151
|
Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res 2008; 1239:49-55. [PMID: 18804456 DOI: 10.1016/j.brainres.2008.08.088] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 12/23/2022]
Abstract
Although Schwann cell (SC) transplantation can enhance peripheral and central nerve repair experimentally, it is difficult to generate sufficient SC quickly for clinical application. So alternative cell systems for SC are desired. SC-like cells induced from adipose-derived stem cells (ADSC) may be one of the ideal alternative cell systems for SC. However, myelin-forming ability, which is the most important characteristics and function of SC, has not been investigated in SC-like cells from ADSC up to now. In this experiment, ADSC were harvested from rat inguinal fat pad. Rat ADSC were fibroblast-like in shape, almost all the cells expressed mesodermal marker fibronectin, and only few cells expressed neural stem cell marker nestin. A mixture of glial growth factors (Heregulin, bFGF, PDGF and forskolin) could induce rat ADSC into SC-like cells. SC-like cells were spindle-like in shape and expressed glial markers GFAP and S100, similar to genuine SC. When intracellular cAMP was increased, SC-like cells could express myelin protein p0. More importantly, when co-cultured with rat pheochromocytoma cell line (PC12 cells), SC-like cells could induce the differentiation of PC12 cells rapidly and form myelin structures with PC12 cells in vitro. Our data further demonstrated that SC-like cells from ADSC were able to form myelins and these cells may benefit the treatment of peripheral and central nerve injuries.
Collapse
|
152
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
153
|
Xia Z, Locklin RM, Triffitt JT. Fates and osteogenic differentiation potential of human mesenchymal stem cells in immunocompromised mice. Eur J Cell Biol 2008; 87:353-64. [DOI: 10.1016/j.ejcb.2008.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 01/22/2023] Open
|
154
|
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are multipotent adult stem cells of mesodermal origin localized within the bone marrow compartment. MSC possess multilineage property making them useful for a number of potential therapeutic applications. MSC can be isolated from the bone marrow, expanded in culture and genetically modified to serve as cell carriers for local or systemic therapy. Despite their ability to differentiate into osteoblasts, chondrocytes, adipocytes, myocytes and neuronal cells under appropriate stimuli, distinct molecular signals that guide migration of MSC to specific targets largely remain unknown. The pluripotent nature of MSC makes them ideal resources for regenerative medicine, graft-versus-host disease and autoimmune diseases. Despite their therapeutic potential in a variety of diseases, certain issues need to be critically addressed both in in vitro expansion of these cells without losing their stem cell properties, and the long-term fate of the transplanted MSC in vivo following ex vivo modifications. Finally, understanding of complex, multistep and multifactorial differentiation pathways from pluripotent stem cells to functional tissues will allow us to manipulate MSC for the formation of competent composite tissues in situ. The present article will provide comprehensive account of the characteristics of MSC, their isolation and culturing, multilineage properties and potential therapeutic applications.
Collapse
|
155
|
Abstract
Myelination is critical for the normal functioning of the vertebrate nervous system. In the CNS, myelin is produced by oligodendrocytes, and the loss of oligodendrocytes and myelin results in severe functional impairment. Although spontaneous remyelination occurs in chronic demyelinating diseases such as multiple sclerosis, the repair process eventually fails, often resulting in long-term disability. Two distinct general approaches can be considered to promote myelin repair. In one the target is stimulation of the endogenous myelin repair process through delivery of growth factors, and in the second the target is augmentation of the repair process through the delivery of exogenous cells with myelination potential. In both cases, effective treatment of diseases such as multiple sclerosis requires modulation of the immune system, since demyelination is associated with specific immunological activation. Recent studies have shown that some populations of stem cells, including mesenchymal stem cells, have the capacity of promoting endogenous myelin repair and modulating the immune response, prompting an assessment of their use as therapy in demyelinating diseases such as MS. Other types of demyelinating disorders, such as the leukodystrophies, may require multiple repair strategies including both replacement of dysfunctional cells and delivery or supplementation of growth factors, immune modulators or metabolic enzymes. Here we discuss the use of stem cells for the treatment of demyelinating diseases. While the current number of stem cell-based clinical trials for demyelinating diseases is limited, this is likely to increase significantly in the next few years, and a clear understanding of the applicability, limitations and underlying mechanisms mediating stem cell repair is critical.
