151
|
Abu Shqair A, Kim EH. Multi-scaled Monte Carlo calculation for radon-induced cellular damage in the bronchial airway epithelium. Sci Rep 2021; 11:10230. [PMID: 33986410 PMCID: PMC8119983 DOI: 10.1038/s41598-021-89689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Radon is a leading cause of lung cancer in indoor public and mining workers. Inhaled radon progeny releases alpha particles, which can damage cells in the airway epithelium. The extent and complexity of cellular damage vary depending on the alpha particle's kinetic energy and cell characteristics. We developed a framework to quantitate the cellular damage on the nanometer and micrometer scales at different intensities of exposure to radon progenies Po-218 and Po-214. Energy depositions along the tracks of alpha particles that were slowing down were simulated on a nanometer scale using the Monte Carlo code Geant4-DNA. The nano-scaled track histories in a 5 μm radius and 1 μm-thick cylindrical volume were integrated into the tracking scheme of alpha trajectories in a micron-scale bronchial epithelium segment in the user-written SNU-CDS program. Damage distribution in cellular DNA was estimated for six cell types in the epithelium. Deep-sited cell nuclei in the epithelium would have less chance of being hit, but DNA damage from a single hit would be more serious, because low-energy alpha particles of high LET would hit the nuclei. The greater damage in deep-sited nuclei was due to the 7.69 MeV alpha particles emitted from Po-214. From daily work under 1 WL of radon concentration, basal cells would respond with the highest portion of complex DSBs among the suspected progenitor cells in the most exposed regions of the lung epithelium.
Collapse
Affiliation(s)
- Ali Abu Shqair
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
152
|
Kim H, Sung W, Ye SJ. Microdosimetric-Kinetic Model for Radio-enhancement of Gold Nanoparticles: Comparison with LEM. Radiat Res 2021; 195:293-300. [PMID: 33400779 DOI: 10.1667/rade-20-00223.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 11/03/2022]
Abstract
Numerous studies have strongly supported the application of gold nanoparticles (GNPs) as radio-enhanced agents. In our previous study, the local effect model (LEM I) was adopted to predict the cell survival for MDA-MB-231 cells exposed to 150 kVp X rays after 500 µg/ml GNPs treatment. However, microdosimetric quantities could not be obtained, which were correlated with biological effects on cells. Thus, we developed microdosimetric kinetic model (MKM) for GNP radio-enhancement (GNP-MKM), which uses the microdosimetric quantities such as dose-mean lineal energy with subcellular domain size. Using the Monte Carlo simulation tool Geant4, we estimated the dose-mean lineal energy with secondary radiations from GNPs and absorbed dose in the nucleus. The variations in MKM parameters for different domain sizes, and GNP concentrations, were calculated to compare the survival fractions predicted by both models. With a domain radius of 500 nm and a threshold dose of 20 Gy, the sensitizer enhancement ratio predicted by GNP-MKM and GNP-LEM was 1.41 and 1.29, respectively. The GNP-MKM predictions were much more strongly dependent on the domain size than were the GNP-LEM on the threshold dose. These findings provide another method to predict survival fraction for the GNP radio-enhancement.
Collapse
Affiliation(s)
- Hyejin Kim
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Wonmo Sung
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sung-Joon Ye
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Robotics Research Laboratory for Extreme Environment, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea
| |
Collapse
|
153
|
On the Equivalence of the Biological Effect Induced by Irradiation of Clusters of Heavy Atom Nanoparticles and Homogeneous Heavy Atom-Water Mixtures. Cancers (Basel) 2021; 13:cancers13092034. [PMID: 33922478 PMCID: PMC8122863 DOI: 10.3390/cancers13092034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
A multiscale local effect model (LEM)-based framework was implemented to study the cell damage caused by the irradiation of clusters of gold nanoparticles (GNPs) under clinically relevant conditions. The results were compared with those obtained by a homogeneous mixture of water and gold (MixNP) irradiated under similar conditions. To that end, Monte Carlo simulations were performed for the irradiation of GNP clusters of different sizes and MixNPs with a 6 MV Linac spectrum to calculate the dose enhancement factor in water. The capabilities of our framework for the prediction of cell damage trends are examined and discussed. We found that the difference of the main parameter driving the cell damage between a cluster of GNPs and the MixNP was less than 1.6% for all cluster sizes. Our results demonstrate for the first time a simple route to intuit the radiobiological effects of clusters of nanoparticles through the consideration of an equivalent homogenous gold/water mixture. Furthermore, the negligible difference on cell damage between a cluster of GNPs and MixNP simplifies the modelling for the complex geometries of nanoparticle aggregations and saves computational resources.
Collapse
|
154
|
Radiation Enhancer Effect of Platinum Nanoparticles in Breast Cancer Cell Lines: In Vitro and In Silico Analyses. Int J Mol Sci 2021; 22:ijms22094436. [PMID: 33922713 PMCID: PMC8123015 DOI: 10.3390/ijms22094436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
High-Z metallic nanoparticles (NPs) are new players in the therapeutic arsenal against cancer, especially radioresistant cells. Indeed, the presence of these NPs inside malignant cells is believed to enhance the effect of ionizing radiation by locally increasing the dose deposition. In this context, the potential of platinum nanoparticles (PtNPs) as radiosensitizers was investigated in two breast cancer cell lines, T47D and MDA-MB-231, showing a different radiation sensitivity. PtNPs were internalized in the two cell lines and localized in lysosomes and multivesicular bodies. Analyses of cell responses in terms of clonogenicity, survival, mortality, cell-cycle distribution, oxidative stress, and DNA double-strand breaks did not reveal any significant enhancement effect when cells were pre-exposed to PtNPs before being irradiated, as compared to radiation alone. This result is different from that reported in a previous study performed, under the same conditions, on cervical cancer HeLa cells. This shows that the efficacy of radio-enhancement is strongly cell-type-dependent. Simulation of the early stage ionization processes, taking into account the irradiation characteristics and realistic physical parameters in the biological sample, indicated that PtNPs could weakly increase the dose deposition (by 3%) in the immediate vicinity of the nanoparticles. Some features that are potentially responsible for the biological effect could not be taken into account in the simulation. Thus, chemical and biological effects could explain this discrepancy. For instance, we showed that, in these breast cancer cell lines, PtNPs exhibited ambivalent redox properties, with an antioxidant potential which could counteract the radio-enhancement effect. This work shows that the efficacy of PtNPs for enhancing radiation effects is strongly cell-dependent and that no effect is observed in the case of the breast cancer cell lines T47D and MDA-MB-231. Thus, more extensive experiments using other relevant biological models are needed in order to evaluate such combined strategies, since several clinical trials have already demonstrated the success of combining nanoagents with radiotherapy in the treatment of a range of tumor types.
Collapse
|
155
|
He W, Chen C, Xu Z. Electronic excitation in graphene under single-particle irradiation. NANOTECHNOLOGY 2021; 32:165702. [PMID: 33440350 DOI: 10.1088/1361-6528/abdb64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-particle irradiation is a typical condition in space applications, which could be detrimental for electronic devices through processes such as single-event upset or latch-up. For functional devices made of few-atom-thick monolayers that are entirely exposed to the environment, the irradiation effects could be manifested through localized or delocalized electronic excitation, in addition to lattice defect creation. In this work, we explore the single-H irradiation effects on bare or coated graphene monolayers. Real-time time-dependent density functional theory-based first-principles calculation results elucidate the evolution of charge densities in the composite system, showing notable charge excitation but negligible charge deposition. A hexagonal boron nitride coating layer does not protect graphene from these processes. Principal component analysis demonstrates the dominance of localized excitation accompanied by nuclear motion, bond distortion and vibration, as well as a minor contribution from delocalized plasmonic excitation. The significance of coupled electron-ion dynamics in modulating the irradiation processes is identified from comparative studies on the spatial and temporal patterns of excitation for unconstrained and constrained lattices. The stopping power or energy deposition is also calculated, quantifying the dissipative nature of charge density excitation. This study offers fundamental understandings of the single-particle irradiation effects on optoelectronic devices constructed from low-dimensional materials, and inspires unconventional techniques to excite the electrons and ions in a controllable way.
Collapse
Affiliation(s)
- Wanzhen He
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Changqing Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
156
|
Chatzipapas KP, Papadimitroulas P, Loudos G, Papanikolaou N, Kagadis GC. IDDRRA: A novel platform, based on Geant4-DNA to quantify DNA damage by ionizing radiation. Med Phys 2021; 48:2624-2636. [PMID: 33657650 DOI: 10.1002/mp.14817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023] Open
Abstract
PURPOSE This study proposes a novel computational platform that we refer to as IDDRRA (DNA Damage Response to Ionizing RAdiation), which uses Monte Carlo (MC) simulations to score radiation induced DNA damage. MC simulations provide results of high accuracy on the interaction of radiation with matter while scoring the energy deposition based on state-of-the-art physics and chemistry models and probabilistic methods. METHODS The IDDRRA software is based on the Geant4-DNA toolkit together with new tools that were developed for the purpose of this study, including a new algorithm that was developed in Python for the design of the DNA molecules. New classes were developed in C++ to integrate the GUI and produce the simulation's output in text format. An algorithm was also developed to analyze the simulation's output in terms of energy deposition, Single Strand Breaks (SSB), Double Strand Breaks (DSB) and Cluster Damage Sites (CDS). Finally, a new tool was developed to implement probabilistic SSB and DSB repair models using MC techniques. RESULTS This article provides the first benchmarks that the user of the IDDRRA tool can use to validate the functionality of the software as well as to provide a starting point to produce different types of DNA simulations. These benchmarks incorporate different kind of particles (e-, e+, protons, electron spectrum) and DNA molecules. CONCLUSION We have developed the IDDRRA tool and demonstrated its use to study various aspects of the modeling and simulation of a DNA irradiation experiment. The tool is expandable and can be expanded by other users with new benchmarks and applications based on the user's needs and experience. New functionality will be added over time, including the quantification of the indirect damage.
