151
|
Lv K, Chen W, Chen D, Mou J, Zhang H, Fan T, Li Y, Cao D, Wang X, Chen L, Shen J, Pei D, Xiong B. Rational Design and Evaluation of 6-(Pyrimidin-2-ylamino)-3,4-dihydroquinoxalin-2(1 H)-ones as Polypharmacological Inhibitors of BET and Kinases. J Med Chem 2020; 63:9787-9802. [PMID: 32787081 DOI: 10.1021/acs.jmedchem.0c00962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer exhibits diverse heterogeneity with a complicated molecular basis that usually harbors genetic and epigenetic abnormality, which poses a big challenge for single-target agents. In the current work, we proposed a hybrid strategy by incorporating pharmacophores that bind to the acetylated lysine binding pocket of BET proteins with a typical kinase hinge binder to generate novel polypharmacological inhibitors of BET and kinases. Through elaborating the core structure of 6-(pyrimidin-2-ylamino)-3,4-dihydroquinoxalin-2(1H)-one, we demonstrated that this rational design can produce high potent inhibitors of CDK9 and BET proteins. In this series, compound 40 was identified as the potential lead compound with balanced activities of BRD4 (IC50 = 12.7 nM) and CDK9 (IC50 = 22.4 nM), as well as good antiproliferative activities on a small cancer cell panel. Together, the current study provided a new method for the discovery of bromodomain and kinase dual inhibitors rather than only being discovered by serendipity.
Collapse
Affiliation(s)
- Kaikai Lv
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weicong Chen
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tiantian Fan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
152
|
In Silico Identification and Biological Evaluation of Antioxidant Food Components Endowed with IX and XII hCA Inhibition. Antioxidants (Basel) 2020; 9:antiox9090775. [PMID: 32825614 PMCID: PMC7555330 DOI: 10.3390/antiox9090775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor-associated isoenzymes hCA IX and hCA XII catalyze the hydration of carbon dioxide to bicarbonate and protons. These isoforms are highly overexpressed in many types of cancer, where they contribute to the acidification of the tumor environment, promoting tumor cell invasion and metastasis. In this work, in order to identify novel dual hCA IX and XII inhibitors, virtual screening techniques and biological assays were combined. A structure-based virtual screening towards hCA IX and XII was performed using a database of approximately 26,000 natural compounds. The best shared hits were submitted to a thermodynamic analysis and three promising best hits were identified and evaluated in terms of their hCA IX and XII inhibitor activity. In vitro biological assays were in line with the theoretical studies and revealed that syringin, lithospermic acid, and (-)-dehydrodiconiferyl alcohol behave as good hCA IX and hCA XII dual inhibitors.
Collapse
|
153
|
Pery N, Rizvi NB, Shafiq MI. Development of piperidinyl dipyrrrolopyridine-based dual inhibitors of Janus kinase and Bruton’s tyrosine kinase: a potential therapeutic probability to deal with rheumatoid arthritis. J Mol Model 2020; 26:235. [DOI: 10.1007/s00894-020-04512-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
154
|
Synthetic approaches, anticancer potential, HSP90 inhibition, multitarget evaluation, molecular modeling and apoptosis mechanistic study of thioquinazolinone skeleton: Promising antibreast cancer agent. Bioorg Chem 2020; 101:103987. [DOI: 10.1016/j.bioorg.2020.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
|
155
|
Hengst JA, Hegde S, Paulson RF, Yun JK. Development of SKI-349, a dual-targeted inhibitor of sphingosine kinase and microtubule polymerization. Bioorg Med Chem Lett 2020; 30:127453. [PMID: 32736077 DOI: 10.1016/j.bmcl.2020.127453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Our sphingosine kinase inhibitor (SKI) optimization studies originated with the optimization of the SKI-I chemotype by replacement of the substituted benzyl rings with substituted phenyl rings giving rise to the discovery of SKI-178. We have recently reported that SKI-178 is a dual-targeted inhibitor of both sphingosine kinase isoforms (SphK1/2) and a microtubule disrupting agent (MDA). In mechanism-of-action studies, we have shown that these two separate actions synergize to induce cancer cell death in acute myeloid leukemia (AML) cell and animal models. Owning to the effectiveness of SKI-178, we sought to further refine the chemotype while maintaining "on-target" SKI and MDA activities. Herein, we modified the "linker region" between the substituted phenyl rings of SKI-178 through a structure guided approach. These studies have yielded the discovery of an SKI-178 congener, SKI-349, with log-fold enhancements in both SphK inhibition and cytotoxic potency. Importantly, SKI-349 also demonstrates log-fold improvements in therapeutic efficacy in a retro-viral transduction model of MLL-AF9 AML as compared to previous studies with SKI-178. Together, our results strengthen the hypothesis that simultaneous targeting of the sphingosine kinases (SphK1/2) and the induction of mitotic spindle assembly checkpoint arrest, via microtubule disruption, might be an effective therapeutic strategy for hematological malignancies including AML.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA.