Collapse
Affiliation(s)
- Robert H Miller
- Center for Translational Neuroscience, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
156
|
Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007; 207:267-74. [PMID: 17761164 DOI: 10.1016/j.expneurol.2007.06.029] [Citation(s) in RCA: 481] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 06/11/2007] [Accepted: 06/29/2007] [Indexed: 12/13/2022]
Abstract
Experimentally, peripheral nerve repair can be enhanced by Schwann cell transplantation but the clinical application is limited by donor site morbidity and the inability to generate a sufficient number of cells quickly. We have investigated whether adult stem cells, isolated from adipose tissue, can be differentiated into functional Schwann cells. Rat visceral fat was enzymatically digested to yield rapidly proliferating fibroblast-like cells, a proportion of which expressed the mesenchymal stem cell marker, stro-1, and nestin, a neural progenitor protein. Cells treated with a mixture of glial growth factors (GGF-2, bFGF, PDGF and forskolin) adopted a spindle-like morphology similar to Schwann cells. Immunocytochemical staining and western blotting indicated that the treated cells expressed the glial markers, GFAP, S100 and p75, indicative of differentiation. When co-cultured with NG108-15 motor neuron-like cells, the differentiated stem cells enhanced the number of NG108-15 cells expressing neurites, the number of neurites per cell and the mean length of the longest neurite extended. Schwann cells evoked a similar response whilst undifferentiated stem cells had no effect. These results indicate adipose tissue contains a pool of regenerative stem cells which can be differentiated to a Schwann cell phenotype and may be of benefit for treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Paul J Kingham
- Blond McIndoe Research Laboratories, The University of Manchester, Room 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
157
|
Zujovic V, Bachelin C, Baron-Van Evercooren A. Remyelination of the central nervous system: a valuable contribution from the periphery. Neuroscientist 2007; 13:383-91. [PMID: 17644768 DOI: 10.1177/10738584070130041001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The loss of myelin, a major element involved in the saltatory conduction of the electrical impulse of the nervous system, is a major target of current research. Serious long-term disabilities are observed in patients with demyelinating disease of the central nervous system, such as multiple sclerosis. New therapeutic strategies aimed at overcoming myelin damage and axonal loss focus on the repair potential of myelin-forming cells. This review examines the use of peripheral myelin-forming cells, the Schwann cells, to promote myelin repair.
Collapse
Affiliation(s)
- Violetta Zujovic
- Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, and AP-HP Hôpital Pitié-Salpêtrière, Fédération de Neurologie, Paris, France
| | | | | |
Collapse
|
158
|
Schrepfer S, Deuse T, Lange C, Katzenberg R, Reichenspurner H, Robbins RC, Pelletier MP. Simplified protocol to isolate, purify, and culture expand mesenchymal stem cells. Stem Cells Dev 2007; 16:105-7. [PMID: 17348808 DOI: 10.1089/scd.2006.0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used for experimental regenerative strategies. Due to their differentiation capacity into mesenchymal lineages, they are a potential cellular source for tissue regeneration. Because there is no specific antigen that can be used to define MSCs directly, there is no consensus about how to isolate them. Here we describe a simple protocol to isolate, purify, and culture expand murine bone marrow MSCs using magnetic cell sorting and plastic adherence. We further show that cytokine supplementation enhances MSC proliferation without jeopardizing their pluripotency.