Collapse
Affiliation(s)
- Konstantinos P Chatzipapas
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, 26504, Greece
| | | | - George Loudos
- Bioemission Technology Solutions (BIOEMTECH), Athens, 11472, Greece
| | - Niko Papanikolaou
- Health Science Center, University of Texas, San Antonio, TX, 78229, USA
| | - George C Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, 26504, Greece
| |
Collapse
|
157
|
Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles. Sci Rep 2021; 11:6721. [PMID: 33762596 PMCID: PMC7990972 DOI: 10.1038/s41598-021-85964-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au.
Collapse
|
158
|
Francis Z, Incerti S, Zein SA, Lampe N, Guzman CA, Durante M. Monte Carlo Simulation of SARS-CoV-2 Radiation-Induced Inactivation for Vaccine Development. Radiat Res 2021; 195:221-229. [PMID: 33411888 DOI: 10.1667/rade-20-00241.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 11/03/2022]
Abstract
Immunization with an inactivated virus is one of the strategies currently being tested towards developing a SARS-CoV-2 vaccine. One of the methods used to inactivate viruses is exposure to high doses of ionizing radiation to damage their nucleic acids. While gamma (γ) rays effectively induce lesions in the RNA, envelope proteins are also highly damaged in the process. This in turn may alter their antigenic properties, affecting their capacity to induce an adaptive immune response able to confer effective protection. Here, we modeled the effect of sparsely and densely ionizing radiation on SARS-CoV-2 using the Monte Carlo toolkit Geant4-DNA. With a realistic 3D target virus model, we calculated the expected number of lesions in the spike and membrane proteins, as well as in the viral RNA. Our findings showed that γ rays produced significant spike protein damage, but densely ionizing charged particles induced less membrane damage for the same level of RNA lesions, because a single ion traversal through the nuclear envelope was sufficient to inactivate the virus. We propose that accelerated charged particles produce inactivated viruses with little structural damage to envelope proteins, thereby representing a new and effective tool for developing vaccines against SARS-CoV-2 and other enveloped viruses.
Collapse
Affiliation(s)
- Ziad Francis
- Saint Joseph University, U.R. Mathématiques et Modélisation, Beirut, Lebanon
| | - Sebastien Incerti
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, France
| | - Sara A Zein
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, France
| | - Nathanael Lampe
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, France
| | - Carlos A Guzman
- Helmholtz Zentrum für Infektionsforschung (HZI), Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany.,Technische Universität Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany
| |
Collapse
|
159
|
Matsuya Y, Kai T, Sato T, Liamsuwan T, Sasaki K, Nikjoo H. Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code. Phys Med Biol 2021; 66:06NT02. [PMID: 33588391 DOI: 10.1088/1361-6560/abe65e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The particle and heavy ion transport code system (PHITS) is a general-purpose Monte Carlo radiation transport simulation code. It has the ability to handle diverse particle types over a wide range of energy. The latest PHITS development enables the generation of track structure for proton and carbon ions (1H+, 12C6+) based on the algorithms in the KURBUC code, which is considered as one of the most verified track-structure codes worldwide. This ion track-structure mode is referred to as the PHITS-KURBUC mode. In this study, the range, radial dose distributions, and microdosimetric distributions were calculated using the PHITS-KURBUC mode. Subsequently, they were compared with the corresponding data obtained from the original KURBUC and from other studies. These comparative studies confirm the successful inclusion of the KURBUC code in the PHITS code. As results of the synergistic effect between the macroscopic and microscopic radiation transport codes, this implementation enabled the detailed calculation of the microdosimetric and nanodosimetric quantities under complex radiation fields, such as proton beam therapy with the spread-out Bragg peak.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Thiansin Liamsuwan
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Kohei Sasaki
- Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo 006-8585, Japan
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
160
|
Kyriakou I, Tremi I, Georgakilas AG, Emfietzoglou D. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Appl Radiat Isot 2021; 172:109654. [PMID: 33676082 DOI: 10.1016/j.apradiso.2021.109654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
The increasing clinical use of low-energy photon and electron sources (below few tens of keV) has raised concerns on the adequacy of the existing approximation of an energy-independent radiobiological effectiveness. In this work, the variation of the quality factor (Q) and relative biological effectiveness (RBE) of electrons over the low-medium energy range (0.1 keV-1 MeV) is examined using several microdosimetry-based Monte Carlo methodologies with input data obtained from Geant4-DNA track-structure simulations. The sensitivity of the results to the different methodologies, Geant4-DNA physics models, and target sizes is examined. Calculations of Q and RBE are based on the ICRU Report 40 recommendations, the Kellerer-Hahn approximation, the site version of the theory of dual radiation action (TDRA), the microdosimetric kinetic model (MKM) of cell survival, and the calculated yield of DNA double strand breaks (DSB). The stochastic energy deposition spectra needed as input in the above approaches have been calculated for nanometer spherical volumes using the different electron physics models of Geant4-DNA. Results are normalized at 100 keV electrons which is here considered the reference radiation. It is shown that in the energy range ~50 keV-1 MeV, the calculated Q and RBE are approximately unity (to within 1-2%) irrespective of the methodology, Geant4-DNA physics model, and target size. At lower energies, Q and RBE become energy-dependent reaching a maximum value of ~1.5-2.5 between ~200 and 700 eV. The detailed variation of Q and RBE at low energies depends mostly upon the adopted methodology and target size, and less so upon the Geant4-DNA physics model. Overall, the DSB yield predicts the highest RBE values (with RBEmax≈2.5) whereas the MKM the lowest RBE values (with RBEmax≈1.5). The ICRU Report 40, Kellerer-Hahn, and TDRA methods are in excellent agreement (to within 1-2%) over the whole energy range predicting a Qmax≈2. In conclusion, the approximation Q=RBE=1 was found to be valid only above ~50 keV whereas at lower energies both Q and RBE become strongly energy-dependent. It is envisioned that the present work will contribute towards establishing robust methodologies to determine theoretically the energy-dependence of radiation quality of individual electrons which may then be used in subsequent calculations involving practical electron and photon radiation sources.
Collapse
Affiliation(s)
- Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece.
| | - Ioanna Tremi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| |
Collapse
|
161
|
Small KL, Henthorn NT, Angal-Kalinin D, Chadwick AL, Santina E, Aitkenhead A, Kirkby KJ, Smith RJ, Surman M, Jones J, Farabolini W, Corsini R, Gamba D, Gilardi A, Merchant MJ, Jones RM. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci Rep 2021; 11:3341. [PMID: 33558553 PMCID: PMC7870938 DOI: 10.1038/s41598-021-82772-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
This paper presents the first plasmid DNA irradiations carried out with Very High Energy Electrons (VHEE) over 100-200 MeV at the CLEAR user facility at CERN to determine the Relative Biological Effectiveness (RBE) of VHEE. DNA damage yields were measured in dry and aqueous environments to determine that ~ 99% of total DNA breaks were caused by indirect effects, consistent with other published measurements for protons and photons. Double-Strand Break (DSB) yield was used as the biological endpoint for RBE calculation, with values found to be consistent with established radiotherapy modalities. Similarities in physical damage between VHEE and conventional modalities gives confidence that biological effects of VHEE will also be similar-key for clinical implementation. Damage yields were used as a baseline for track structure simulations of VHEE plasmid irradiation using GEANT4-DNA. Current models for DSB yield have shown reasonable agreement with experimental values. The growing interest in FLASH radiotherapy motivated a study into DSB yield variation with dose rate following VHEE irradiation. No significant variations were observed between conventional and FLASH dose rate irradiations, indicating that no FLASH effect is seen under these conditions.
Collapse
Affiliation(s)
- K L Small
- The University of Manchester, Manchester, UK.
- The Cockcroft Institute, Daresbury, UK.
| | - N T Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - D Angal-Kalinin
- The University of Manchester, Manchester, UK
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - A L Chadwick
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - E Santina
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - A Aitkenhead
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - K J Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R J Smith
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - M Surman
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - J Jones
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - W Farabolini
- CERN, Geneva, Switzerland
- CEA Saclay, IRFU-DACM, Saclay, France
| | | | | | - A Gilardi
- CERN, Geneva, Switzerland
- Federico II, DIETI, University of Napoli, Napoli, Italy
| | - M J Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R M Jones
- The University of Manchester, Manchester, UK
- The Cockcroft Institute, Daresbury, UK
| |
Collapse
|
162
|
Chegeni N, Kouhkan E, Hussain A, Hassanvand M. The effect of the nucleus random location on the cellular S-values - Based on Geant4-DNA. Appl Radiat Isot 2021; 168:109427. [PMID: 33097380 DOI: 10.1016/j.apradiso.2020.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The nucleus is the most crucial target in cell micro-dosimetry. At cell division time, cells do not have concentric geometry synchronously. This issue will be more essential for the low-energy electron emitters. This study investigates the variety of mean absorbed dose (S-value) in the non-concentric cell-nucleus model and random nucleus location within the cell. METHODS The S-values were calculated by Geant4-DNA for the cell and nucleus with different radius (with the RC/RN ratio = 1.2, 2, 3) and the cell geometry contains nuclei with varying positions inside the cell. Two important components, cytoplasm to the nucleus (N←Cy) and the cell surface to the nucleus (N←Cs) are considered in this work for mono energetic electrons (10-100 keV). To eliminate the effect of the nucleus position (during cell division) on the S-value, the nucleus location in each run was randomly selected inside the cell to represent the cell in a floating state. RESULTS As the nucleus becomes closer to the cell membrane the differences are more noticeable especially for electrons with energy less than 20 keV as for RN/RC = 1.2, 2, and 3 about 18, 70, and 200%, respectively. CONCLUSION Due to the variable position of the nucleus in cell division, using a random place defined in Geant4, the calculations are getting closer to the reality while there is not such possibility for analytical method used by MIRD.
