day and age. The source of most active lead molecules discovered recently is from the nature. Marine ecosystem provides a plethora of pharmacologically lead molecules from various living organisms inhabiting the sea. Among all, marine microbes are the most under-explored and indispensable source of many bioactive metabolites. Studies have been reported on potent metabolites from marine microbes which could inhibit the key enzymes involved in the AD pathogenesis. The advancement in microbial bioprospecting and molecular biology techniques have eased the process of cultivation and identification of microbes, isolation of novel bioactive metabolites of clinical use. Exploring such marine natural resources for pharmacological lead molecules could give a breakthrough in the drug discovery domain for treating AD such debilitating diseases. In this review, a comprehensive account of bioprospecting methods and reports of marine microbial isolates are discussed.
Collapse
Affiliation(s)
- Anuraag Muralidharan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Udupi, Karnataka, India
| | - Venkata Rao Josyula
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Udupi, Karnataka, India.
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Udupi, Karnataka, India
| |
Collapse
|
173
|
Ülker M, Kenangil G. The Relation of Circulating Levels of Leptin with Cognition in Patients with Alzheimer's Disease. Noro Psikiyatr Ars 2018; 55:211-214. [PMID: 30224865 PMCID: PMC6138232 DOI: 10.5152/npa.2017.16978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/09/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION To investigate the relation of circulating levels of leptin with cognition in Alzheimer's disease (AD) patients. METHODS Thirty patients meeting the clinical diagnostic criteria for AD, and twenty-five healthy controls were enrolled into the study. At baseline, all patients underwent standing height, weight measurements, and waist circumference (in centimeters) using a standard scale. Body mass index (BMI) was then calculated as weight (in kilograms). A single 5-ml fasting blood sample was obtained from each patient. All subjects were evaluated by Turkish version of Mini Mental State Examination (MMSE), Clinical Dementia Rating (CDR) and Global Deterioration Scale (GDS). RESULTS The mean age of patients and controls were 72.33±10.11 and 67.20±8.95, respectively. There was not any significant difference between age of the patients and the controls (p=0.054). Both patient and control groups consisted of mostly women (60% and 56% respectively). The mean waist circumferences (WC) of patients and controls were 95.46±10.87 and 97.76±10.07, respectively and was not statistically different (p=0.424). The mean serum leptin levels in patients and controls were 5.49±4.06 ng/dL 5.71±4.45 ng/dL, respectively. Leptin levels were not statistically different between patients and controls (p=0.84). The mean MMSE scores of AD patients and controls were 17±6.54 and 27.32±2.15 respectively, and AD patients had significantly lower MMSE scores than the controls (p=0.000). The mean BMI of patients and controls were 25.72±3.98 and 27.92±3.08 respectively. The BMI of controls were higher than patients and there was statistically significant difference between two groups (p=0.029). In the patient group, there were no correlations between leptin levels and age (p=0.067), BMI (p=0.098), WC (p=0.113), MMSE (p=0.203), CDR (p=0.519) and GDS (p=0.587). Similarly in control group leptin levels were not correlated with BMI (p=0.718), WC (p=0.755) and MMSE (p=0.859). CONCLUSION In the present study, we could not find any relation between blood leptin levels and cognition in AD patients.
Collapse
Affiliation(s)
- Mustafa Ülker
- Erenköy Mental and Neurological Diseases Hospital, Neurology Clinic, İstanbul, Turkey
| | - Gülay Kenangil
- Erenköy Mental and Neurological Diseases Hospital, Neurology Clinic, İstanbul, Turkey
| |
Collapse
|
174
|
Suppression of MIF-induced neuronal apoptosis may underlie the therapeutic effects of effective components of Fufang Danshen in the treatment of Alzheimer's disease. Acta Pharmacol Sin 2018; 39:1421-1438. [PMID: 29770796 DOI: 10.1038/aps.2017.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/26/2017] [Indexed: 01/10/2023]
Abstract
Fufang Danshen (FFDS or Compound Danshen) consists of three Chinese herbs Danshen (Salviae miltiorrhizae radix et rhizome), Sanqi (Notoginseng radix et rhizome) and Tianranbingpian (Borneolum, or D-borneol), which has been show to significantly improve the function of the nervous system and brain metabolism. In this study we explored the possible mechanisms underlying the therapeutic effects of the combination of the effective components of FFDS (Tan IIA, NG-R1 and Borneol) in the treatment of Alzheimer's disease (AD) based on network pharmacology. We firstly constructed AD-related FFDS component protein interaction networks, and revealed that macrophage migration inhibitory factor (MIF) might regulate neuronal apoptosis through Bad in the progression of AD. Then we investigated the apoptosis-inducing effects of MIF and the impact of the effective components of FFDS in human neuroblastoma SH-SY5Y cells. We observed the characteristics of a "Pendular state" of MIF, where MIF (8 ng/mL) increased the ratio of p-Bad/Bad by activating Akt and the IKKα/β signaling pathway to assure cell survival, whereas MIF (50 ng/mL) up-regulated the expression of Bad to trigger apoptosis of SH-SY5Y cells. MIF displayed neurotoxicity similar to Aβ1-42, which was associated with the MIF-induced increased expression of Bad. Application of the FFDS composite solution significantly decreased the expression levels of Bad, suppressed MIF-induced apoptosis in SH-SY5Y cells. In a D-galactose- and AlCl3-induced AD mouse model, administration of the FFDS composite solution significantly improved the learning and memory, as well as neuronal morphology, and decreased the serum levels of INF-γ. Therefore, the FFDS composite solution exerts neuroprotective effects through down-regulating the level of Bad stimulated by MIF.