| |
Collapse
|
156
|
Morgen M, Steimbach RR, Géraldy M, Hellweg L, Sehr P, Ridinger J, Witt O, Oehme I, Herbst‐Gervasoni CJ, Osko JD, Porter NJ, Christianson DW, Gunkel N, Miller AK. Design and Synthesis of Dihydroxamic Acids as HDAC6/8/10 Inhibitors. ChemMedChem 2020; 15:1163-1174. [PMID: 32348628 PMCID: PMC7335359 DOI: 10.1002/cmdc.202000149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Indexed: 12/22/2022]
Abstract
We report the synthesis and evaluation of a class of selective multitarget agents for the inhibition of HDAC6, HDAC8, and HDAC10. The concept for this study grew out of a structural analysis of the two selective inhibitors Tubastatin A (HDAC6/10) and PCI-34051 (HDAC8), which we recognized share the same N-benzylindole core. Hybridization of the two inhibitor structures resulted in dihydroxamic acids with benzyl-indole and -indazole core motifs. These substances exhibit potent activity against HDAC6, HDAC8, and HDAC10, while retaining selectivity over HDAC1, HDAC2, and HDAC3. The best substance inhibited the viability of the SK-N-BE(2)C neuroblastoma cell line with an IC50 value similar to a combination treatment with Tubastatin A and PCI-34051. This compound class establishes a proof of concept for such hybrid molecules and could serve as a starting point for the further development of enhanced HDAC6/8/10 inhibitors.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Raphael R. Steimbach
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Faculty of BiosciencesUniversity of Heidelberg69120HeidelbergGermany
| | - Magalie Géraldy
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Lars Hellweg
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory (EMBL)69117HeidelbergGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Jeremy D. Osko
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nicholas J. Porter
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nikolas Gunkel
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
157
|
Rawat R, Verma SM. High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of PfDHODH and PfCytbc1 complex to combat drug resistant malaria. J Biomol Struct Dyn 2020; 39:5148-5159. [PMID: 32579074 DOI: 10.1080/07391102.2020.1784288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Emerging cases of drug resistance against Artemisinin combination therapies which are the current and the last line of defense against malaria makes the situation very alarming. Due to the liability of single-target drugs to be more prone to drug resistance, the trend of development of dual or multi-target inhibitors is emerging. Recently, a malaria box molecule, MMV007571 which is a well known new permeability pathways inhibitor was investigated to be also multi-targeting Plasmodium falciparum dihydroorotate dehydrogenase and cytochrome bc1 complex. The aspiration behind this study was to use the information of its pharmacophoric features essential for binding as two of its new targets. In this regard, high throughput virtual screening involving pharmacophore mapping, ADME filtering, molecular docking, and MM-GBSA calculations were carried out. This approach has lead to the identification of two new hits namely DT00V1902 and DT00V1922 which binds with -37.85 and -24.65 kcal/mol of more stable ΔG Bind energy at two targets than the lead molecule, MMV007571. The screened compounds are indicated to be carry improvement in binding potential and pharmacokinetic characters as per in silico studies. The authors propose that DT00V1902 and DT00V1922 can be forwarded for experimental validation and clinical studies for antimalarial chemotherapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Saurabh M Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
158
|
Zhang Q, Zheng P, Zhu W. Research Progress of Small Molecule VEGFR/c-Met Inhibitors as Anticancer Agents (2016-Present). Molecules 2020; 25:molecules25112666. [PMID: 32521825 PMCID: PMC7321177 DOI: 10.3390/molecules25112666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) binds to VEGFR-A, VEGFR-C and VEGFR-D and participates in the formation of tumor blood vessels, mediates the proliferation of endothelial cells, enhances microvascular permeability, and blocks apoptosis. Blocking or downregulating the signal transduction of VEGFR is the main way to discover new drugs for many human angiogenesis-dependent malignancies. Mesenchymal epithelial transfer factor tyrosine kinase (c-Met) is a high affinity receptor for hepatocyte growth factor (HGF). Abnormal c-Met signaling plays an important role in the formation, invasion and metastasis of human tumors. Therefore, the HGF/c-Met signaling pathway has become a significant target for cancer treatment. Related studies have shown that the conduction of the VEGFR and c-Met signaling pathways has a synergistic effect in inducing angiogenesis and inhibiting tumor growth. In recent years, multi-target small molecule inhibitors have become a research hotspot, among which the research of VEGFR and c-Met dual-target small molecule inhibitors has become more and more extensive. In this review, we comprehensively summarize the chemical structures and biological characteristics of novel VEGFR/c-Met dual-target small-molecule inhibitors in the past five years.
Collapse
Affiliation(s)
| | | | - Wufu Zhu
- Correspondence: ; Tel.: +86-791-8380-2393
| |
Collapse
|
159
|
Design, synthesis, and cytotoxic screening of novel azole derivatives on hepatocellular carcinoma (HepG2 Cells). Bioorg Chem 2020; 101:103995. [PMID: 32569897 DOI: 10.1016/j.bioorg.2020.103995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Novel azole derivatives 3-30 were designed, synthesized, and screened for their antitumor activity on HepG2 cell line. The cytotoxicity screening demonstrated that imidazolone 8 and triazoles 25 and 29 exhibited more potent cytotoxic activities by 1.21-, 4.75-, and 1.8-fold compared to Sorafenib (SOR). Furthermore, vascular endothelial growth factor receptor-2 (VEGFR-2) enzyme inhibition assay declared that compounds 25 and 29 had inhibitory activity at the nanomolar concentration. Moreover, the tested compounds exhibited good β-tubulin (TUB) polymerization inhibition percentages. In addition, DNA flow cytometry analysis over HepG2 cells indicated that triazoles 25 and 29 demonstrated arrest at G1 and G2/M phase of the cell cycle and induced apoptotic activity by increasing sub-G1 phase. Finally, mechanistic studies of the proapoptotic activities of compounds 8, 10, 11, 25, and 29 indicated that they induced upregulation of P53, Fas/Fas-ligand, and BAX/BCL-2 ratio expression that resulted in increasing the active caspase 3/7 percentages and trigger apoptosis.
Collapse
|
160
|
Synthesis and Biological Evaluation of 2-Substituted Benzyl-/Phenylethylamino-4-amino-5-aroylthiazoles as Apoptosis-Inducing Anticancer Agents. Molecules 2020; 25:molecules25092177. [PMID: 32384805 PMCID: PMC7248693 DOI: 10.3390/molecules25092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Induction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton. Among the synthesized compounds, the most active analogues were found to be the p-chlorobenzylamino derivative 8e as well as the p-chloro and p-methoxyphenethylamino analogues 8f and 8k, respectively, which inhibited the growth of U-937 and SK-MEL-1 cancer cell lines with IC50 values ranging from 5.7 to 12.2 μM. On U-937 cells, the tested compounds 8f and 8k induced apoptosis in a time and concentration dependent manner. These two latter molecules did not affect tubulin polymerization (IC50 > 20 μM) nor CDK activity at a single concentration of 10 μM, suggesting alternative targets than tubulin and CDK for the compounds.