Collapse
Affiliation(s)
- N Chegeni
- Departments of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - E Kouhkan
- Departments of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Hussain
- MCCPM, Medical Physics Department, 675 McDermott Ave, Winnipeg, MB, R3E 0V9, Cancer Care Manitoba, MB, Canada.
| | - M Hassanvand
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
163
|
Ahmadi Ganjeh Z, Eslami-Kalantari M, Ebrahimi Loushab M, Mowlavi AA. Calculation of direct DNA damages by a new approach for carbon ions and protons using Geant4-DNA. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
164
|
Lai Y, Jia X, Chi Y. Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy. Phys Med Biol 2021; 66:025004. [PMID: 33171449 DOI: 10.1088/1361-6560/abc93b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oxygen plays a critical role in determining the initial DNA damages induced by ionizing radiation. It is important to mechanistically model the oxygen effect in the water radiolysis process. However, due to the computational costs from the many body interaction problem, oxygen is often ignored or treated as a constant continuum radiolysis-scavenger background in the simulations using common microscopic Monte Carlo tools. In this work, we reported our recent progress on the modeling of the chemical stage of the water radiolysis with an explicit consideration of the oxygen effect, based upon our initial development of an open-source graphical processing unit (GPU)-based MC simulation tool, gMicroMC. The inclusion of oxygen mainly reduces the yields of [Formula: see text] and [Formula: see text] chemical radicals, turning them into highly toxic [Formula: see text] and [Formula: see text] species. To demonstrate the practical value of gMicroMC in large scale simulation problems, we applied the oxygen-simulation-enabled gMicroMC to compute the yields of chemical radicals under a high instantaneous dose rate [Formula: see text] to study the oxygen depletion hypothesis in FLASH radiotherapy. A decreased oxygen consumption rate (OCR) was found associated with a reduced initial oxygen concentration level due to reduced probabilities of reactions. With respect to dose rate, for the oxygen concentration of 21% and electron energy of 4.5 [Formula: see text], OCR remained approximately constant (∼0.22 [Formula: see text]) for [Formula: see text]'s of [Formula: see text], [Formula: see text] and reduced to 0.19 [Formula: see text] at [Formula: see text], because the increased dose rate improved the mutual reaction frequencies among radicals, hence reducing their reactions with oxygen. We computed the time evolution of oxygen concentration under the FLASH irradiation setups. At the dose rate of [Formula: see text] and initial oxygen concentrations from 0.01% to 21%, the oxygen is unlikely to be fully depleted with an accumulative dose of 30 Gy, which is a typical dose used in FLASH experiments. The computational efficiency of gMicroMC when considering oxygen molecules in the chemical stage was evaluated through benchmark work to GEANT4-DNA with simulating an equivalent number of radicals. With an initial oxygen concentration of 3% (∼105 molecules), a speedup factor of 1228 was achieved for gMicroMC on a single GPU card when comparing with GEANT4-DNA on a single CPU.
Collapse
Affiliation(s)
- Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America. innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75287, United States of America
| | | | | |
Collapse
|
165
|
Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4-DNA. Sci Rep 2021; 11:1524. [PMID: 33452450 PMCID: PMC7810756 DOI: 10.1038/s41598-021-81215-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
We evaluate the track segment yield G' of typical water radiolysis products (eaq-, ·OH and H2O2) under heavy ions (He, C and Fe ions) using a Monte Carlo simulation code in the Geant4-DNA. Furthermore, we reproduce experimental results of ·OH of He and C ions around the Bragg peak energies (< 6 MeV/u). In the relatively high energy region (e.g., > 10 MeV/u), the simulation results using Geant4-DNA have agreed with experimental results. However, the G-values of water radiolysis species have not been properly evaluated around the Bragg peak energies, at which high ionizing density can be expected. Around the Bragg peak energy, dense continuous secondary products are generated, so that it is necessary to simulate the radical-radical reaction more accurately. To do so, we added the role of secondary products formed by irradiation. Consequently, our simulation results are in good agreement with experimental results and previous simulations not only in the high-energy region but also around the Bragg peak. Several future issues are also discussed regarding the roles of fragmentation and multi-ionization to realize more realistic simulations.
Collapse
|
166
|
Arce P, Bolst D, Bordage MC, Brown JMC, Cirrone P, Cortés-Giraldo MA, Cutajar D, Cuttone G, Desorgher L, Dondero P, Dotti A, Faddegon B, Fedon C, Guatelli S, Incerti S, Ivanchenko V, Konstantinov D, Kyriakou I, Latyshev G, Le A, Mancini-Terracciano C, Maire M, Mantero A, Novak M, Omachi C, Pandola L, Perales A, Perrot Y, Petringa G, Quesada JM, Ramos-Méndez J, Romano F, Rosenfeld AB, Sarmiento LG, Sakata D, Sasaki T, Sechopoulos I, Simpson EC, Toshito T, Wright DH. Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group. Med Phys 2021; 48:19-56. [PMID: 32392626 PMCID: PMC8054528 DOI: 10.1002/mp.14226] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. AIMS To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. MATERIALS AND METHODS G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. RESULTS This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. DISCUSSION Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. CONCLUSION The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.
Collapse
Affiliation(s)
| | - D Bolst
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - M-C Bordage
- CRCT (INSERM and Paul Sabatier University), Toulouse, France
| | - J M C Brown
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | | | | | - D Cutajar
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | | | - L Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital, Lausanne, Switzerland
| | | | - A Dotti
- SLAC National Accelerator Laboratory, Stanford, CA, USA
| | - B Faddegon
- University of California, San Francisco, CA, USA
| | - C Fedon
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - S Guatelli
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - S Incerti
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, Gradignan, France
| | - V Ivanchenko
- Tomsk State University, Tomsk, Russian Federation
- CERN, Geneva, Switzerland
| | - D Konstantinov
- NRC "Kurchatov Institute" - IHEP, Protvino, Russian Federation
| | - I Kyriakou
- Medical Physics Laboratory, University of Ioannina, Ioannina, Greece
| | - G Latyshev
- NRC "Kurchatov Institute" - IHEP, Protvino, Russian Federation
| | - A Le
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | | | | | | | | | - C Omachi
- Nagoya Proton Therapy Center, Nagoya, Japan
| | | | - A Perales
- Medical Physics Department of Clínica Universidad de Navarra, Pamplona, Spain
| | - Y Perrot
- IRSN, Fontenay-aux-Roses, France
| | | | | | | | - F Romano
- INFN Catania Section, Catania, Italy
- Medical Physics Department, National Physical Laboratory, Teddington, UK
| | - A B Rosenfeld
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | | | - D Sakata
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | | | - I Sechopoulos
- Radboud University Medical Center, Nijmegen, The Netherlands
- Dutch Expert Center for Screening (LRCB), Nijmegen, The Netherlands
| | - E C Simpson
- Department of Nuclear Physics, Research School of Physics, Australian National University, Canberra, Australia
| | - T Toshito
- Nagoya Proton Therapy Center, Nagoya, Japan
| | - D H Wright
- SLAC National Accelerator Laboratory, Stanford, CA, USA
| |
Collapse
|
167
|
Tran HN, Ramos-Méndez J, Shin WG, Perrot Y, Faddegon B, Okada S, Karamitros M, Davídková M, Štěpán V, Incerti S, Villagrasa C. Assessment of DNA damage with an adapted independent reaction time approach implemented in Geant4-DNA for the simulation of diffusion-controlled reactions between radio-induced reactive species and a chromatin fiber. Med Phys 2020; 48:890-901. [PMID: 33232522 PMCID: PMC7986154 DOI: 10.1002/mp.14612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose Simulation of indirect damage originating from the attack of free radical species produced by ionizing radiation on biological molecules based on the independent pair approximation is investigated in this work. In addition, a new approach, relying on the independent pair approximation that is at the origin of the independent reaction time (IRT) method, is proposed in the chemical stage of Geant4‐DNA. Methods This new approach has been designed to respect the current Geant4‐DNA chemistry framework while proposing a variant IRT method. Based on the synchronous algorithm, this implementation allows us to access the information concerning the position of radicals and may make it more convenient for biological damage simulations. Estimates of the evolution of free species as well as biological hits in a segment of DNA chromatin fiber in Geant4‐DNA were compared for the dynamic time step approach of the step‐by‐step (SBS) method, currently used in Geant4‐DNA, and this newly implemented IRT. Results Results show a gain in computation time of a factor of 30 for high LET particle tracks with a better than 10% agreement on the number of DNA hits between the value obtained with the IRT method as implemented in this work and the SBS method currently available in Geant4‐DNA. Conclusion Offering in Geant4‐DNA more efficient methods for the chemical step based on the IRT method is a task in progress. For the calculation of biological damage, information on the position of chemical species is a crucial point. This can be achieved using the method presented in this paper.