Collapse
|
175
|
Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, Wang Y, Ni J. Urine-Based Biomarkers for Alzheimer’s Disease Identified Through Coupling Computational and Experimental Methods. J Alzheimers Dis 2018; 65:421-431. [DOI: 10.3233/jad-180261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Yao
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyu Hong
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Yan Zhang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital, Changchun, China
| | - Wei Du
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
176
|
Cao P, Liu X, Liu H, Yang J, Zhao D, Huang M, Zaiane O. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 162:19-45. [PMID: 29903486 DOI: 10.1016/j.cmpb.2018.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Alzheimers disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from Magnetic Resonance Imaging (MRI) measures. Recently, the multi-task feature learning (MTFL) methods have been widely studied to predict cognitive outcomes and select the discriminative feature subset from MRI features by incorporating inherent correlations among multiple clinical cognitive measures. However, the existing MTFL assumes the correlation among all the tasks is uniform, and the task relatedness is modeled by encouraging a common subset of features with neglecting the inherent structure of tasks and MRI features. METHODS In this paper, we proposed a generalized fused group lasso (GFGL) regularization to model the underlying structures, involving (1) a graph structure within tasks and (2) a group structure among the image features. Then, we present a multi-task learning framework (called GFGL-MTFL), combining the ℓ2, 1-norm with the GFGL regularization, to model the flexible structures. RESULTS Through empirical evaluation and comparison with different baseline methods and the state-of-the-art MTL methods on data from Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we illustrate that the proposed GFGL-MTFL method outperforms other methods in terms of both Mean Squared Error (nMSE) and weighted correlation coefficient (wR). Improvements are statistically significant for most scores (tasks). CONCLUSIONS The experimental results with real and synthetic data demonstrate that incorporating the two prior structures by the generalized fused group lasso norm into the multi task feature learning can improve the prediction performance over several state-of-the-art competing methods, and the estimated correlation of the cognitive functions and the identification of cognition relevant imaging markers are clinically and biologically meaningful.
Collapse
Affiliation(s)
- Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China.
| | - Xiaoli Liu
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Hezi Liu
- The Third People's Hospital of Fushun, Fushun, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Dazhe Zhao
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Min Huang
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Osmar Zaiane
- Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
177
|
Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, Hirokawa K, Pawelec G, Bocti C, Lacombe G, Dupuis G, Frost EH. Can an Infection Hypothesis Explain the Beta Amyloid Hypothesis of Alzheimer's Disease? Front Aging Neurosci 2018; 10:224. [PMID: 30087609 PMCID: PMC6066504 DOI: 10.3389/fnagi.2018.00224] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia. The pathological hallmarks of the disease are extracellular senile plaques composed of beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles composed of pTau. These findings led to the "beta-amyloid hypothesis" that proposes that Aβ is the major cause of AD. Clinical trials targeting Aβ in the brain have mostly failed, whether they attempted to decrease Aβ production by BACE inhibitors or by antibodies. These failures suggest a need to find new hypotheses to explain AD pathogenesis and generate new targets for intervention to prevent and treat the disease. Many years ago, the "infection hypothesis" was proposed, but received little attention. However, the recent discovery that Aβ is an antimicrobial peptide (AMP) acting against bacteria, fungi, and viruses gives increased credence to an infection hypothesis in the etiology of AD. We and others have shown that microbial infection increases the synthesis of this AMP. Here, we propose that the production of Aβ as an AMP will be beneficial on first microbial challenge but will become progressively detrimental as the infection becomes chronic and reactivates from time to time. Furthermore, we propose that host measures to remove excess Aβ decrease over time due to microglial senescence and microbial biofilm formation. We propose that this biofilm aggregates with Aβ to form the plaques in the brain of AD patients. In this review, we will develop this connection between Infection - Aβ - AD and discuss future possible treatments based on this paradigm.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karine Bourgade
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelouahed Khalil
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Echarki Zerif
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Singapore Immunology Network, ASTAR, Biopolis, Singapore, Singapore