Collapse
|
161
|
Al-Khafaji K, Taskin Tok T. Amygdalin as multi-target anticancer drug against targets of cell division cycle: double docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:1965-1974. [DOI: 10.1080/07391102.2020.1742792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
- Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
162
|
El-Husseiny WM, El-Sayed MAA, El-Azab AS, AlSaif NA, Alanazi MM, Abdel-Aziz AAM. Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. J Enzyme Inhib Med Chem 2020; 35:744-758. [PMID: 32183576 PMCID: PMC7144195 DOI: 10.1080/14756366.2020.1740695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of 24 compounds was synthesised based on a 2-cyclopentyloxyanisole scaffold 3–14 and their in vitro antitumor activity was evaluated. Compounds 4a, 4b, 6b, 7b, 13, and 14 had the most potent antitumor activity (IC50 range: 5.13–17.95 μM), compared to those of the reference drugs celecoxib, afatinib, and doxorubicin. The most active derivatives 4a, 4b, 7b, and 13 were evaluated for their inhibitory activity against COX-2, PDE4B, and TNF-α. Compounds 4a and 13 potently inhibited TNF-α (IC50 values: 2.01 and 6.72 μM, respectively) compared with celecoxib (IC50=6.44 μM). Compounds 4b and 13 potently inhibited COX-2 (IC50 values: 1.08 and 1.88 μM, respectively) comparable to that of celecoxib (IC50=0.68 μM). Compounds 4a, 7b, and 13 inhibited PDE4B (IC50 values: 5.62, 5.65, and 3.98 μM, respectively) compared with the reference drug roflumilast (IC50=1.55 μM). The molecular docking of compounds 4b and 13 with the COX-2 and PDE4B binding pockets was studied.Highlights Antitumor activity of new synthesized cyclopentyloxyanisole scaffold was evaluated. The powerful antitumor 4a, 4b, 6b, 7b & 13 were assessed as COX-2, PDE4B & TNF-α inhibitors. Compounds 4a, 7b, and 13 exhibited COX-2, PDE4B, and TNF-α inhibition. Compounds 4b and 13 showed strong interactions at the COX-2 and PDE4B binding pockets.
Collapse
Affiliation(s)
- Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
163
|
Kumar Reddy Nagireddy P, Krishna Kommalapati V, Siva Krishna V, Sriram D, Devi Tangutur A, Kantevari S. Anticancer Potential of
N
‐Sulfonyl Noscapinoids: Synthesis and Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
164
|
Al-Khafaji K, Taskin Tok T. Understanding the mechanism of amygdalin's multifunctional anti-cancer action using computational approach. J Biomol Struct Dyn 2020; 39:1600-1610. [PMID: 32107968 DOI: 10.1080/07391102.2020.1736159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amygdalin possesses anticancer properties and induces apoptosis. Based on experimental studies the presence of amygdalin with cancer cells led to activate the caspase-3 and BAX and inhibits Bcl-2 and Poly (ADP-ribose) polymerase-1 (PARP-1) but without deep information on action mode of these activities. Herein, we leaped forward to examine the molecular dynamics of the bound amygdalin and free ligand proteins, to identify precise action (conformation changes in targeted proteins) of amygdalin through using double docking and molecular dynamics (MD) simulations for 50 ns time scale. The MD simulations revealed that the binding of amygdalin led to disrupting the interaction between the Bcl-2/BAX complex. We furthermore conducted MD simulation for Bcl-2/amygdalin to investigate the stability of the complex which is responsible for inhibition of Bcl-2. It has been obtained a stable Bcl-2/amygdalin complex during the 50 ns. The results give a detail explanation of how amygdalin activates BAX and inhibits Bcl-2. For caspase-3, the matter is different, we found that amygdalin led to disrupting the interaction of caspase-3's two chains for intervals during 50 ns and then bind together repeatedly. The mechanism of caspase-3's activation through switching by disrupt the interacts for periodic intervals manner. For PARP-1, the dynamics simulations results indicated amygdalin interacts with PARP-1's binding site and forms stable interaction during simulation to render it inactive. Hence, amygdalin revealed a supernatural behavior through the MD simulations: it revealed a further clarification of the mystery amygdalin's experimental action which can act as a multifunctional drug in the cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
165
|
Bojarska J, Remko M, Breza M, Madura ID, Kaczmarek K, Zabrocki J, Wolf WM. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. Molecules 2020; 25:E1135. [PMID: 32138329 PMCID: PMC7179192 DOI: 10.3390/molecules25051135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.