Collapse
Affiliation(s)
- Hoang Ngoc Tran
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, BP17, Fontenay aux Roses, 92262, France
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Wook-Geun Shin
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, Gradignan, 33175, France.,Department of Radiation Convergence Engineering, Yonsei University, Wonju, 26493, Korea
| | - Yann Perrot
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, BP17, Fontenay aux Roses, 92262, France
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Shogo Okada
- KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Mathieu Karamitros
- Radiation Laboratory, University of Notre Dame, Notre Dame, In, 46556, USA
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Prague, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Prague, Czech Republic
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, Gradignan, 33175, France
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, BP17, Fontenay aux Roses, 92262, France
| |
Collapse
|
168
|
Majima T, Mizutani S, Mizunami Y, Kitajima K, Tsuchida H, Saito M. Fast-ion-induced secondary ion emission from submicron droplet surfaces studied using a new coincidence technique with forward-scattered projectiles. J Chem Phys 2020; 153:224201. [DOI: 10.1063/5.0032301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Majima
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - S. Mizutani
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Y. Mizunami
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - K. Kitajima
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - H. Tsuchida
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji 611-0011, Japan
| | - M. Saito
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
169
|
Zhu H, McNamara AL, McMahon SJ, Ramos-Mendez J, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H, Schuemann J. Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio. Radiat Res 2020; 194:9-21. [PMID: 32401689 DOI: 10.1667/rr15531.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/11/2020] [Indexed: 12/21/2022]
Abstract
The cellular response to ionizing radiation continues to be of significant research interest in cancer radiotherapy, and DNA is recognized as the critical target for most of the biologic effects of radiation. Incident particles can cause initial DNA damages through physical and chemical interactions within a short time scale. Initial DNA damages can undergo repair via different pathways available at different stages of the cell cycle. The misrepair of DNA damage results in genomic rearrangement and causes mutations and chromosome aberrations, which are drivers of cell death. This work presents an integrated study of simulating cell response after proton irradiation with energies of 0.5-500 MeV (LET of 60-0.2 keV/µm). A model of a whole nucleus with fractal DNA geometry was implemented in TOPAS-nBio for initial DNA damage simulations. The default physics and chemistry models in TOPAS-nBio were used to describe interactions of primary particles, secondary particles, and radiolysis products within the nucleus. The initial DNA double-strand break (DSB) yield was found to increase from 6.5 DSB/Gy/Gbp at low-linear energy transfer (LET) of 0.2 keV/µm to 21.2 DSB/Gy/Gbp at high LET of 60 keV/µm. A mechanistic repair model was applied to predict the characteristics of DNA damage repair and dose response of chromosome aberrations. It was found that more than 95% of the DSBs are repaired within the first 24 h and the misrepaired DSB fraction increases rapidly with LET and reaches 15.8% at 60 keV/µm with an estimated chromosome aberration detection threshold of 3 Mbp. The dicentric and acentric fragment yields and the dose response of micronuclei formation after proton irradiation were calculated and compared with experimental results.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, P.R. China
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02114
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - Jose Ramos-Mendez
- Department of Radiation Oncology, University of California San Francisco, California 94143
| | - Nicholas T Henthorn
- Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, California 94143
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02114
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, California
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, P.R. China
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
170
|
Seniwal B, Mendes BM, Malano F, Pérez P, Valente M, Fonseca TCF. Monte Carlo assessment of low energy electron range in liquid water and dosimetry effects. Phys Med 2020; 80:363-372. [PMID: 33285337 DOI: 10.1016/j.ejmp.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022] Open
Abstract
The effects of low energy electrons in biological tissues have proved to lead to severe damages at the cellular and sub-cellular level. It is due to an increase in the relative biological effectiveness (RBE) of these electrons with a decrease in their penetration range. That is, lower the range higher will be its RBE.Therefore, accurate determination of low energy electron range becomes a key issue for radiation dosimetry. This work reports on in-water electron tracks evaluated at low kinetic energy (1-50 keV) using isotropic mono-energetic point source approach suitably implemented by different general-purpose Monte Carlo codes. For this aim, simulations were performed using PENELOPE, EGSnrc, MCNP6, FLUKA and Geant4-DNA Monte Carlo codes to obtain the particle range, R,R90,R50. Finally, evaluation of dose point kernel (DPK), as used for internal dosimetry, was carried out as an application example. Scaled dose point kernels (sDPK) were estimated for a range of mono-energetic low energy electron sources. The non-negligible differences among the calculated sDPK using different codes were obtained for energy electrons up to 5 keV. It was also observed that differences of in-water range for low-energy electrons, due to the different general-purpose Monte Carlo codes, affected the DPKs used for dosimetry by convolution approach. Finally, the 3D dosimetry was found to be almost not affected at macroscopic clinical scale, whereas non-negligible differences appeared at the microscopic level. Hence, a thorough validation of the used sDPKs have to be performed before they could be used in applications to derive any conclusions.
Collapse
Affiliation(s)
- Baljeet Seniwal
- Departamento de Engenharia Nuclear (DEN/UFMG) & Programa de Pós-graduação em Ciências e Técnicas Nucleares (PCTN), Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Bruno M Mendes
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Belo Horizonte, MG, Brasil
| | - Francisco Malano
- Departamento de Ciencias Físicas & Centro de Física e Ingeniería en Medicina (CFIM), Univesidad de La Frontera, Temuco, Chile
| | - Pedro Pérez
- Instituto de Física E. Gaviola, CONICET & Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIR(x)), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Córdoba, Argentina
| | - Mauro Valente
- Instituto de Física E. Gaviola, CONICET & Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIR(x)), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Córdoba, Argentina; Centro de Física e Ingeniería en Medicina (CFIM) & Departamento de Ciencias Físicas, Univesidad de La Frontera, Temuco, Chile
| | - Telma C F Fonseca
- Departamento de Engenharia Nuclear (DEN/UFMG) & Programa de Pós-graduação em Ciências e Técnicas Nucleares (PCTN), Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
171
|
Sakata D, Belov O, Bordage MC, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Petrovic I, Ristic-Fira A, Shin WG, Incerti S. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci Rep 2020; 10:20788. [PMID: 33247225 PMCID: PMC7695857 DOI: 10.1038/s41598-020-75982-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation’s track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic “fully integrated” MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}γ-H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.
Collapse
Affiliation(s)
- Dousatsu Sakata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan.
| | - Oleg Belov
- Joint Institute for Nuclear Research, Dubna, Russia.,Dubna State University, Dubna, Russia
| | - Marie-Claude Bordage
- INSERM, UMR 1037, CRCT, Université Paul Sabatier, Toulouse, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Susanna Guatelli
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan
| | - Vladimir Ivanchenko
- Geant4 Associates International Ltd, Hebden Bridge, UK.,Tomsk State University, Tomsk, Russia
| | | | - Ioanna Kyriakou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | | | - Ivan Petrovic
- Vinca Institute of Nuclear Science, University of Belgrade, Belgrade, Serbia
| | | | - Wook-Geun Shin
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, Gradignan, 33170, France
| | | |
Collapse
|
172
|
Tang W, Tang B, Li X, Wang Y, Li Z, Gao Y, Gao H, Yan C, Sun L. Cellular S-value evaluation based on real human cell models using the GATE MC package. Appl Radiat Isot 2020; 168:109509. [PMID: 33214023 DOI: 10.1016/j.apradiso.2020.109509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
Exploring the spatial distribution of the energy loss of ionising radiation at the subcellular level is indispensable for evaluating the radiobiological effects of targeted radionuclide therapy accurately. Believing that S-values are important for obtaining the target dose, the Committee on Medical Internal Radiation Dose (MIRD) proposed a method to obtain the cellular dosimetric parameter. However, most available data on cellular S-values were calculated based on simple geometric models, such as ellipsoids or spheres, which do not accurately reflect biological reality. To investigate the influence of the cellular model on S-values, calculations were performed for two kinds of polygon-surface phantom models of realistic, individual human cells, the lung epithelial cell model (the B2B Phantom model) and the hepatocyte model (the Liver Phantom model), using the Monte Carlo (MC) software package GATE. To analyse the influence of cell geometry on the final S-value, the differences in the S-values between the realistic cell models and simple geometric sphere and ellipsoid models with similar volumes were calculated and compared for six different combinations of source and target regions. The irradiation conditions were 0.01-1.10 MeV monoenergetic electron sources and the Auger electronic therapy nuclides Ga-67, Tc-99m, In-111, I-125 and Tl-201, which are commonly used in nuclear medicine. The S-values calculated in this study are different from the results of the simple geometry models proposed by previous researchers. Two more precise polygon-surface phantom models of realistic, individual human cells were used, which provided more accurate information about the cell dose and will be very useful for the diagnostic application of radiotherapy in the future.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Bo Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China; Department of Radiation Protection Safety, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xiang Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Zhanpeng Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Yunan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Congchong Yan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, China.
| |
Collapse
|
173
|
Engels E, Bakr S, Bolst D, Sakata D, Li N, Lazarakis P, McMahon SJ, Ivanchenko V, Rosenfeld AB, Incerti S, Kyriakou I, Emfietzoglou D, Lerch MLF, Tehei M, Corde S, Guatelli S. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models. Phys Med Biol 2020; 65:225017. [PMID: 32916674 DOI: 10.1088/1361-6560/abb7c2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles have demonstrated significant radiosensitization of cancer treatment with x-ray radiotherapy. To understand the mechanisms at the basis of nanoparticle radiosensitization, Monte Carlo simulations are used to investigate the dose enhancement, given a certain nanoparticle concentration and distribution in the biological medium. Earlier studies have ordinarily used condensed history physics models to predict nanoscale dose enhancement with nanoparticles. This study uses Geant4-DNA complemented with novel track structure physics models to accurately describe electron interactions in gold and to calculate the dose surrounding gold nanoparticle structures at nanoscale level. The computed dose in silico due to a clinical kilovoltage beam and the presence of gold nanoparticles was related to in vitro brain cancer cell survival using the local effect model. The comparison of the simulation results with radiobiological experimental measurements shows that Geant4-DNA and local effect model can be used to predict cell survival in silico in the case of x-ray kilovoltage beams.