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Greater Sudbury, ON, Canada
| | - Christian Bocti
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Programme of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
178
|
Chen X, Wang C, Zhou S, Li X, Wu L. The Impact of EGFR Gene Polymorphisms on the Risk of Alzheimer's Disease in a Chinese Han Population: A Case-Controlled Study. Med Sci Monit 2018; 24:5035-5040. [PMID: 30026459 PMCID: PMC6067016 DOI: 10.12659/msm.907809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the association between polymorphisms of the epidermal growth factor receptor (EGFR) gene with the risk of Alzheimer's disease (AD) in a Chinese Han population. MATERIAL AND METHODS A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was used to genotype 139 patients with AD and 152 healthy control individuals. The Hardy-Weinberg equilibrium (HWE) was analyzed using the chi-squared (χ²) test, and genotype and allele frequencies were compared between the two population groups, using the χ² test. The odds ratios (ORs) and corresponding 95% confidence intervals (CI) were calculated to express the degree of risk of AD resulting from polymorphisms in the EGFR gene. Linkage disequilibrium among EGFR polymorphisms was analyzed using the Haploview bioinformatics software. RESULTS The CC genotype and C allele frequencies of rs730437 were significantly lower in patients with AD compared with the controls (P=0.037), indicating that rs730437 was associated with a reduced risk of AD (CC vs. AA: OR=0.446, 95% CI=0.207-0.960) (C vs. A: OR=0.702, 95% CI=0.502-0.980). The presence of the TT genotype of rs1468727 significantly reduced the risk of AD (P=0.003; OR=0.333, 95% CI=0.160-0.691), and T allele carriers of rs1468727 had a 0.605-fold increased risk of AD. Haplotype A-C-C was significantly correlated with an increased risk of AD (OR=1.922, 95% CI=1.130-3.269). CONCLUSIONS In a Han Chinese population, EGFR gene polymorphisms, rs730437 and rs1468727 and haplotype A-C-C were shown to be possible protective factors for the development of AD.
Collapse
Affiliation(s)
- Xiuhong Chen
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
- Inner Mongolia Autonomous Region Peoples’ Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Changhai Wang
- Inner Mongolia Autonomous Region Peoples’ Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Shuangbao Zhou
- Hohhot Mongolian and Traditional Chinese Medicine Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Xueyong Li
- Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Lan Wu
- Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
179
|
Subramaniam NS, Bawden CS, Waldvogel H, Faull RML, Howarth GS, Snell RG. Emergence of breath testing as a new non-invasive diagnostic modality for neurodegenerative diseases. Brain Res 2018; 1691:75-86. [PMID: 29684335 DOI: 10.1016/j.brainres.2018.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs) are incapacitating disorders that result in progressive motor and cognitive impairment. These diseases include Alzheimer's disease, the most common cause of dementia, frontotemporal dementia, amyotrophic lateral sclerosis, dementia with Lewy bodies, Parkinson's, Huntington's, Friedreich's ataxia, and prion disease. Dementia causing NDDs impose a high social and economic burden on communities around the world. Rapid growth in knowledge regarding the pathogenic mechanisms and disease-associated biomarkers of these diseases in the past few decades have accelerated the development of new diagnostic methods and therapeutic opportunities. Continuous effort is being applied to the development of more advanced, easy-to-apply and reliable methods of diagnosis, that are able to identify disease manifestation at its earliest stages and before clinical symptoms become apparent. Development of these diagnostic tools are essential in aiding effective disease management through accurate monitoring of disease progression, timely application of therapeutics and evaluation of treatment efficacy. Recently, several studies have identified novel biomarkers based on compounds in exhaled breath associated with specific NDDs. The use of breath testing, as a means of monitoring neurodegenerative disease onset and progression, has the potential to have a significant impact on augmenting the diagnosis of NDDs as the approach is non-invasive, relatively cost effective and straight forward to implement. This review highlights key features of current diagnostic methods utilised to identify NDDs, and describes the potential application and limitations associated with the use of breath analysis for disease diagnosis and progression monitoring.
Collapse
Affiliation(s)
- N Siva Subramaniam
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia.
| | - C S Bawden
- Livestock and Farming Systems, South Australian Research and Development Institute, Roseworthy, South Australia 5371, Australia.
| | - H Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, The University of Auckland, Auckland 1142, New Zealand.
| | - R M L Faull
- Centre for Brain Research and School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.
| | - G S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia.