Collapse
Affiliation(s)
- Sonja Schrepfer
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305-5407, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Marchesi C, Pluderi M, Colleoni F, Belicchi M, Meregalli M, Farini A, Parolini D, Draghi L, Fruguglietti ME, Gavina M, Porretti L, Cattaneo A, Battistelli M, Prelle A, Moggio M, Borsa S, Bello L, Spagnoli D, Gaini SM, Tanzi MC, Bresolin N, Grimoldi N, Torrente Y. Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia 2007; 55:425-38. [PMID: 17203471 DOI: 10.1002/glia.20470] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regeneration in the peripheral nervous system is often incomplete and the treatment of severe lesions with nerve tissue loss is primarily aimed at recreating nerve continuity. Guide tubes of various types, filled with Schwann cells, stem cells, or nerve growth factors are attractive as an alternative therapy to nerve grafts. In this study, we evaluated whether skin-derived stem cells (SDSCs) can improve peripheral nerve regeneration after transplantation into nerve guides. We compared peripheral nerve regeneration in adult rats with sciatic nerve gaps of 16 mm after autologous transplantation of GFP-labeled SDSCs into two different types of guides: a synthetic guide, obtained by dip coating with a L-lactide and trimethylene carbonate (PLA-TMC) copolymer and a collagen-based guide. The sciatic function index and the recovery rates of the compound muscle action potential were significantly higher in the animals that received SDSCs transplantation, in particular, into the collagen guide, compared to the control guides filled only with PBS. For these guides the morphological and immunohistochemical analysis demonstrated an increased number of myelinated axons expressing S100 and Neurofilament 70, suggesting the presence of regenerating nerve fibers along the gap. GFP positive cells were found around regenerating nerve fibers and few of them were positive for the expression of glial markers as S-100 and glial fibrillary acidic protein. RT-PCR analysis confirmed the expression of S100 and myelin basic protein in the animals treated with the collagen guide filled with SDSCs. These data support the hypothesis that SDSCs could represent a tool for future cell therapy applications in peripheral nerve regeneration.
Collapse
Affiliation(s)
- C Marchesi
- Fondazione IRCCS Ospedale Maggiore Policlinico-Mangiagalli e Regina Elena of Milan, Stem Cell Laboratory, Department of Neurological Sciences, Centro Dino Ferrari, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Krampera M, Marconi S, Pasini A, Galiè M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A, Bonetti B. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 2007; 40:382-90. [PMID: 17049329 DOI: 10.1016/j.bone.2006.09.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/23/2006] [Accepted: 09/07/2006] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) from bone marrow (BM) and sub-cutaneous fat are known to differentiate into neural cells under appropriate stimuli. We describe here the neural-like differentiation of human MSCs obtained from spleen and thymus, induced either with chemical factors or with co-culture with human Schwann cells (Sc). Under the effect of neural differentiation medium, most MSCs from BM, fat, spleen and thymus acquired morphological changes suggestive of cells of astrocytic/neuronal and oligodendroglial lineages with general up-regulation of neural molecules not correlated with morphological changes. The process was transient and reversible, as MSCs recovered basal morphology and phenotype, as well as their multilineage differentiation potential. Thus, we hypothesized that chemical factors may prime MSCs for neural differentiation, by inducing initial and poorly specific changes. By contrast, co-cultures of MSCs of different origin with Sc induced long-lasting and Sc differentiation, i.e., the expression of Sc myelin proteins for up to 12 days. Our results show that a MSC reservoir is present in tissues other than BM and fat, and that MSCs of different origin have similar neural differentiation potential. This evidence provides new insights into BM-like tissue plasticity and may have important implications for future therapeutic interventions in chronic neuropathies.
Collapse
Affiliation(s)
- Mauro Krampera
- Department of Clinical, Section of Haematology, University of Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM. Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res 2007; 67:1921-8. [PMID: 17078756 DOI: 10.2460/ajvr.67.11.1921] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate cell surface markers of bone marrow-derived canine mesenchymal stem cells (MSCs) by use of flow cytometric analysis and determine whether canine MSCs express proteins specific to neuronal and glial cells. SAMPLE POPULATION Bone marrow aspirates collected from iliac crests of 5 cadavers of young adult dogs. PROCEDURES Flow cytometric analysis was performed to evaluate cell surface markers and homogeneity of third-passage MSCs. Neural differentiation of canine MSCs was induced by use of dibutyryl cAMP and methyl-isobutylxanthine. Expressions of neuronal (beta III-tubulin) and glial (glial fibrillary acidic protein [GFAP] and myelin basic protein) proteins were evaluated by use of immunocytochemical and western blot analyses before and after neural differentiation. RESULTS Third-passage canine MSCs appeared morphologically homogeneous and shared phenotypic characteristics with human and rodent MSCs. Immunocytochemical and western blot analyses revealed that canine MSCs constitutively expressed beta III-tubulin and GFAP. After induction of neural differentiation, increased expression of GFAP was found in all samples, whereas such change was inconsistent in beta III-tubulin expression. Myelin basic protein remained undetectable on canine MSCs for these culture conditions. CONCLUSIONS AND CLINICAL RELEVANCE Canine bone marrow-derived mononuclear cells yielded an apparently homogeneous population of MSCs after expansion in culture. Expanded canine MSCs constitutively expressed neuron or astrocyte specific proteins. Furthermore, increases of intracellular cAMP concentrations induced increased expression of GFAP on canine MSCs, which suggests that these cells may have the capacity to respond to external signals. Canine MSCs may hold therapeutic potential for treatment of dogs with neurologic disorders.