Collapse
Affiliation(s)
- Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Wu J, Xie Y, Wang L, Wang Y. Monte Carlo simulations of energy deposition and DNA damage using TOPAS-nBio. ACTA ACUST UNITED AC 2020; 65:225007. [DOI: 10.1088/1361-6560/abbb73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
175
|
|
176
|
Bertolet A, Grilj V, Guardiola C, Harken AD, Cortés-Giraldo MA, Baratto-Roldán A, Carabe A. Experimental validation of an analytical microdosimetric model based on Geant4-DNA simulations by using a silicon-based microdosimeter. Radiat Phys Chem Oxf Engl 1993 2020; 176:109060. [PMID: 33100611 PMCID: PMC7583143 DOI: 10.1016/j.radphyschem.2020.109060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To study the agreement between proton microdosimetric distributions measured with a silicon-based cylindrical microdosimeter and a previously published analytical microdosimetric model based on Geant4-DNA in-water Monte Carlo simulations for low energy proton beams. METHODS AND MATERIAL Distributions for lineal energy (y) are measured for four proton monoenergetic beams with nominal energies from 2.0 MeV to 4.5 MeV, with a tissue equivalent proportional counter (TEPC) and a silicon-based microdosimeter. The actual energy for protons traversing the silicon-based microdosimeter is simulated with SRIM. Monoenergetic beams with these energies are simulated with Geant4-DNA code by simulating a water cylinder site of dimensions equal to those of the microdosimeter. The microdosimeter response is calibrated by using the distribution peaks obtained from the TEPC. Analytical calculations fory ¯ F andy ¯ D using our methodology based on spherical sites are also performed choosing the equivalent sphere to be checked against experimental results. RESULTS Distributions for y at silicon are converted into tissue equivalent and compared to the Geant4-DNA simulated, yielding maximum deviations of 1.03% fory ¯ F and 1.17% fory ¯ D . Our analytical method generates maximum deviations of 1.29% and 3.33%, respectively, with respect to experimental results. CONCLUSION Simulations in Geant4-DNA with ideal cylindrical sites in liquid water produce similar results to the measurements in an actual silicon-based cylindrical microdosimeter properly calibrated. The found agreement suggests the possibility to experimentally verify the calculated clinicaly ¯ D with our analytical method.
Collapse
Affiliation(s)
- A Bertolet
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia, PA, USA
- Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain
| | - V Grilj
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, USA
| | - C Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; Université de Paris, IJCLab, 91405 Orsay France
| | - A D Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, USA
| | - M A Cortés-Giraldo
- Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain
| | - A Baratto-Roldán
- Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain
| | - A Carabe
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
177
|
Donahue WP, Newhauser WD, Li X, Chen F, Dey J. Computational feasibility of simulating changes in blood flow through whole-organ vascular networks from radiation injury. Biomed Phys Eng Express 2020; 6:055027. [PMID: 33444258 DOI: 10.1088/2057-1976/abaf5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vasculature is necessary to the healthy function of most tissues. In radiation therapy, injury of the vasculature can have both beneficial and detrimental effects, such as tumor starvation, cardiac fibrosis, and white-matter necrosis. These effects are caused by changes in blood flow due to the vascular injury. Previously, research has focused on simulating the radiation injury of vasculature in small volumes of tissue, ignoring the systemic effects of local damage on blood flow. Little is known about the computational feasibility of simulating the radiation injury to whole-organ vascular networks. The goal of this study was to test the computational feasibility of simulating the dose deposition to a whole-organ vascular network and the resulting change in blood flow. To do this, we developed an amorphous track-structure model to transport radiation and combined this with existing methods to model the vasculature and blood flow rates. We assessed the algorithm's computational scalability, execution time, and memory usage. The data demonstrated it is computationally feasible to calculate the radiation dose and resulting changes in blood flow from 2 million protons to a network comprising 8.5 billion blood vessels (approximately the number in the human brain) in 87 hours using a 128-node cluster. Furthermore, the algorithm demonstrated both strong and weak scalability, meaning that additional computational resources can reduce the execution time further. These results demonstrate, for the first time, that it is computationally feasible to calculate radiation dose deposition in whole-organ vascular networks. These findings provide key insights into the computational aspects of modeling whole-organ radiation damage. Modeling the effects radiation has on vasculature could prove useful in the study of radiation effects on tissues, organs, and organisms.
Collapse
Affiliation(s)
- William P Donahue
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States of America
| | | | | | | | | |
Collapse
|
178
|
Ramos-Méndez J, Shin WG, Karamitros M, Domínguez-Kondo J, Tran NH, Incerti S, Villagrasa C, Perrot Y, Štěpán V, Okada S, Moreno-Barbosa E, Faddegon B. Independent reaction times method in Geant4-DNA: Implementation and performance. Med Phys 2020; 47:5919-5930. [PMID: 32970844 DOI: 10.1002/mp.14490] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The simulation of individual particle tracks and the chemical stage following water radiolysis in biological tissue is an effective means of improving our knowledge of the physico-chemical contribution to the biological effect of ionizing radiation. However, the step-by-step simulation of the reaction kinetics of radiolytic species is the most time-consuming task in Monte Carlo track-structure simulations, with long simulation times that are an impediment to research. In this work, we present the implementation of the independent reaction times (IRT) method in Geant4-DNA Monte Carlo toolkit to improve the computational efficiency of calculating G-values, defined as the number of chemical species created or lost per 100 eV of deposited energy. METHODS The computational efficiency of IRT, as implemented, is compared to that from available Geant4-DNA step-by-step simulations for electrons, protons and alpha particles covering a wide range of linear energy transfer (LET). The accuracy of both methods is verified using published measured data from fast electron irradiations for • OH and e aq - for time-dependent G-values. For IRT, simulations in the presence of scavengers irradiated by cobalt-60 γ-ray and 2 MeV protons are compared with measured data for different scavenging capacities. In addition, a qualitative assessment comparing measured LET-dependent G-values with Geant4-DNA calculations in pure liquid water is presented. RESULTS The IRT improved the computational efficiency by three orders of magnitude relative to the step-by-step method while differences in G-values by 3.9% at 1 μs were found. At 7 ps, • OH and e aq - yields calculated with IRT differed from recent published measured data by 5% ± 4% and 2% ± 4%, respectively. At 1 μs, differences were 9% ± 5% and 6% ± 7% for • OH and e aq - , respectively. Uncertainties are one standard deviation. Finally, G-values at different scavenging capacities and LET-dependent G-values reproduced the behavior of measurements for all radiation qualities. CONCLUSION The comprehensive validation of the Geant4-DNA capabilities to accurately simulate the chemistry following water radiolysis is an ongoing work. The implementation presented in this work is a necessary step to facilitate performing such a task.
Collapse
Affiliation(s)
- José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Wook-Geun Shin
- Centre d'Études Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, UMR5797, Gradignan, 33175, France.,Department of Radiation Convergence Engineering, Yonsei University, Wonju, 26493, Korea
| | - Mathieu Karamitros
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jorge Domínguez-Kondo
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla PUE, 72000, Mexico
| | - Ngoc Hoang Tran
- Centre d'Études Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, UMR5797, Gradignan, 33175, France
| | - Sebastien Incerti
- Centre d'Études Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, UMR5797, Gradignan, 33175, France
| | - Carmen Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, BP17, Fontenay-aux-Roses, 92262, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, BP17, Fontenay-aux-Roses, 92262, France
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Prague, Czech Republic
| | - Shogo Okada
- KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Eduardo Moreno-Barbosa
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla PUE, 72000, Mexico
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| |
Collapse
|
179
|
Vasi F, Schmidli K, Hälg RA, Schneider U. Feasibility study of macroscopic simulations of nanodosimetric parameters for proton therapy. Med Phys 2020; 47:5872-5881. [DOI: 10.1002/mp.14178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fabiano Vasi
- Radiotherapy Hirslanden Witellikerstrasse 40 8032Zurich Switzerland
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| | - Kevin Schmidli
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| | - Roger A. Hälg
- Radiotherapy Hirslanden Witellikerstrasse 40 8032Zurich Switzerland
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| | - Uwe Schneider
- Radiotherapy Hirslanden Witellikerstrasse 40 8032Zurich Switzerland
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| |
Collapse
|
180
|
Ristic-Fira AM, Keta OD, Petković VD, Cammarata FP, Petringa G, Cirrone PG, Cuttone G, Incerti S, Petrović IM. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1825035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Francesco P. Cammarata
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
- CNR-IBFM, UOS, Cefalù, Italy
| | - Giada Petringa
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Pablo G.A. Cirrone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Giacomo Cuttone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | | | - Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
181
|
Ramos-Méndez J, Domínguez-Kondo N, Schuemann J, McNamara A, Moreno-Barbosa E, Faddegon B. LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH Therapy. Radiat Res 2020; 194:351-362. [PMID: 32857855 PMCID: PMC7644138 DOI: 10.1667/rade-20-00084.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023]
Abstract
FLASH radiotherapy delivers a high dose (≥10 Gy) at a high rate (≥40 Gy/s). In this way, particles are delivered in pulses as short as a few nanoseconds. At that rate, intertrack reactions between chemical species produced within the same pulse may affect the heterogeneous chemistry stage of water radiolysis. This stochastic process suits the capabilities of the Monte Carlo method, which can model intertrack effects to aid in radiobiology research, including the design and interpretation of experiments. In this work, the TOPAS-nBio Monte Carlo track-structure code was expanded to allow simulations of intertrack effects in the chemical stage of water radiolysis. Simulation of the behavior of radiolytic yields over a long period of time (up to 50 s) was verified by simulating radiolysis in a Fricke dosimeter irradiated by 60Co γ rays. In addition, LET-dependent G values of protons delivered in single squared pulses of widths, 1 ns, 1 µs and 10 µs, were obtained and compared to simulations using no intertrack considerations. The Fricke simulation for the calculated G value of Fe3+ ion at 50 s was within 0.4% of the accepted value from ICRU Report 34. For LET-dependent G values at the end of the chemical stage, intertrack effects were significant at LET values below 2 keV/µm. Above 2 keV/µm the reaction kinetics remained limited locally within each track and thus, effects of intertrack reactions remained low. Therefore, when track structure simulations are used to investigate the biological damage of FLASH irradiation, these intertrack reactions should be considered. The TOPAS-nBio framework with the expansion to intertrack chemistry simulation provides a useful tool to assist in this task.