Collapse
Affiliation(s)
- Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Milan Remko
- Remedika, Sustekova, 1 85104 Bratislava, Slovakia;
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovakia;
| | - Izabela D. Madura
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland;
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| |
Collapse
|
166
|
Garbe S, Krause M, Klimpel A, Neundorf I, Lippmann P, Ott I, Brünink D, Strassert CA, Doltsinis NL, Klein A. Cyclometalated Pt Complexes of CNC Pincer Ligands: Luminescence and Cytotoxic Evaluation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Garbe
- Universität zu Köln, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany
| | - Maren Krause
- Universität zu Köln, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany
| | - Annika Klimpel
- Universität zu Köln, Department für Chemie, Institut für Biochemie, Zülpicher Strasse 47a, D-50674 Köln, Germany
| | - Ines Neundorf
- Universität zu Köln, Department für Chemie, Institut für Biochemie, Zülpicher Strasse 47a, D-50674 Köln, Germany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraβe 55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraβe 55, D-38106 Braunschweig, Germany
| | - Dana Brünink
- Westfälische Wilhelms-Universität Münster, Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Cristian A. Strassert
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Nikos L. Doltsinis
- Westfälische Wilhelms-Universität Münster, Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Axel Klein
- Universität zu Köln, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany
| |
Collapse
|
167
|
Garcia SN, Guedes RC, Marques MM. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 2020; 26:7285-7322. [PMID: 30543165 DOI: 10.2174/0929867326666181213092652] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Glycolysis is a tightly regulated process in which several enzymes, such as Hexokinases (HKs), play crucial roles. Cancer cells are characterized by specific expression levels of several isoenzymes in different metabolic pathways and these features offer possibilities for therapeutic interventions. Overexpression of HKs (mostly of the HK2 isoform) have been consistently reported in numerous types of cancer. Moreover, deletion of HK2 has been shown to decrease cancer cell proliferation without explicit side effects in animal models, which suggests that targeting HK2 is a viable strategy for cancer therapy. HK2 inhibition causes a substantial decrease of glycolysis that affects multiple pathways of central metabolism and also destabilizes the mitochondrial outer membrane, ultimately enhancing cell death. Although glycolysis inhibition has met limited success, partly due to low selectivity for specific isoforms and excessive side effects of the reported HK inhibitors, there is ample ground for progress. The current review is focused on HK2 inhibition, envisaging the development of potent and selective anticancer agents. The information on function, expression, and activity of HKs is presented, along with their structures, known inhibitors, and reported effects of HK2 ablation/inhibition. The structural features of the different isozymes are discussed, aiming to stimulate a more rational approach to the design of selective HK2 inhibitors with appropriate drug-like properties. Particular attention is dedicated to a structural and sequence comparison of the structurally similar HK1 and HK2 isoforms, aiming to unveil differences that could be explored therapeutically. Finally, several additional catalytic- and non-catalytic roles on different pathways and diseases, recently attributed to HK2, are reviewed and their implications briefly discussed.
Collapse
Affiliation(s)
- Sara N Garcia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
168
|
Fatima S, Agarwal SM. Exploring structural features of EGFR-HER2 dual inhibitors as anti-cancer agents using G-QSAR approach. J Recept Signal Transduct Res 2020; 39:243-252. [PMID: 31538848 DOI: 10.1080/10799893.2019.1660896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Simultaneous inhibition of EGFR and HER2 by dual-targeting inhibitors is an established anti-cancer strategy. Therefore, a recent trend in drug discovery involves understanding the features of such dual inhibitors. In this study, three different G-QSAR models were developed corresponding to individual EGFR, HER2 and the dual-model for both receptors. The dual-model provided site-specific information wherein (i) increasing electronegative character and higher index of saturated carbon at R4 position; (ii) presence of chlorine atom at R2 position; (iii) decreasing alpha modified shape index at R1 and R3 positions; and (iv) less electronegativity at R2 position; were found important for enhancing the dual activity. Also, comparison of dual-model with the EGFR/HER2 individual models revealed that it incorporates the properties of both models and, thus, represents a combination of EGFR/HER2. Further, fragment analysis revealed that R2 and R4 are important for imparting high potency while specificity is decided by R1/R3 fragment. We also checked the predictive ability of the dual-model by determining applicability domain using William's plot. Also, analysis of active molecules showed they show favorable substitutions that agree with the constructed dual-model. Thus, we have been successful in developing a single dual-response QSAR model to get an insight into various structural features influencing EGFR/HER2 activity.
Collapse
Affiliation(s)
- Shehnaz Fatima
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research , Noida , India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research , Noida , India
| |
Collapse
|
169
|
Liu R, Deng X, Peng Y, Feng W, Xiong R, Zou Y, Lei X, Zheng X, Xie Z, Tang G. Synthesis and biological evaluation of novel 5,6,7-trimethoxy flavonoid salicylate derivatives as potential anti-tumor agents. Bioorg Chem 2020; 96:103652. [PMID: 32059154 DOI: 10.1016/j.bioorg.2020.103652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
5,6,7-Trimethoxy flavonoid salicylate derivatives were designed by the joining of three important pharmacophores (TMP, flavonoid, and SA) according to the combination principle. A series of novel trimethoxy flavonoid salicylate derivatives were synthesized and their in vitro anti-tumor activities were evaluated. Among these derivatives, compound 7f exhibited excellent antiproliferative activity against HGC-27 cells and MGC-803 cells with IC50 values of 10.26 ± 6.94 μM and 17.17 ± 3.03 μM, respectively. Subsequently, the effects on cell colony formation (clonogenic survival assay), cell migration (wound healing assay), cell cycle distribution (PI staining assay), cell apoptosis (Hoechst 33258 staining assay and annexin V-FITC/PI dual staining assay), lactate level (lactate measurement), microtubules disarrangement (immunofluorescence staining analysis) and docking posture (molecular docking simulation) were determined. Further western blot analysis confirmed that compound 7f could effectively down-regulate the expression of glycolysis-related proteins HIF-1α, PFKM and PKM2 and tumor angiogenesis-related proteins VEGF. Overall, these studies suggested that compound 7f, as the representative compound of those, might be a promising candidate for the treatment of gastric cancer and deserved the further studies.