Collapse
Affiliation(s)
- Hiroaki Kamishina
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
162
|
Nikbin B, Bonab MM, Talebian F. Microchimerism and Stem Cell Transplantation in Multiple Sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:173-202. [PMID: 17531842 DOI: 10.1016/s0074-7742(07)79008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Scientific advances have demonstrated that autoreactive cells are a component of the healthy immune repertoire. If we define autoimmunity as an active induction of autoreaction, the solution should be an active induction of self-tolerance, and may indicate the direction to explore the future therapies. Microchimerism (MC) refers to the presence of a limited number of nonhost cells in the body of an individual. These cells can enter via blood transfusion and organ transplantation or naturally through pregnancy. Chimeric cells engraft in the host body, develop, proliferate, and are accepted by the immune system as self. These include stem cells that enter the maternal body during fetal stages. These stem cells are also postulated to be helpful reservoirs in protecting the host body. MC has been considered a risk factor in autoimmune disease induction. However, today we know it is a natural phenomenon. MC can be considered a natural model of successful transplantation, the earliest engrafting cells being fetal mesenchymal stem cells (MSCs). MSCs have two notable features. They have an immunosuppressive quality when encountering the adoptive immune system and they display repair-inducing potential within damaged tissues. For the fetus, MC appears to be an effective factor in maternal tolerance induction toward the fetal graft and for the mother; these novel fetal cells might be useful in disease conditions occurring after pregnancy. Hematopoietic stem cell transplantation has become an accepted treatment option for both malignant and nonmalignant diseases and this unique procedure is now being investigated as a potential therapy for multiple sclerosis (MS). Due to the dichotomous properties of MSC, suppressing aggressive immune dysfunction while promoting damaged tissue repair, they may be appropriate therapy for MS.
Collapse
Affiliation(s)
- Behrouz Nikbin
- Immunogenetic Research Center, Department of Immunology, College of Medicine, Tehran University of Medical Sciences, Tehran 14155, Iran
| | | | | |
Collapse
|
163
|
Bai L, Caplan A, Lennon D, Miller RH. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res 2006; 32:353-62. [PMID: 17191131 DOI: 10.1007/s11064-006-9212-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/23/2006] [Indexed: 01/01/2023]
Abstract
Neural stem cells (NSCs) differentiate into neurons, astrocytes and oligodendrocytes depending on their location within the central nervous system (CNS). The cellular and molecular cues mediating end-stage cell fate choices are not completely understood. The retention of multipotent NSCs in the adult CNS raises the possibility that selective recruitment of their progeny to specific lineages may facilitate repair in a spectrum of neuropathological conditions. Previous studies suggest that adult human bone marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after a wide range of CNS insults, probably through their trophic influence. In the context of such trophic activity, here we demonstrate that hMSCs in culture provide humoral signals that selectively promote the genesis of neurons and oligodendrocytes from NSCs. Cell-cell contacts were less effective and the proportion of hMSCs that could be induced to express neural characteristics was very small. We propose that the selective promotion of neuronal and oligodendroglial fates in neural stem cell progeny is responsible for the ability of MSCs to enhance recovery after a wide range of CNS injuries.
Collapse
Affiliation(s)
- Lianhua Bai
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
164
|
Batts SA, Raphael Y. Transdifferentiation and its applicability for inner ear therapy. Hear Res 2006; 227:41-7. [PMID: 17070000 DOI: 10.1016/j.heares.2006.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Revised: 08/16/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
During normal development, cells divide, then differentiate to adopt their individual form and function in an organism. Under most circumstances, mature cells cannot transdifferentiate, changing their fate to adopt a different form and function. Because differentiated cells cannot usually divide, the repair of injuries as well as regeneration largely depends on the activation of stem cell reserves. The mature cochlea is an exception among epithelial cell layers in that it lacks stem cells. Consequently, the sensory hair cells that receive sound information cannot be replaced, and their loss results in permanent hearing impairment. The lack of a spontaneous cell replacement mechanism in the organ of Corti, the mammalian auditory sensory epithelium, has led researchers to investigate circumstances in which transdifferentiation does occur. The hope is that this information can be used to design therapies to replace lost hair cells and restore impaired hearing in humans.