Collapse
Affiliation(s)
- J. Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - N. Domínguez-Kondo
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - J. Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A. McNamara
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - E. Moreno-Barbosa
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| |
Collapse
|
182
|
Tang J, Xiao Q, Gui Z, Li B, Zhang P. Simulation of Proton-Induced DNA Damage Patterns Using an Improved Clustering Algorithm. Radiat Res 2020; 194:363-378. [PMID: 32931557 DOI: 10.1667/rr15552.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/23/2020] [Indexed: 11/03/2022]
Abstract
Simulations of deoxyribonucleic acid (DNA) molecular damage use the traversal algorithm that has the disadvantages of being time-consuming, slowly converging, and requiring high-performance computer clusters. This work presents an improved version of the algorithm, "density-based spatial clustering of applications with noise" (DBSCAN), using a KD-tree approach to find neighbors of each point for calculating clustered DNA damage. The resulting algorithm considers the spatial distributions for sites of energy deposition and hydroxyl radical attack, yielding the statistical probability of (single and double) DNA strand breaks. This work achieves high accuracy and high speed at calculating clustered DNA damage that has been induced by proton treatment at the molecular level while running on an i7 quad-core CPU. The simulations focus on the indirect effect generated by hydroxyl radical attack on DNA. The obtained results are consistent with those of other published experiments and simulations. Due to the array of chemical processes triggered by proton treatment, it is possible to predict the effects that different track structures of various energy protons produce on eliciting direct and indirect damage of DNA.
Collapse
Affiliation(s)
- Jing Tang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, 030051, P.R. China
| | - Qinfeng Xiao
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P.R. China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, 030051, P.R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P.R. China
| | - Pengcheng Zhang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, 030051, P.R. China
| |
Collapse
|
183
|
Stainforth R, Schuemann J, McNamara AL, Wilkins RC, Chauhan V. Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer. Int J Radiat Biol 2020; 97:85-101. [PMID: 32909875 DOI: 10.1080/09553002.2020.1820096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Adverse outcome pathways (AOPs) provide a modular framework for describing sequences of biological key events (KEs) and key event relationships (KERs) across levels of biological organization. Empirical evidence across KERs can support construction of quantified AOPs (qAOPs). Using an example AOP of energy deposition from ionizing radiation onto DNA leading to lung cancer incidence, we investigate the feasibility of quantifying data from KERs supported by all types of stressors. The merits and challenges of this process in the context of AOP construction are discussed. MATERIALS AND METHODS Empirical evidence across studies of dose-response from four KERs of the AOP were compiled independently for quantification. Three upstream KERs comprised of evidence from various radiation types in line with AOP guidelines. For these three KERs, a focused analysis of data from alpha-particle studies was undertaken to better characterize the process to the adverse outcome (AO) for a radon gas stressor. Numerical information was extracted from tables and graphs to plot and tabulate the response of KEs. To complement areas of the AOP quantification process, Monte Carlo (MC) simulations in TOPAS-nBio were performed to model exposure conditions relevant to the AO for an example bronchial compartment of the lung with secretory cell nuclei targets. RESULTS Quantification of AOP KERs highlighted the relevance of radiation types under the stressor-agnostic intent of AOP design, motivating a focus on specific types. For a given type, significant differences of KE response indicate meaningful data to derive linkages from the MIE to the AO is lacking and that better response-response focused studies are required. The MC study estimates the linear energy transfer (LET) of alpha-particles emitted by radon-222 and its progeny in the secretory cell nuclei of the example lung compartment to range from 94 - 5 + 5 to 192 - 18 + 15 keV/µm. CONCLUSION Quantifying AOP components provides a means to assemble empirical evidence across different studies. This highlights challenges in the context of studies examining similar endpoints using different radiation types. Data linking KERs to a MIE of 'deposition of energy' is shown to be non-compatible with the stressor-agnostic principles of AOP design. Limiting data to that describing response-response relationships between adjacent KERs may better delineate studies relevant to the damage that drives a pathway to the next KE and still support an 'all hazards' approach. Such data remains limited and future investigations in the radiation field may consider this approach when designing experiments and reporting their results and outcomes.
Collapse
Affiliation(s)
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
184
|
Zhao X, Liu R, Zhao T, Reynoso FJ. Modeling double-strand breaks from direct and indirect action in a complete human genome single cell Geant4 model. Biomed Phys Eng Express 2020; 6. [PMID: 34035191 DOI: 10.1088/2057-1976/abb4bd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 11/12/2022]
Abstract
The aim of this work is to develop and validate a computational model to investigate direct and indirect DNA damage by directly quantifying DNA strand breaks. A detailed geometrical target model was created in the Monte Carlo toolkit Geant4 to represent the nucleus of a single human cell with complete human genome. A calculation framework to simulate double-strand breaks (DSBs) was implemented using this single cell model in the Geant4-DNA extension. A detailed ellipsoidal single cell model was implemented using a compacted DNA structure representing the fibroblast cell in the G0/G1 phase of the cycle using a total of 6 Gbp within the nucleus to represent the complete human genome. This geometry was developed from the publicly available Geant4-DNA example (wholeNuclearDNA), and modified to record DNA damage for both the physical and chemical stages. A clustering algorithm was implemented in the analysis process in order to quantify direct, indirect, and mixed DSBs. The model was validated against published experimental and computational results for DSB Gy-1Gbp-1and the relative biological effectiveness (RBE) values for 250 kVp and Co-60 photons, as well as 2-100 MeV mono-energetic protons. A general agreement was observed over the whole simulated proton energy range, Co-60 beam, and 250 kVp in terms of the yield of DSB Gy-1Gbp-1and RBE. The DSB yield was 8.0 ± 0.3 DSB Gy-1Gbp-1for Co-60, and 9.2 ± 0.2 DSB Gy-1Gbp-1for 250 kVp, and between 11.1 ± 0.9 and 8.1 ± 0.5 DSB Gy-1Gbp-1for 2-100 MeV protons. The results also show mixed DSBs composed of direct and indirect SSBs make up more than half of the total DSBs. The results presented indicate that the current model reliably predicts the DSB yield and RBE for proton and photon irradiations, and allows for the detailed computational investigation of direct and indirect effects in DNA damage.
Collapse
Affiliation(s)
- Xiandong Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, United States of America
| | - Ruirui Liu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, United States of America
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, United States of America
| | - Francisco J Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, United States of America
| |
Collapse
|
185
|
Kundrát P, Friedland W, Becker J, Eidemüller M, Ottolenghi A, Baiocco G. Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies. Sci Rep 2020; 10:15775. [PMID: 32978459 PMCID: PMC7519066 DOI: 10.1038/s41598-020-72857-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Track structure based simulations valuably complement experimental research on biological effects of ionizing radiation. They provide information at the highest level of detail on initial DNA damage induced by diverse types of radiation. Simulations with the biophysical Monte Carlo code PARTRAC have been used for testing working hypotheses on radiation action mechanisms, for benchmarking other damage codes and as input for modelling subsequent biological processes. To facilitate such applications and in particular to enable extending the simulations to mixed radiation field conditions, we present analytical formulas that capture PARTRAC simulation results on DNA single- and double-strand breaks and their clusters induced in cells irradiated by ions ranging from hydrogen to neon at energies from 0.5 GeV/u down to their stopping. These functions offer a means by which radiation transport codes at the macroscopic scale could easily be extended to predict biological effects, exploiting a large database of results from micro-/nanoscale simulations, without having to deal with the coupling of spatial scales and running full track-structure calculations.