Collapse
Affiliation(s)
- Renbo Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Wanshi Feng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yang Zou
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
170
|
Ke S, Zhang Z, Liu M, Fang W, Huang D, Wan Z, Zhou R, Wang K, Shi L. Synthesis and bioevaluation of novel steroidal isatin conjugates derived from epiandrosterone/androsterone. J Enzyme Inhib Med Chem 2020; 34:1607-1614. [PMID: 31474167 PMCID: PMC6735358 DOI: 10.1080/14756366.2019.1659790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Steroids are classes of natural products widely distributed in nature, which have been demonstrated to exhibit broad biological functions, and have also attracted increasing interest from bioorganic and pharmaceutical researches. In order to develop novel chemical entities as potential cytotoxic agents, a series of steroidal isatin conjugations derived from epiandrosterone and androsterone were efficiently prepared and characterized, and all these obtained compounds were screened for their potential cytotoxic activities. The preliminary bioassay indicated that most of the newly synthesized compounds exhibited good cytotoxic activities against human gastric cancer (SGC-7901), melanoma (A875), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), which might be considered as promising scaffold for further development of potential anticancer agents.
Collapse
Affiliation(s)
- Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Zhigang Zhang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Manli Liu
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Wei Fang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Zhongyi Wan
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Ronghua Zhou
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| | - Liqiao Shi
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences , Wuhan , China
| |
Collapse
|
171
|
Zhao Y, Kang Y, Xu F, Zheng W, Luo Q, Zhang Y, Jia F, Wang F. Pharmacophore conjugation strategy for multi-targeting metal-based anticancer complexes. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
172
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
173
|
Shawky AM, Abourehab MA, Abdalla AN, Gouda AM. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur J Med Chem 2020; 185:111780. [DOI: 10.1016/j.ejmech.2019.111780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
|
174
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
175
|
Bilginer S, Gul HI, Erdal FS, Sakagami H, Levent S, Gulcin I, Supuran CT. Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2( 3H)-benzoxazolones. J Enzyme Inhib Med Chem 2019; 34:1722-1729. [PMID: 31576761 PMCID: PMC6781194 DOI: 10.1080/14756366.2019.1670657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, new chalcone compounds having the chemical structure of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones (1-8) were synthesised and were characterised by 1H-NMR, 13 C-NMR, and HRMS spectra. Cytotoxic and carbonic anhydrase (CA) inhibitory effects of the compounds were investigated. Cytotoxicity results pointed out that compound 4, 6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-3H-benzoxazol-2-one, showed the highest cytotoxicity (CC50) and potency-selectivity expression (PSE) value, and thus can be considered as a lead compound of this study. According to the CA inhibitory results, IC50 values of the compounds 1-8 towards hCA I were in the range of 29.74-69.57 µM, while they were in the range of 18.14 - 48.46 µM towards hCA II isoenzyme. Ki values of the compounds 1-8 towards hCA I were in the range of 28.37 ± 6.63-70.58 ± 6.67 µM towards hCA I isoenzyme and they were in the range of 10.85 ± 2.14 - 37.96 ± 2.36 µM towards hCA II isoenzyme.
Collapse
Affiliation(s)
- Sinan Bilginer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Feyza Sena Erdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hiroshi Sakagami
- School of Dentistry, Meikai University Research Institute of Odontology (M-RIO), Meikai University, Sakado, Japan
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
176
|
Recagni M, Tassinari M, Doria F, Cimino-Reale G, Zaffaroni N, Freccero M, Folini M, Richter SN. The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands. Cells 2019; 8:cells8101274. [PMID: 31635389 PMCID: PMC6830342 DOI: 10.3390/cells8101274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within oncogene promoters has stood out as a promising approach to interfere with oncogenic signaling pathways in cancer cells, paving the way toward the development of G-quadruplex ligands as antitumor drugs. Here, we present the synthesis and screening of a library of differently functionalized core-extended naphthalene diimides for their activity against the BRAFV600E-mutant melanoma cell line. The most promising compound was able to stabilize G-quadruplexes that formed in the promoter regions of two target genes relevant to melanoma, KIT and BCL-2. This activity led to the suppression of protein expression and thus to interference with oncogenic signaling pathways involved in BRAF-mutant melanoma cell survival, apoptosis, and resistance to drugs. This G-quadruplex ligand thus represents a suitable candidate for the development of melanoma treatment options based on a new mechanism of action and could reveal particular significance in the context of resistance to targeted therapies of BRAF-mutant melanoma cells.
Collapse
Affiliation(s)
- Marta Recagni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| | - Graziella Cimino-Reale
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| | - Marco Folini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
177
|
Zhang X, Xiao Z, Xu H. A review of the total syntheses of triptolide. Beilstein J Org Chem 2019; 15:1984-1995. [PMID: 31501665 PMCID: PMC6720243 DOI: 10.3762/bjoc.15.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022] Open
Abstract
Triptolide is a complex triepoxide diterpene natural product that has attracted considerable interest in the organic chemistry and medicinal chemistry societies due to its intriguing structural features and multiple promising biological activities. In this review, progress in the total syntheses of triptolide are systematically summarized. We hope to gain a better understanding of the field and provide constructive suggestions for future studies of triptolide.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zaozao Xiao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
178
|