| | - R G Snell
- Centre for Brain Research and Department of Anatomy and Medical Imaging, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
180
|
Ge M, Zhang Y, Hao Q, Zhao Y, Dong B. Effects of mesenchymal stem cells transplantation on cognitive deficits in animal models of Alzheimer's disease: A systematic review and meta-analysis. Brain Behav 2018; 8:e00982. [PMID: 29877067 PMCID: PMC6043701 DOI: 10.1002/brb3.982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a globally prevalent neurodegenerative disease, clinically characterized by progressive memory loss and gradual impairment of cognitive functions. Mesenchymal stem cells (MSCs) transplantation has been considered a possible therapeutic method for Alzheimer's disease (AD). However, no quantitative data synthesis of MSC therapy for AD exists. We conducted a systematic review and meta-analysis to study the effects of MSCs on cognitive deficits in animal models of AD. METHODS We identified eligible studies published from January 1980 to January 2017 by searching four electronic databases (PubMed, MEDLINE, EMBASE, CNKI). The endpoint was the effects of MSCs on cognitive performance evaluated by the Morris water maze (MWM) test including escape latency, and/or number of platform crossing, and/or time in the target quadrant. RESULTS Nine preclinical studies incorporating 225 animals with AD were included for the meta-analysis. The studies indicated that MSC-based treatment significantly improved the learning function through measurements of the escape latency (SMD = -0.99, 95% CI = -1.33 to -0.64, p < .00001). Additionally, we observed that transplantation of MSCs significantly increased the number of platform crossing in six experiments (SMD = 0.78, 95% CI = 0.43 to 1.13, p < .0001). What's more, the times in the target quadrant were increased in five studies indicated that transplantation of MSCs could ameliorate the cognitive impairments (SMD = 1.06, 95% CI = 0.46 to 1.67, p = .0005). CONCLUSIONS This study showed that MSC transplantation could reduce cognitive deficits in AD models. These findings support the further studies to translate MSCs in the treatment of AD in humans.
Collapse
Affiliation(s)
- Meiling Ge
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Sichuan, China
| | - Yunxia Zhang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiukui Hao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunli Zhao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
181
|
Lejri I, Grimm A, Eckert A. Mitochondria, Estrogen and Female Brain Aging. Front Aging Neurosci 2018; 10:124. [PMID: 29755342 PMCID: PMC5934418 DOI: 10.3389/fnagi.2018.00124] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play an essential role in the generation of steroid hormones including the female sex hormones. These hormones are, in turn, able to modulate mitochondrial activities. Mitochondria possess crucial roles in cell maintenance, survival and well-being, because they are the main source of energy as well as of reactive oxygen species (ROS) within the cell. The impairment of these important organelles is one of the central features of aging. In women’s health, estrogen plays an important role during adulthood not only in the estrous cycle, but also in the brain via neuroprotective, neurotrophic and antioxidant modes of action. The hypestrogenic state in the peri- as well as in the prolonged postmenopause might increase the vulnerability of elderly women to brain degeneration and age-related pathologies. However, the underlying mechanisms that affect these processes are not well elucidated. Understanding the relationship between estrogen and mitochondria might therefore provide better insights into the female aging process. Thus, in this review, we first describe mitochondrial dysfunction in the aging brain. Second, we discuss the estrogen-dependent actions on the mitochondrial activity, including recent evidence of the estrogen—brain-derived neurotrophic factor and estrogen—sirtuin 3 (SIRT3) pathways, as well as their potential implications during female aging.
Collapse
Affiliation(s)
- Imane Lejri
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| |
Collapse
|
182
|
Dai MH, Zheng H, Zeng LD, Zhang Y. The genes associated with early-onset Alzheimer's disease. Oncotarget 2018; 9:15132-15143. [PMID: 29599933 PMCID: PMC5871104 DOI: 10.18632/oncotarget.23738] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/14/2017] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia, which is characterized by the deposition of dense plaques of amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. The two main types of AD can be classified as early-onset AD (EOAD, onset < 65 years) and late-onset AD (LOAD, onset ≥ 65 years). Evidence from family and twin studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The first milestone with linkage analysis revealed the mutations in APP, PSEN1, and PSEN2 genes that cause EOAD. But pathogenic mutations in these three genes can only explain a small fraction of EOAD families. The additional disease-causing genes have not yet been identified. This review provides an overview of the genetic basis of EOAD and the relationship between the functions of these risk genes and the neuropathologic features of AD. A better understanding of genetic mechanisms underlying EOAD pathogenesis and the potentially molecular mechanisms of neurodegeneration will lead to the development of effective diagnosis and treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Meng-Hui Dai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Dan Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
183
|
Benamar H, Marouf A, Bennaceur M. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/10496475.2018.1446204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Houari Benamar
- Department of Biology, Faculty of Natural Sciences and Life, University of Mostaganem, Mostaganem, Algeria
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran 1, Oran, Algeria
| | - Abderrazak Marouf
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran 1, Oran, Algeria
- Department of Natural Sciences and Life, Institute of Science and Technology, University Center of Naama, Naama, Algeria
| | - Malika Bennaceur
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran 1, Oran, Algeria
- Laboratory of Research in Arid Areas, Department of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| |
Collapse
|
184
|
Anestesia e doença de Alzheimer – Percepções atuais. Braz J Anesthesiol 2018; 68:174-182. [DOI: 10.1016/j.bjan.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 04/17/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022] Open
|
185
|
Marques AFVDSF, Lapa TASC. Anesthesia and Alzheimer disease – Current perceptions. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2018. [PMID: 29137871 PMCID: PMC9391716 DOI: 10.1016/j.bjane.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background and objectives It has been speculated that the use of anesthetic agents may be a risk factor for the development of Alzheimer disease. The objective of this review is to describe and discuss pre-clinical and clinical data related to anesthesia and this disease. Content Alzheimer disease affects about 5% of the population over 65 years old, with age being the main risk factor and being associated with a high morbidity. Current evidence questions a possible association between anesthesia, surgery, and long-term cognitive effects, including Alzheimer disease. Although data from some animal studies suggest an association between anesthesia and neurotoxicity, this link remains inconclusive in humans. We performed a review of the literature in which we selected scientific articles in the PubMed database, published between 2005 and 2016 (one article from 1998 due to its historical relevance), in English, which address the possible relationship between anesthesia and Alzheimer disease. 49 articles were selected. Conclusion The possible relationship between anesthetic agents, cognitive dysfunction, and Alzheimer disease remains to be clarified. Prospective cohort studies or randomized clinical trials for a better understanding of this association will be required.