Collapse
Affiliation(s)
- Pavel Kundrát
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Janine Becker
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Andrea Ottolenghi
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| |
Collapse
|
186
|
Mahdi SM, Babak SB. Dosimetry study on Auger electron-emitting nuclear medicine radioisotopes in micrometer and nanometer scales using Geant4-DNA simulation. Int J Radiat Biol 2020; 96:1452-1465. [DOI: 10.1080/09553002.2020.1820608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
187
|
Bertolet A, Cortés-Giraldo MA, Carabe-Fernandeza A. An Analytical Microdosimetric Model for Radioimmunotherapeutic Alpha Emitters. Radiat Res 2020; 194:403-410. [DOI: 10.1667/rade-20-00045.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/23/2020] [Indexed: 11/03/2022]
Affiliation(s)
- A. Bertolet
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - M. A. Cortés-Giraldo
- Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain
| | - A. Carabe-Fernandeza
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
188
|
Tan HQ, Koh WYC, Yeo ELL, Ang KW, Poon DJJ, Lim CP, Vajandar SK, Chen CB, Ren M, Osipowicz T, Soo KC, Chua MLK, Park SY. Dosimetric uncertainties impact on cell survival curve with low energy proton. Phys Med 2020; 76:277-284. [PMID: 32738775 DOI: 10.1016/j.ejmp.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
Abstract
There is an increasing number of radiobiological experiments being conducted with low energy protons (less than 5 MeV) for radiobiological studies due to availability of sub-millimetre focused beam. However, low energy proton has broad microdosimetric spectra which can introduce dosimetric uncertainty. In this work, we quantify the impact of this dosimetric uncertainties on the cell survival curve and how it affects the estimation of the alpha and beta parameters in the LQ formalism. Monte Carlo simulation is used to generate the microdosimetric spectra in a micrometer-sized water sphere under proton irradiation. This is modelled using radiobiological experiment set-up at the Centre of Ion Beam Application (CIBA) in National University of Singapore. Our results show that the microdosimetric spectra can introduce both systematic and random shifts in dose and cell survival; this effect is most pronounced with low energy protons. The alpha and beta uncertainties can be up to 10% and above 30%, respectively for low energy protons passing through thin cell target (about 10 microns). These uncertainties are non-negligible and show that care must be taken in using the cell survival curve and its derived parameters for radiobiological models.
Collapse
Affiliation(s)
- Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.
| | - Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | | | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Chu Pek Lim
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Saumitra K Vajandar
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Ce-Belle Chen
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Minqin Ren
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Thomas Osipowicz
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
189
|
Cellular S values in spindle-shaped cells: a dosimetry study on more realistic cell geometries using Geant4-DNA Monte Carlo simulation toolkit. Ann Nucl Med 2020; 34:742-756. [PMID: 32632563 DOI: 10.1007/s12149-020-01498-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/01/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cellular dosimetry plays a crucial role in radiobiology and evaluation of the relative merits of radiopharmaceuticals used for targeted radionuclide therapy. The present study aims to investigate the effects of various cell geometries on dosimetric characteristics of several Auger emitters distributed in different subcellular compartments using Monte Carlo simulation. METHODS The Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit was employed to calculate the mean absorbed dose per unit cumulated activity (S value) for different subcellular distributions of several Auger electron-emitting theranostic radionuclides including 99mTc, 111In, 123I, 125I, and 201Tl. The simulations were carried out in various single-cell models of liquid water including spherical, ellipsoidal, spherical spindle, and ellipsoidal spindle cell models. The latter two models which are generalized from the first two models were inspired by the morphologies of spindle-shaped (fusiform) cells, and were developed to provide more realistic modeling of this common geometry observed in many healthy and cancerous cells. RESULTS Evaluation of the S values calculated for the examined cell models reveals that the differences are small (less than 9%) for the cell ← cell, cell ← cell surface, and nucleus ← nucleus source-target combinations. However, moderate discrepancies are seen (up to 28%) when the nucleus is considered as the target, as well as the radioactivity is either internalized into the cytoplasm or bound to the cell membrane. CONCLUSIONS The findings of the present work suggest that the assumption of spherical cell geometry may provide reasonably accurate estimates of the cellular/nuclear dose for the considered Auger emitters, even for spindle-shaped cells. Of course, this approximation should be used with caution for the nucleus ← cytoplasm and nucleus ← cell surface configurations, since the S-value sensitivity to the cell geometry is somewhat significant in these cases.
Collapse
|
190
|
Bordes J, Incerti S, Mora-Ramirez E, Tranel J, Rossi C, Bezombes C, Bordenave J, Bardiès M, Brown R, Bordage MC. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy. Med Phys 2020; 47:5222-5234. [PMID: 32623743 DOI: 10.1002/mp.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Small-scale dosimetry studies generally consider an artificial environment where the tumors are spherical and the radionuclides are homogeneously biodistributed. However, tumor shapes are irregular and radiopharmaceutical biodistributions are heterogeneous, impacting the energy deposition in targeted radionuclide therapy. To bring realism, we developed a dosimetric methodology based on a three-dimensional in vitro model of follicular lymphoma incubated with rituximab, an anti-CD20 monoclonal antibody used in the treatment of non-Hodgkin lymphomas, which might be combined with a radionuclide. The effects of the realistic geometry and biodistribution on the absorbed dose were highlighted by comparison with literature data. Additionally, to illustrate the possibilities of this methodology, the effect of different radionuclides on the absorbed dose distribution delivered to the in vitro tumor were compared. METHODS The starting point was a model named multicellular aggregates of lymphoma cells (MALC). Three MALCs of different dimensions and their rituximab biodistribution were considered. Geometry, antibody location and concentration were extracted from selective plane illumination microscopy. Assuming antibody radiolabeling with Auger electron (125 I and 111 In) and β- particle emitters (177 Lu, 131 I and 90 Y), we simulated energy deposition in MALCs using two Monte Carlo codes: Geant4-DNA with "CPA100" physics models for Auger electron emitters and Geant4 with "Livermore" physics models for β- particle emitters. RESULTS MALCs had ellipsoid-like shapes with major radii, r, of ~0.25, ~0.5 and ~1.3 mm. Rituximab was concentrated in the periphery of the MALCs. The absorbed doses delivered by 177 Lu, 131 I and 90 Y in MALCs were compared with literature data for spheres with two types of homogeneous biodistributions (on the surface or throughout the volume). Compared to the MALCs, the mean absorbed doses delivered in spheres with surface biodistributions were between 18% and 38% lower, while with volume biodistribution they were between 15% and 29% higher. Regarding the radionuclides comparison, the relationship between MALC dimensions, rituximab biodistribution and energy released per decay impacted the absorbed doses. Despite releasing less energy, 125 I delivered a greater absorbed dose per decay than 111 In in the r ~ 0.25 mm MALC (6.78·10-2 vs 6.26·10-2 µGy·Bq-1 ·s-1 ). Similarly, the absorbed doses per decay in the r ~ 0.5 mm MALC for 177 Lu (2.41·10-2 µGy·Bq-1 ·s-1 ) and 131 I (2.46·10-2 µGy·Bq-1 ·s-1 ) are higher than for 90 Y (1.98·10-2 µGy·Bq-1 ·s-1 ). Furthermore, radionuclides releasing more energy per decay delivered absorbed dose more uniformly through the MALCs. Finally, when considering the radiopharmaceutical effective half-life, due to the biological half-life of rituximab being best matched by the physical half-life of 177 Lu and 131 I compared to 90 Y, the first two radionuclides delivered higher absorbed doses. CONCLUSION In the simulated configurations, β- emitters delivered higher and more uniform absorbed dose than Auger electron emitters. When considering radiopharmaceutical half-lives, 177 Lu and 131 I delivered absorbed doses higher than 90 Y. In view of real irradiation of MALCs, such a work may be useful to select suited radionuclides and to help explain the biological effects.
Collapse
Affiliation(s)
- Julien Bordes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Sébastien Incerti
- Université de Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | - Erick Mora-Ramirez
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Escuela de Física, CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Jonathan Tranel
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cédric Rossi
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, Dijon, 21000, France
| | - Christine Bezombes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Julie Bordenave
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Manuel Bardiès
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Richard Brown
- Institute of Nuclear Medicine, University College London, 235 Euston Road, London, NW1 2BU, UK
| | - Marie-Claude Bordage
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| |
Collapse
|
191
|
Peukert D, Kempson I, Douglass M, Bezak E. Modelling Spatial Scales of Dose Deposition and Radiolysis Products from Gold Nanoparticle Sensitisation of Proton Therapy in A Cell: From Intracellular Structures to Adjacent Cells. Int J Mol Sci 2020; 21:ijms21124431. [PMID: 32580352 PMCID: PMC7353008 DOI: 10.3390/ijms21124431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 01/08/2023] Open
Abstract
Gold nanoparticle (GNP) enhanced proton therapy is a promising treatment concept offering increased therapeutic effect. It has been demonstrated in experiments which provided indications that reactive species play a major role. Simulations of the radiolysis yield from GNPs within a cell model were performed using the Geant4 toolkit. The effect of GNP cluster size, distribution and number, cell and nuclear membrane absorption and intercellular yields were evaluated. It was found that clusters distributed near the nucleus increased the nucleus yield by 91% while reducing the cytoplasm yield by 7% relative to a disperse distribution. Smaller cluster sizes increased the yield, 200 nm clusters had nucleus and cytoplasm yields 117% and 35% greater than 500 nm clusters. Nuclear membrane absorption reduced the cytoplasm and nucleus yields by 8% and 35% respectively to a permeable membrane. Intercellular enhancement was negligible. Smaller GNP clusters delivered near sub-cellular targets maximise radiosensitisation. Nuclear membrane absorption reduces the nucleus yield, but can damage the membrane providing another potential pathway for biological effect. The minimal effect on adjacent cells demonstrates that GNPs provide a targeted enhancement for proton therapy, only effecting cells with GNPs internalised. The provided quantitative data will aid further experiments and clinical trials.