Li J, Chen L, Su H, Yan L, Gu Z, Chen Z, Zhang A, Zhao F, Zhao Y. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. NANOSCALE 2019; 11:14528-14539. [PMID: 31364651 DOI: 10.1039/c9nr04129j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, cancer continues to afflict humanity. The direct destruction and killing of tumor cells by surgery, radiation and chemotherapy gives rise to many side effects and compromised efficacy. Encouragingly, the rapid development of nanotechnology offers attractive opportunities to revolutionize the current situation of cancer therapy. Metallofullerenol Gd@C82(OH)22, in contrast to chemotherapeutics that directly kill tumor cells, demonstrates anti-tumor behavior with high efficiency and low toxicity by modulating the tumor microenvironment. Furthermore, Gd@C82(OH)22 has been recently reported to specifically target cancer stem cells. In this review, we give a concise introduction to the development of the fullerene family and then report the anti-tumor activity of Gd@C82(OH)22 based on its unique physicochemical characteristics, followed by a comprehensive summary of the anti-tumor biological mechanisms which target different components of the tumor microenvironment as well as the biodistribution and toxicity of Gd@C82(OH)22. Finally, we describe Gd@C82(OH)22 as a "particulate medicine" to highlight its distinctions from conventional "molecular medicine", with considerable emphasis on the advantages of nanomedicine. The in-depth investigation of Gd@C82(OH)22 undoubtedly provides a constructive reference for the development of other nanomedicines, especially in the fullerene family. The application of nanotechnology in the medical field definitely provides a promising and favorable future for improving the current status of cancer therapy.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 2019; 176:378-392. [DOI: 10.1016/j.ejmech.2019.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
|
180
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
181
|
Anticancer Function and ROS-Mediated Multi-Targeting Anticancer Mechanisms of Copper (II) 2-hydroxy-1-naphthaldehyde Complexes. Molecules 2019; 24:molecules24142544. [PMID: 31336900 PMCID: PMC6680819 DOI: 10.3390/molecules24142544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Multi-targeting of oncoproteins by a single molecule represents an effectual, rational, and an alternative approach to target therapy. We carried out a systematic study to reveal the mechanisms of action of newly synthesized Cu2+ compounds of 2-naphthalenol and 1-(((2-pyridinylmethyl)imino)methyl)- (C1 and C2). The antiproliferative activity of the as-synthesized complexes in three human cancer cell lines indicates their potential as multi-targeted antitumor agents. Relatively, C1 and C2 showed better efficacy in vitro relative to Cisplatin and presented promising levels of toxicity against A-549 cells. On the whole, the Cu2+ complexes exhibited chemotherapeutic effects by generating reactive oxygen species (ROS) and arresting the cell cycle in the G0/G1 phase by competent regulation of cyclin and cyclin-dependent kinases. Fascinatingly, the Cu2+ complexes were shown to activate the apoptotic and autophagic pathways in A-549 cells. These complexes effectively induced endoplasmic reticulum stress-mediated apoptosis, inhibited topoisomerase-1, and damaged cancer DNA through a ROS-mediated mechanism. The synthesized Cu2+ complexes established ROS-mediated targeting of multiple cell signaling pathways as a fabulous route for the inhibition of cancer cell growth.
Collapse
|
182
|
Wagner JR, Churas CP, Liu S, Swift RV, Chiu M, Shao C, Feher VA, Burley SK, Gilson MK, Amaro RE. Continuous Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking. Structure 2019; 27:1326-1335.e4. [PMID: 31257108 DOI: 10.1016/j.str.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/14/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Docking calculations can accelerate drug discovery by predicting the bound poses of ligands for a targeted protein. However, it is not clear which docking methods work best. Furthermore, predicting poses requires steps outside the docking algorithm itself, such as preparation of the protein and ligand, and it is not known which components are most in need of improvement. The Continuous Evaluation of Ligand Protein Predictions (CELPP) is a blinded prediction challenge designed to address these issues. Participants create a workflow to predict protein-ligand binding poses, which is then tasked with predicting 10-100 new protein-ligand crystal structures each week. CELPP evaluates the accuracy of each workflow's predictions and posts the scores online. The results can be used to identify the strengths and weaknesses of current approaches, help map docking problems to the algorithms most likely to overcome them, and illuminate areas of unmet need in structure-guided drug design.
Collapse
Affiliation(s)
- Jeffrey R Wagner
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher P Churas
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuai Liu
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert V Swift
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Chiu
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Victoria A Feher
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael K Gilson
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Rommie E Amaro
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
183
|
Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI. Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors. Eur J Med Chem 2019; 179:707-722. [PMID: 31284081 DOI: 10.1016/j.ejmech.2019.06.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022]
Abstract
In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC50 = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC50 = 0.10 μM and regorafenib (II) IC50 = 0.005 μM. While compounds 9c, 9d and 10a showed IC50 = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC50 = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC50 = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Dokki, Cairo, Egypt.
| | - Mohamed A Omar
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Molecular Modeling Unit, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, New Giza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Abeer E E Mahmoud
- Department of Biochemistry, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, Egypt
| | - Mamdouh M Ali
- Department of Biochemistry, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, Egypt
| | - Hoda I El Diwani
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
184
|
Lu GQ, Li XY, Mohamed O K, Wang D, Meng FH. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem 2019; 171:282-296. [DOI: 10.1016/j.ejmech.2019.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
185
|
Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019; 62:8881-8914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.