Collapse
|
186
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
187
|
Benefit of Oleuropein Aglycone for Alzheimer's Disease by Promoting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5010741. [PMID: 29675133 PMCID: PMC5838478 DOI: 10.1155/2018/5010741] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease is a proteinopathy characterized by accumulation of hyperphosphorylated Tau and β-amyloid. Autophagy is a physiological process by which aggregated proteins and damaged organelles are eliminated through lysosomal digestion. Autophagy deficiency has been demonstrated in Alzheimer's patients impairing effective elimination of aggregates and damaged mitochondria, leading to their accumulation, increasing their toxicity and oxidative stress. In the present study, we demonstrated by microarray analysis the downregulation of fundamental autophagy and mitophagy pathways in Alzheimer's patients. The benefits of the Mediterranean diet on Alzheimer's disease and cognitive impairment are well known, attributing this effect to several polyphenols, such as oleuropein aglycone (OLE), present in extra virgin olive oil. OLE is able to induce autophagy, achieving a decrease of aggregated proteins and a reduction of cognitive impairment in vivo. This effect is caused by the modulation of several pathways including the AMPK/mTOR axis and the activation of autophagy gene expression mediated by sirtuins and histone acetylation or EB transcription factor. We propose that supplementation of diet with extra virgin olive oil might have potential benefits for Alzheimer's patients by the induction of autophagy by OLE.
Collapse
|
188
|
Che H, Zhou M, Zhang T, Zhang L, Ding L, Yanagita T, Xu J, Xue C, Wang Y. EPA enriched ethanolamine plasmalogens significantly improve cognition of Alzheimer’s disease mouse model by suppressing β-amyloid generation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
189
|
Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front Mol Neurosci 2018; 11:2. [PMID: 29403354 PMCID: PMC5780436 DOI: 10.3389/fnmol.2018.00002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders characterized by progressive deterioration of brain structure and function. Selective neuronal populations are affected leading to symptoms which are prominently motor in amyotrophic lateral sclerosis (ALS) or Huntington’s disease (HD), or cognitive in Alzheimer’s disease (AD) and fronto-temporal dementia (FTD). Besides the common existence of neuronal loss, NDDs are also associated with metabolic changes such as weight gain, weight loss, loss of fat mass, as well as with altered feeding behavior. Importantly, preclinical research as well as clinical studies have demonstrated that altered energy homeostasis influences disease progression in ALS, AD and HD, suggesting that identification of the pathways leading to perturbed energy balance might provide valuable therapeutic targets Signals from both the periphery and central inputs are integrated in the hypothalamus, a major hub for the control of energy balance. Recent research identified major hypothalamic changes in multiple NDDs. Here, we review these hypothalamic alterations and seek to identify commonalities and differences in hypothalamic involvement between the different NDDs. These hypothalamic defects could be key in the development of perturbations in energy homeostasis in NDDs and further understanding of the underlying mechanisms might open up new avenues to not only treat weight loss but also to ameliorate overall neurological symptoms.
Collapse
Affiliation(s)
- Pauline Vercruysse
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France.,Department of Neurology, Ulm University, Ulm, Germany
| | - Didier Vieau
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - David Blum
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit (TNU), Lund University, Lund, Sweden
| | - Luc Dupuis
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
190
|
Bhatta S, Blair JA, Casadesus G. Luteinizing Hormone Involvement in Aging Female Cognition: Not All Is Estrogen Loss. Front Endocrinol (Lausanne) 2018; 9:544. [PMID: 30319538 PMCID: PMC6165885 DOI: 10.3389/fendo.2018.00544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Pervasive age-related dysfunction in hypothalamic-pituitary-gonadal (HPG) axis is associated with cognitive impairments in aging as well as pathogenesis of age-related neurodegenerative diseases such as the Alzheimer's disease (AD). As a major regulator of the HPG axis, the steroid hormone estrogen has been widely studied for its role in regulation of memory. Although estrogen modulates both cognition as well as cognition associated morphological components in a healthy state, the benefits of estrogen replacement therapy on cognition and disease seem to diminish with advancing age. Emerging data suggests an important role for luteinizing hormone (LH) in CNS function, which is another component of the HPG axis that becomes dysregulated during aging, particularly in menopause. The goal of this review is to highlight the current existing literature on LH and provide new insights on possible mechanisms of its action.