Collapse
Affiliation(s)
- Shelley A Batts
- Department of Otolaryngology, Kresge Hearing Research Institute, MSRB-3, Room 9301, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|
165
|
Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. ACTA ACUST UNITED AC 2006; 12:1451-65. [PMID: 16846343 DOI: 10.1089/ten.2006.12.1451] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. MSCs, transdifferentiated MSCs, or Schwann cells cultured from male rats were grafted into devitalized autologous muscle conduits bridging a 2-cm sciatic nerve gap in female rats. The differentiation potential of MSCs and transformed cultivated MSCs into Schwann cell-like cells was exploited using a cocktail of cytokines. Polymerase chain reaction of the SRY gene confirmed the presence of the implanted cells in the grafts. After 6 weeks, regeneration was monitored clinically, histologically, and morphometrically. Autologous nerves and cell-free muscle grafts were used as control. Revascularization studies suggested that transdifferentiated MSCs, in contrast to undifferentiated MSCs, facilitated neo-angiogenesis and did not influence macrophage recruitment. Autologous nerve grafts demonstrated the best results in all regenerative parameters. An appropriate regeneration was noted in the Schwann cell-groups and, albeit with restrictions, in the transdifferentiated MSC groups, whereas regeneration in the MSC group and in the cell-free group was impaired. The results indicate that transdifferentiated MSCs implanted into devitalized muscle grafts are able to support peripheral nerve regeneration to some extent, and offer a potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Medical Neurobiology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
166
|
Cízková D, Rosocha J, Vanický I, Radonák J, Gálik J, Cízek M. Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress. Neurochem Res 2006; 31:1011-20. [PMID: 16865557 DOI: 10.1007/s11064-006-9107-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2006] [Indexed: 01/11/2023]
Abstract
The phenomenon of neuronal transdifferentiation performed on bone marrow mesenchymal stem cells (MSCs) has been criticized by recent studies indicating that acquired neuron-like morphology of induced MSCs is caused by cellular stress. Therefore, to test this hypothesis we have investigated whether exposure of rat MSCs (rMSCs) to chemical inducer 2 mM beta-mercaptoethanol (BME) for 1-3 h followed by 24 h incubation leads to HSP72 synthesis, thus suggesting higher resistance of rMSCs to oxidative damage. Present data from immunohistochemistry clearly indicate development of time-dependent sub-cellular HSP72 distribution, initially seen in nuclei at 1 h followed by its translocation to surrounding central cytoplasm and processes at 2-3 h after BME stimulation. Western blot (WB) analysis confirmed the expression of HSP72 protein in induced rMSCs at both stimulation periods. Furthermore, preconditioned rMSCs with BME for 1 h expressing HSP72 positivity at 24 h showed higher resistance (78 +/- 10% of survival cells) to oxidative stress caused by 1 mM H(2)O(2) when compared to those preconditioned for 3 h (59 +/- 8% of survival cells) or control-unconditioned rMSCs exposed to the same stressor conditions (56 +/- 6% of survival cells). Thus, the cellular protection was lost if the duration of BME preconditioning was increased as far as possible (3 h) (while still remaining sub-lethal). This suggests that exposure of rMSCs to the optimal concentration of BME (2 mM) during optimal induction period (1 h) mediate their protection and increases resistance to oxidative injury, while over crossing these limits is in-effective. In addition, our findings confirm that cultured rMSCs remain competent to be preconditioned by BME, through a pathway that may increase the antioxidant balance or involve activation of HSP72 protein induced tolerance.
Collapse
Affiliation(s)
- Dasa Cízková
- Tissue culture/IHC laboratory, Institute of Neurobiology, Centre of excellence, SAS, Soltésovej 4, Kosice 04001, Slovakia.
| | | | | | | | | | | |
Collapse
|