Collapse
Affiliation(s)
- Junting Zhou
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Xueyang Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Hongli Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China.,Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
186
|
De Simone A, Milelli A. Histone Deacetylase Inhibitors as Multitarget Ligands: New Players in Alzheimer's Disease Drug Discovery? ChemMedChem 2019; 14:1067-1073. [PMID: 30958639 DOI: 10.1002/cmdc.201900174] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 01/14/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) are responsible for controlling gene expression by modulating the acetylation status of histone proteins. Furthermore, they modulate the activity of cytoplasmic non-histone proteins. Due to the involvement of HDACs in neurodevelopment, memory formation, and cognitive processes, HDACIs have been suggested as innovative agents for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Given their mechanisms of action and the complex nature of AD, HDACIs have been proposed for the design of novel multitarget ligands (MTLs). To this aim, the fragment responsible for HDAC inhibition has been coupled with other structures that are able to provide additional biological actions, such as antioxidant activity or the inhibition of phosphodiesterase 5, transglutaminase 2, and glycogen synthase kinase 3β. Herein we discuss recent efforts to design HDACI-based MTLs as potential disease-modifying entities.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| |
Collapse
|
187
|
Kartsev V, Shikhaliev KS, Geronikaki A, Medvedeva SM, Ledenyova IV, Krysin MY, Petrou A, Ciric A, Glamoclija J, Sokovic M. Appendix A. dithioloquinolinethiones as new potential multitargeted antibacterial and antifungal agents: Synthesis, biological evaluation and molecular docking studies. Eur J Med Chem 2019; 175:201-214. [PMID: 31078867 DOI: 10.1016/j.ejmech.2019.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/23/2023]
Abstract
Herein we report the design, synthesis, molecular docking study and evaluation of antimicrobial activity of ten new dithioloquinolinethiones. The structures of compounds were confirmed by 1H NMR, 13C NMR and HPLC-HRMS. Before evaluation of their possible antimicrobial activity prediction of toxicity was performed. All compounds showed antibacterial activity against eight Gram positive and Gram negative bacterial species. All compounds appeared to be more active than ampicillin and almost all than streptomycin. The best antibacterial activity was observed for compound 8c 4,4,8-trimethyl-5-{[(4-phenyl-5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)thio]acetyl}-4,5-dihydro-1H-[1,2]dithiolo[3,4c]quino lone-1-thione). The most sensitive bacterium En.cloacae followed by S. aureus, while L.monocytogenes was the most resistant. All compounds were tested for antifungal activity also against eight fungal species. The best activity was expressed by compound 8d (5-[(4,5-Dihydro-1,3-thiazol-2-ylthio)acetyl]-4,4-dimethyl-4,5-dihydro-1H-[1,2]dithiolo[3,4-c]quinoline-1-thione). The most sensitive fungal was T. viride, while P. verrucosum var. cyclopium was the most resistant one. All compounds were more potent as antifungal agent than reference compound bifonazole and ketoconazole. The docking studies indicated a probable involvement of E. coli DNA GyrB inhibition in the anti-bacterial mechanism, while CYP51ca inhibition is probably responsible for antifungal activity of tested compounds. It is interesting to mention that docking results coincides with experimental.
Collapse
Affiliation(s)
| | - Khidmet S Shikhaliev
- Department of organic chemistry, Faculty of chemistry, Voronezh State University, Voronezh, 394018, Russian Federation
| | - A Geronikaki
- Aristotle University, School of Pharmacy, Thessaloniki, 54124, Greece.
| | - Svetlana M Medvedeva
- Department of organic chemistry, Faculty of chemistry, Voronezh State University, Voronezh, 394018, Russian Federation
| | - Irina V Ledenyova
- Department of organic chemistry, Faculty of chemistry, Voronezh State University, Voronezh, 394018, Russian Federation
| | - Mikhail Yu Krysin
- Department of organic chemistry, Faculty of chemistry, Voronezh State University, Voronezh, 394018, Russian Federation
| | - A Petrou
- Aristotle University, School of Pharmacy, Thessaloniki, 54124, Greece
| | - A Ciric
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Bulevar Despota Stefana, Serbia
| | - J Glamoclija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Bulevar Despota Stefana, Serbia
| | - M Sokovic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Bulevar Despota Stefana, Serbia
| |
Collapse
|
188
|
Mularski J, Malarz K, Pacholczyk M, Musiol R. The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. Eur J Med Chem 2018; 163:610-625. [PMID: 30562697 DOI: 10.1016/j.ejmech.2018.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022]
Abstract
Quinazoline derivatives constitute a large family of small-molecule inhibitors of tyrosine kinases. In the current study, the p53 protein reactivator CP-31398 was tested against a panel of kinases on the assumption that it was structurally similar to other active inhibitors. Although it was found to be active in the enzyme-based assay, this compound did not block the proliferation of cancer cells at a feasible concentration level. The styrylquinazoline was used to design new structures that might be potential multitarget inhibitors. Subsequently, a series of compounds was obtained and characterized. Their inhibitory activity in a panel of tyrosine kinases had an antiproliferative effect against several cancer cell lines that have different expression levels of those proteins. The mode of protein interaction was tested for the most active compound in docking experiments.
Collapse
Affiliation(s)
- Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Marcin Pacholczyk
- Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland.
| |
Collapse
|
189
|
Gul HI, Yamali C, Gunesacar G, Sakagami H, Okudaira N, Uesawa Y, Kagaya H. Cytotoxicity, apoptosis, and QSAR studies of phenothiazine derived methoxylated chalcones as anticancer drug candidates. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2242-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
190
|
Pingaew R, Prachayasittikul V, Anuwongcharoen N, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorg Chem 2018; 79:171-178. [DOI: 10.1016/j.bioorg.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
|
191
|
Yoon SY, Lee JH, Kwon SJ, Kang HJ, Chung SJ. Ginkgolic acid as a dual-targeting inhibitor for protein tyrosine phosphatases relevant to insulin resistance. Bioorg Chem 2018; 81:264-269. [PMID: 30153591 DOI: 10.1016/j.bioorg.2018.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Several protein tyrosine phosphatases (PTPs) that disrupt the insulin-signaling pathway were investigated by siRNAs to identify potential antidiabetic targets. Individual knockdown of PTPN9 and DUSP9 in 3T3-L1 preadipocytes increased AMPK phosphorylation, respectively, and furthermore, concurrent knockdown of both PTPN9 and DUSP9 synergistically increased AMPK phosphorylation. Next, 658 natural products were screened to identify dual inhibitors of both PTPN9 and DUSP9. Based on the selectivity and inhibition potency of the compounds, ginkgolic acid (GA) was selected for further study as a potential antidiabetic drug candidate. GA inhibited the enzymatic activity of PTPN9 (Ki = 53 µM) and DUSP9 (Ki = 2.5 µM) in vitro and resulted in a significant increase of glucose-uptake in differentiated C2C12 muscle cells and 3T3-L1 adipocytes. In addition, GA increased phosphorylation of AMPK in 3T3L1 adipocytes. In this study, GA as a dual targeting inhibitor of PTPN9 and DUSP9 increased glucose uptake in 3T3L1 and C2C12 cells by activating the AMPK signaling pathway. These results strongly suggest GA could be used as a therapeutic candidate for type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hee Lee
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| | - Se Jeong Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo Jin Kang
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea.