Collapse
Affiliation(s)
- Sabina Bhatta
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jeffrey A. Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- *Correspondence: Gemma Casadesus
| |
Collapse
|
191
|
Che H, Li Q, Zhang T, Ding L, Zhang L, Shi H, Yanagita T, Xue C, Chang Y, Wang Y. A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Aβ42 induced cognitive deficiency in a rat model of Alzheimer's disease. Food Funct 2018; 9:3008-3017. [DOI: 10.1039/c8fo00643a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The possible molecular mechanism of EPA-pPE and EPA-PE on AD.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qian Li
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Tiantian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Lin Ding
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Lingyu Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Haohao Shi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Teruyoshi Yanagita
- Department of Health and Nutrition Science
- Nishikyushu University
- Kanzaki
- Japan
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
- Qingdao National Laboratory for Marine Science and Technology
| | - Yaoguang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
192
|
Ce O, Rs P, Ab W, S D, Cj W, Qm M, D L. Potential Link Between Proprotein Convertase Subtilisin/Kexin Type 9 and Alzheimer's Disease. ACTA ACUST UNITED AC 2018; 1. [PMID: 32352077 DOI: 10.31531/2581-4745.1000106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease [AD] is not only the most common neurodegenerative disease but is also currently incurable. Proprotein convertase subtilisin/kexin-9 [PCSK9] is an indirect regulator of plasma low density lipoprotein [LDL] levels controlling LDL receptor expression at the plasma membrane. PCSK9 also appears to regulate the development of glucose intolerance, insulin resistance, abdominal obesity, inflammation, and hypertension, conditions that have been identified as risk factors for AD. PCSK9 levels also depend on age, sex, and ethnic background, factors associated with AD. Herein, we will review indirect evidence that suggests a link between PCSK9 levels and AD.
Collapse
Affiliation(s)
- Oldham Ce
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Powell Rs
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Williams Ab
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Dixon S
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Wooten Cj
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Melendez Qm
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Lopez D
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise [BRITE], College of Arts and Sciences, North Carolina Central University, Durham, USA
| |
Collapse
|
193
|
|
194
|
Emerging Roles of Sirtuin 6 in Alzheimer's Disease. J Mol Neurosci 2017; 64:157-161. [PMID: 29260452 DOI: 10.1007/s12031-017-1005-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is imposing an increasing burden on society. Currently, AD is the leading cause of senile dementia worldwide. Despite the long existence of AD, there is lack of therapies for AD, suggesting that new and effective treatment strategy must be explored. At present, sirtuin pathway has attracted attention from the researchers due to its promising results in laboratory models of aging. In addition, our understanding in the roles of sirtuin 6 in AD has expanded. It has been identified to be involved in telomere maintenance, DNA repair, genome integrity, energy metabolism, and inflammation, which ultimately regulate life span. Recent findings also demonstrate that sirtuin 6 is lacking in AD patients, proposing that it can be a new potential therapeutic target in AD. Therefore, exploring on how sirtuin 6 is related in AD manifestation may accelerate the research of AD further and benefits future AD patients. Keeping that in mind, this review aims to highlight the possible roles of sirtuin 6 in AD manifestation.
Collapse
|
195
|
Cheng WH, Stukas S, Martens KM, Namjoshi DR, Button EB, Wilkinson A, Bashir A, Robert J, Cripton PA, Wellington CL. Age at injury and genotype modify acute inflammatory and neurofilament-light responses to mild CHIMERA traumatic brain injury in wild-type and APP/PS1 mice. Exp Neurol 2017; 301:26-38. [PMID: 29269117 DOI: 10.1016/j.expneurol.2017.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/11/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022]
Abstract
Peak incidence of traumatic brain injury (TBI) occurs in both young and old individuals, and older age at injury is associated with worse outcome and poorer recovery. Moderate-severe TBI is a reported risk factor for dementia, including Alzheimer's disease (AD), but whether mild TBI (mTBI) alters AD pathogenesis is not clear. To delineate how age at injury and predisposition to amyloid formation affect the acute response to mTBI, we used the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model of TBI to induce two mild injuries in wild-type (WT) and APP/PS1 mice at either 6 or 13months of age and assessed behavioural, histological and biochemical changes up to 14days post-injury. Age at injury did not alter acute behavioural responses to mTBI, including measures of neurological status, motor performance, spatial memory, fear, or anxiety, in either strain. Young APP/PS1 mice showed a subtle and transient increase in diffuse Aβ deposits after injury, whereas old APP/PS1 mice showed decreased amyloid deposits, without significant alterations in total soluble or insoluble Aβ levels at either age. Age at injury and genotype showed complex responses with respect to microglial and cytokine outcomes, where post-injury neuroinflammation is increased in old WT mice but attenuated in old APP/PS1 mice. Intriguingly, silver staining confirmed axonal damage in both strains and ages, yet only young WT and APP/PS1 mice showed neurofilament-positive axonal swellings after mTBI, as this response was almost entirely attenuated in old mice. Plasma neurofilament-light levels were significantly elevated after injury only in young APP/PS1 mice. This study suggests that mild TBI has minimal effects on Aβ metabolism, but that age and genotype can each modify acute outcomes related to white matter injury.