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
192
|
Proschak E, Stark H, Merk D. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. J Med Chem 2018; 62:420-444. [PMID: 30035545 DOI: 10.1021/acs.jmedchem.8b00760] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multitargeting compounds comprising activity on more than a single biological target have gained remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, inflammation, or the metabolic syndrome. Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects and significantly contribute to the high therapeutic success of indispensable drugs such as aspirin. While their identification has long been the result of serendipity, medicinal chemistry now tends to design polypharmacology. Modern in vitro pharmacological methods and chemical probes allow a systematic search for rational target combinations and recent innovations in computational technologies, crystallography, or fragment-based design equip multitarget compound development with valuable tools. In this Perspective, we analyze the relevance of multiple ligands in drug discovery and the versatile toolbox to design polypharmacology. We conclude that despite some characteristic challenges remaining unresolved, designed polypharmacology holds enormous potential to secure future therapeutic innovation.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitaetsstrasse 1 , D-40225 , Duesseldorf , Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Swiss Federal Institute of Technology (ETH) Zürich , Vladimir-Prelog-Weg 4 , CH-8093 Zürich , Switzerland
| |
Collapse
|
193
|
Bello-Pérez M, Falcó A, Galiano V, Coll J, Perez L, Encinar JA. Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV). DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2337-2359. [PMID: 30104863 PMCID: PMC6072831 DOI: 10.2147/dddt.s171087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction Infectious pancreatic necrosis virus (IPNV) causes serious losses in several fish species of commercial interest. IPNV is a non-enveloped double-stranded RNA virus with a genome consisting of two segments A and B. Segment B codes for the VP1 protein, a non-canonical RNA-dependent RNA polymerase that can be found both in its free form and linked to the end of genomic RNA, an essential enzyme for IPNV replication. Materials and methods We take advantage of the knowledge over the allosteric binding site described on the surface of the thumb domain of Hepatitis C virus (HCV) polymerase to design new non-nucleoside inhibitors against the IPNV VP1 polymerase. Results Molecular docking techniques have been used to screen a chemical library of 23,760 compounds over a defined cavity in the surface of the thumb domain. Additional ADMET (absorption, distribution, metabolism, excretion, and toxicity) filter criteria has been applied. Conclusion We select two sets of 9 and 50 inhibitor candidates against the polymerases of HCV and IPNV, respectively. Two non-toxic compounds have been tested in vitro with antiviral capacity against IPNV Sp and LWVRT60 strains in the low µM range with different activity depending on the IPNV strain used.
Collapse
Affiliation(s)
- Melissa Bello-Pérez
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| | - Alberto Falcó
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| | - Vicente Galiano
- Department of Physics and Computer Architecture, Miguel Hernández University (UMH), Elche, Spain
| | - Julio Coll
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Luis Perez
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| | - José Antonio Encinar
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| |
Collapse
|
194
|
Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors. Eur J Med Chem 2018; 155:197-209. [DOI: 10.1016/j.ejmech.2018.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|
195
|
Galal SA, Khattab M, Shouman SA, Ramadan R, Kandil OM, Kandil OM, Tabll A, El Abd YS, El-Shenawy R, Attia YM, El-Rashedy AA, El Diwani HI. Part III: Novel checkpoint kinase 2 (Chk2) inhibitors; design, synthesis and biological evaluation of pyrimidine-benzimidazole conjugates. Eur J Med Chem 2018; 146:687-708. [PMID: 29407991 DOI: 10.1016/j.ejmech.2018.01.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Recently a dramatic development of the cancer drug discovery has been shown in the field of targeted cancer therapy. Checkpoint kinase 2 (Chk2) inhibitors offer a promising approach to enhance the effectiveness of cancer chemotherapy. Accordingly, in this study many pyrimidine-benzimidazole conjugates were designed and twelve feasible derivatives were selected to be synthesized to investigate their activity against Chk2 and subjected to study their antitumor activity alone and in combination with the genotoxic anticancer drugs cisplatin and doxorubicin on breast carcinoma, (ER+) cell line (MCF-7). The results indicated that the studied compounds inhibited Chk2 activity with high potency (IC50 = 5.56 nM - 46.20 nM). The studied candidates exhibited remarkable antitumor activity against MCF-7 (IG50 = 6.6 μM - 24.9 μM). Compounds 10a-c, 14 and 15 significantly potentiated the activity of the studied genotoxic drugs, whereas, compounds 9b and 20-23 antagonized their activity. Moreover, the combination of compound 10b with cisplatin revealed the best apoptotic effect as well as combination of compound 10b with doxorubicin led to complete arrest of the cell cycle at S phase where more than 40% of cells are in the S phase with no cells at G2/M. Structure-activity relationship was discussed on the basis of molecular modeling study using Molecular modeling Environment program (MOE).
Collapse
Affiliation(s)
- Shadia A Galal
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, 12622, Egypt.
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, 12622, Egypt
| | - Samia A Shouman
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt
| | - Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium; Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Omaima M Kandil
- Department of Animal Reproduction & Artificial Insemination, Division, of Veterinary Research, National Research Centre, Cairo, 12622, Egypt
| | - Omnia M Kandil
- Department of Parasitology, Animal Disease, Division, of Veterinary, National Research Centre, Cairo, 12622, Egypt
| | - Ashraf Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering & Biotechnology, National Research Centre, 12622, Cairo, Egypt
| | - Yasmine S El Abd
- Department of Microbial Biotechnology, Division of Genetic Engineering & Biotechnology, National Research Centre, 12622, Cairo, Egypt
| | - Reem El-Shenawy
- Department of Microbial Biotechnology, Division of Genetic Engineering & Biotechnology, National Research Centre, 12622, Cairo, Egypt
| | - Yasmin M Attia
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt
| | - Ahmed A El-Rashedy
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, 12622, Egypt
| | - Hoda I El Diwani
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|