Collapse
Affiliation(s)
- Wai Hang Cheng
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kris M Martens
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dhananjay R Namjoshi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emily B Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Cripton
- Department of Mechanical Engineering, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
196
|
Sausage tree ( Kigelia africana ) flavonoid extract is neuroprotective in AlCl 3 -induced experimental Alzheimer’s disease. PATHOPHYSIOLOGY 2017; 24:251-259. [DOI: 10.1016/j.pathophys.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
|
197
|
Koukouli F, Rooy M, Maskos U. Early and progressive deficit of neuronal activity patterns in a model of local amyloid pathology in mouse prefrontal cortex. Aging (Albany NY) 2017; 8:3430-3449. [PMID: 27999185 PMCID: PMC5270678 DOI: 10.18632/aging.101136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia. The condition predominantly affects the cerebral cortex and hippocampus and is characterized by the spread of amyloid plaques and neurofibrillary tangles (NFTs). But soluble amyloid-β (Aβ) oligomers have also been identified to accumulate in the brains of AD patients and correlate with cognitive dysfunction more than the extent of plaque deposition. Here, we developed an adeno-associated viral vector expressing the human mutated amyloid precursor protein (AAV-hAPP). Intracranial injection of the AAV into the prefrontal cortex (PFC) allowed the induction of AD-like deficits in adult mice, thereby modelling human pathology. AAV-hAPP expression caused accumulation of Aβ oligomers, microglial activation, astrocytosis and the gradual formation of amyloid plaques and NFTs. In vivo two-photon imaging revealed an increase in neuronal activity, a dysfunction characteristic of the pathology, already during the accumulation of soluble oligomers. Importantly, we found that Aβ disrupts the synchronous spontaneous activity of neurons in PFC that, as in humans, is characterized by ultraslow fluctuation patterns. Our work allowed us to track brain activity changes during disease progression and provides new insight into the early deficits of synchronous ongoing brain activity, the “default network”, in the presence of Aβ peptide.
Collapse
Affiliation(s)
- Fani Koukouli
- Institut Pasteur, Département de Neuroscience, Unité Neurobiologie intégrative des systèmes cholinergiques, 75724 Paris Cedex 15, ; CNRS, UMR 3571, Paris, France
| | - Marie Rooy
- Group for Neural Theory, Laboratoire de Neurosciences Cognitives, INSERM Unité 969, Département d'Études Cognitives, École Normale Supérieure, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Département de Neuroscience, Unité Neurobiologie intégrative des systèmes cholinergiques, 75724 Paris Cedex 15, ; CNRS, UMR 3571, Paris, France
| |
Collapse
|
198
|
Cai H, Wang Y, He J, Cai T, Wu J, Fang J, Zhang R, Guo Z, Guan L, Zhan Q, Lin L, Xiao Y, Pan H, Wang Q. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice. Oncotarget 2017; 8:92621-92634. [PMID: 29190943 PMCID: PMC5696209 DOI: 10.18632/oncotarget.21515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological degenerative disease. The main clinical manifestations of AD include progressive cognitive impairment and alteration of personality. Senile plaques, neuroinflammation, and destruction of synapse structure stability are the main pathological features of AD. Bajijiasu(BJJS) is extracted from Morinda Officinalis, a Chinese herb. In this study, we explored the effect of BJJS on AD from many aspects in APPswe/PSEN1ΔE9 (APP/PS1) double transgenic mice. The Morris water maze and novel object recognition tests results showed that BJJS could significantly improve the learning and memory abilities in APP/PS1 mice. BJJS treatment increased the level of insulin degradation enzyme (IDE) and neprilysin (NEP) and decreased the level of β-site app cleaving enzyme 1(BACE1) in the brain of APP/PS1 mice. BJJS-treated APP/PS1 mice appeared to have reductions of Aβ deposition and senile plaques, and showed higher levels of neurotrophic factors in the brain. We also found that BJJS had an inhibitory function on neuroinflammation in APP/PS1 mice. In addition, the synapse structure relevant proteins were elevated in the brain of BJJS-treated APP/PS1 mice. The present results indicated that BJJS could attenuate cognitive impairment via ameliorating the AD-related pathological alterations in APP/PS1 mice. These findings suggest that BJJS may be a potential therapeutic strategy in Alzheimer's disease.
Collapse
Affiliation(s)
- Haobin Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yijie Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiayang He
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tiantian Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rong Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhouke Guo
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Li Guan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qinkai Zhan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Li Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Xiao
- Guangzhou Medical University, Guangzhou 510182, China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
199
|
Tariq S, Barber PA. Dementia risk and prevention by targeting modifiable vascular risk factors. J Neurochem 2017; 144:565-581. [PMID: 28734089 DOI: 10.1111/jnc.14132] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/23/2017] [Accepted: 07/15/2017] [Indexed: 01/04/2023]
Abstract
The incidence of dementia is expected to double in the next 20 years and will contribute to heavy social and economic burden. Dementia is caused by neuronal loss that leads to brain atrophy years before symptoms manifest. Currently, no cure exists and extensive efforts are being made to mitigate cognitive impairment in late life in order to reduce the burden on patients, caregivers, and society. The most common type of dementia, Alzheimer's disease (AD), and vascular dementia (VaD) often co-exists in the brain and shares common, modifiable risk factors, which are targeted in numerous secondary prevention trials. There is a growing need for non-pharmacological interventions and infrastructural support from governments to encourage psychosocial and behavioral interventions. Secondary prevention trials need to be redesigned based on the risk profile of individual subjects, which require the use of validated and standardized clinical, biological, and neuroimaging biomarkers. Multi-domain approaches have been proposed in high-risk populations that target optimal treatment; clinical trials need to recruit individuals at the highest risk of dementia before symptoms develop, thereby identifying an enriched disease group to test preventative and disease modifying strategies. The underlying aim should be to reduce microscopic brain tissue loss by modifying vascular and lifestyle risk factors over a relatively short period of time, thus optimizing the opportunity for preventing dementia in the future. Collaboration between international research groups is of key importance to the optimal use and allocation of existing resources, and the development of new techniques in preventing dementia. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Sana Tariq
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada.,Hotchkiss Brain Institute, Foothills Medical Center, Room 1A10 Health Research Innovation Center, Calgary, AB, Canada
| | - Philip A Barber
- Hotchkiss Brain Institute, Foothills Medical Center, Room 1A10 Health Research Innovation Center, Calgary, AB, Canada.,Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
200
|
Ozaki Y, Yoshino Y, Yamazaki K, Sao T, Mori Y, Ochi S, Yoshida T, Mori T, Iga JI, Ueno SI. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer's disease. J Psychiatr Res 2017; 92:74-80. [PMID: 28412600 DOI: 10.1016/j.jpsychires.2017.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/23/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Recent genome-wide association studies revealed that Triggering receptor expressed on myeloid cells 2 (TREM2) was associated with Alzheimer's disease (AD) and other neurodegenerative diseases. We previously reported that TREM2 mRNA is highly expressed in leukocytes of AD patients compared to those in healthy controls. However, the mechanism of TREM2 expression change is still not known. In this study, we examined the involvement of the DNA methylation status of TREM2 in its high gene expression. MATERIALS AND METHODS Fifty AD subjects and age- and sex-matched control subjects were recruited (25 males, 25 females; 79.9 ± 5.27 and 79.4 ± 3.92 years old, respectively). TREM2 mRNA expression and the percentage of DNA methylation at four CpG sites in intron 1 of TREM2 were studied using their peripheral leukocytes. RESULTS We confirmed that TREM2 mRNA expression in leukocytes was significantly higher in AD patients than in controls (p = 0.007). The percentage methylation at three CpG sites in TREM2 intron 1 was significantly lower in AD subjects than in control: CpG1, 9.4 ± 3.2 vs 11.9 ± 4.0 (p = 0.001); CpG2, 15.4 ± 4.9 vs 19.1 ± 4.8 (p = 0.001); CpG3, 20.8 ± 5.5 vs 25.5 ± 5.4 (p < 0.001); and the average percentage methylation of all CpG sites: 13.5 ± 3.7 vs 16.1 ± 3.8 (p = 0.002), respectively. In addition, there were significant negative correlations between TREM2 mRNA expression and the percentage DNA methylation of each of CpG sites (CpG1, r = -0.416, p < 0.001; CpG2, r = -0.510, p < 0.001; CpG3, r = -0.504, p < 0.001; CpG4, r = -0.356, p < 0.001). CONCLUSIONS Lower DNA methylation at TREM2 intron 1 caused higher TREM2 mRNA expression in the leukocytes of AD subjects versus controls and may be a biomarker for AD.
Collapse
Affiliation(s)
- Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tomoko Sao
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yoko Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Taku Yoshida
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|