Collapse
Affiliation(s)
- Dylan Peukert
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Division of ITEE, University of South Australia, Mawson Lakes, SA 5095, Australia
- Correspondence:
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Michael Douglass
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Eva Bezak
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia;
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5005, Australia
| |
Collapse
|
192
|
Zhu H, McNamara AL, Ramos-Mendez J, McMahon SJ, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H, Schuemann J. A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio. Phys Med Biol 2020; 65:085015. [PMID: 32101803 DOI: 10.1088/1361-6560/ab7a6b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Monte Carlo (MC) track structure simulation tools are commonly used for predicting radiation induced DNA damage by modeling the physical and chemical reactions at the nanometer scale. However, the outcome of these MC simulations is particularly sensitive to the adopted parameters which vary significantly across studies. In this study, a previously developed full model of nuclear DNA was used to describe the DNA geometry. The TOPAS-nBio MC toolkit was used to investigate the impact of physics and chemistry models as well as three key parameters (the energy threshold for direct damage, the chemical stage time length, and the probability of damage between hydroxyl radical reactions with DNA) on the induction of DNA damage. Our results show that the difference in physics and chemistry models alone can cause differences up to 34% and 16% in the DNA double strand break (DSB) yield, respectively. Additionally, changing the direct damage threshold, chemical stage length, and hydroxyl damage probability can cause differences of up to 28%, 51%, and 71% in predicted DSB yields, respectively, for the configurations in this study.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America. Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China. Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Lund CM, Famulari G, Montgomery L, Kildea J. A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue. Phys Med 2020; 73:29-42. [PMID: 32283505 DOI: 10.1016/j.ejmp.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022] Open
Abstract
Nuclear reactions induced during high-energy radiotherapy produce secondary neutrons that, due to their carcinogenic potential, constitute an important risk for the development of iatrogenic cancer. Experimental and epidemiological findings indicate a marked energy dependence of neutron relative biological effectiveness (RBE) for carcinogenesis, but little is reported on its physical basis. While the exact mechanism of radiation carcinogenesis is yet to be fully elucidated, numerical microdosimetry can be used to predict the biological consequences of a given irradiation based on its microscopic pattern of energy depositions. Building on recent studies, this work investigated the physics underlying neutron RBE by using the microdosimetric quantity dose-mean lineal energy (y‾D) as a proxy. A simulation pipeline was constructed to explicitly calculate the y‾D of radiation fields that consisted of (i) the open source Monte Carlo toolkit Geant4, (ii) its radiobiological extension Geant4-DNA, and (iii) a weighted track-sampling algorithm. This approach was used to study mono-energetic neutrons with initial kinetic energies between 1 eV and 10 MeV at multiple depths in a tissue-equivalent phantom. Spherical sampling volumes with diameters between 2 nm and 1 μm were considered. To obtain a measure of RBE, the neutron y‾D values were divided by those of 250 keV X-rays that were calculated in the same way. Qualitative agreement was found with published radiation protection factors and simulation data, allowing for the dependencies of neutron RBE on depth and energy to be discussed in the context of the neutron interaction cross sections and secondary particle distributions in human tissue.
Collapse
Affiliation(s)
- C M Lund
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada.
| | - G Famulari
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada
| | - L Montgomery
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada
| | - J Kildea
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
194
|
Kouhkan E, Chegeni N, Hussain A. The Effect of Nucleus Size on the Cell Dose in Targeted Radionuclide Therapy - A Monte Carlo Study. JOURNAL OF MEDICAL SIGNALS & SENSORS 2020; 10:113-118. [PMID: 32676447 PMCID: PMC7359958 DOI: 10.4103/jmss.jmss_21_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/04/2019] [Accepted: 12/25/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Nowadays, the use of radiopharmaceuticals in medicine is unavoidable. Depending on the distribution of the radiopharmaceutical in the cells, the nucleus absorbed dose changes by the variations in their geometry size. Therefore, this study aims to investigate the S-value by the variation of nucleus size using Geant4 toolkit. METHODS Two spherical cells with a variety of nucleus size have been considered as the cancerous cell. Monoenergetic electrons ranging from 5 to 300 keV are distributed uniformly. The S-value for four target-source components (including Nucleus←Cytoplasm, Nucleus←Cell surface, Nucleus←Nucleus, and Nucleus←Nucleus surface) is computed and plotted. Then, the obtained data are compared with analytical Medical Internal Radiation Dose (MIRD) data. RESULTS In Nucleus←Cytoplasm compartment for electrons below 10 keV, obtained S-values show a slight decrease for the nucleus in the radii of around half of the cell radius and then S-values increase with the increase in the nucleus radii. In the S-value of Nucleus←Cell surface, for all electron energy levels, a slight decrease observed with the increase of nucleus radii. For Nucleus←Nucleus and Nucleus←Nucleus surface cases, with an increase in the size of the cell nucleus, a sharp reduction in the S-values is detected. CONCLUSION It can be concluded that for the beta emitters with low-energy radiation (<40 keV), the S-value is heavily dependent on the nucleus size which may affect the treatment of small tumors. While for the beta emitters with higher-energy radiation (>100 keV), the size of the nucleus is not very noticeable in the induced S-value.
Collapse
Affiliation(s)
- Ebrahim Kouhkan
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Chegeni
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amjad Hussain
- Department of Medical Physics, Cancer Care Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
195
|
Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers (Basel) 2020; 12:cancers12040799. [PMID: 32225023 PMCID: PMC7226293 DOI: 10.3390/cancers12040799] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common tool in medical procedures. Monte Carlo (MC) techniques are widely used when dosimetry is the matter of investigation. The scientific community has invested, over the last 20 years, a lot of effort into improving the knowledge of radiation biology. The present article aims to summarize the understanding of the field of DNA damage response (DDR) to ionizing radiation by providing an overview on MC simulation studies that try to explain several aspects of radiation biology. The need for accurate techniques for the quantification of DNA damage is crucial, as it becomes a clinical need to evaluate the outcome of various applications including both low- and high-energy radiation medical procedures. Understanding DNA repair processes would improve radiation therapy procedures. Monte Carlo simulations are a promising tool in radiobiology studies, as there are clear prospects for more advanced tools that could be used in multidisciplinary studies, in the fields of physics, medicine, biology and chemistry. Still, lot of effort is needed to evolve MC simulation tools and apply them in multiscale studies starting from small DNA segments and reaching a population of cells.
Collapse
|
196
|
Moeini H, Mokari M, Alamatsaz MH, Taleei R. Calculation of the initial DNA damage induced by alpha particles in comparison with protons and electrons using Geant4-DNA. Int J Radiat Biol 2020; 96:767-778. [DOI: 10.1080/09553002.2020.1730015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Mojtaba Mokari
- Department of Physics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | | | - Reza Taleei
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
197
|
Lai Y, Tsai MY, Tian Z, Qin N, Yan C, Hung SH, Chi Y, Jia X. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation - Part II: sensitivity and uncertainty analysis. Med Phys 2020; 47:1971-1982. [PMID: 31975390 DOI: 10.1002/mp.14036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Calculations of deoxyribonucleic acid (DNA) damages involve many parameters in the computation process. As these parameters are often subject to uncertainties, it is of central importance to comprehensively quantify their impacts on DNA single-strand break (SSB) and double-strand break (DSB) yields. This has been a challenging task due to the required large number of simulations and the relatively low computational efficiency using CPU-based MC packages. In this study, we present comprehensive evaluations on sensitivities and uncertainties of DNA SSB and DSB yields on 12 parameters using our GPU-based MC tool, gMicroMC. METHODS We sampled one electron at a time in a water sphere containing a human lymphocyte nucleus and transport the electrons and generated radicals until 2 Gy dose was accumulated in the nucleus. We computed DNA damages caused by electron energy deposition events in the physical stage and the hydroxyl radicals at the end of the chemical stage. We repeated the computations by varying 12 parameters: (a) physics cross section, (b) cutoff energy for electron transport, (c)-(e) three branching ratios of hydroxyl radicals in the de-excitation of excited water molecules, (f) temporal length of the chemical stage, (g)-(h) reaction radii for direct and indirect damages, (i) threshold energy defining the threshold damage model to generate a physics damage, (j)-(k) minimum and maximum energy values defining the linear-probability damage model to generate a physics damage, and (l) probability to generate a damage by a radical. We quantified sensitivity of SSB and DSB yields with respect to these parameters for cases with 1.0 and 4.5 keV electrons. We further estimated uncertainty of SSB and DSB yields caused by uncertainties of these parameters. RESULTS Using a threshold of 10% uncertainty as a criterion, threshold energy in the threshold damage model, maximum energy in the linear-probability damage model, and probability for a radical to generate a damage were found to cause large uncertainties in both SSB and DSB yields. The scaling factor of the cross section, cutoff energy, physics reaction radius, and minimum energy in the linear-probability damage model were found to generate large uncertainties in DSB yields. CONCLUSIONS We identified parameters that can generate large uncertainties in the calculations of SSB and DSB yields. Our study could serve as a guidance to reduce uncertainties of parameters and hence uncertainties of the simulation results.
Collapse
Affiliation(s)
- Youfang Lai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Min-Yu Tsai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen Tian
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Nan Qin
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Congchong Yan
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Shih-Hao Hung
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xun Jia
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| |
Collapse
|
198
|
Tsai MY, Tian Z, Qin N, Yan C, Lai Y, Hung SH, Chi Y, Jia X. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation --- Part I: Core algorithm and validation. Med Phys 2020; 47:1958-1970. [PMID: 31971258 DOI: 10.1002/mp.14037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Monte Carlo (MC) simulation of radiation interactions with water medium at physical, physicochemical, and chemical stages, as well as the computation of biologically relevant quantities such as DNA damages, are of critical importance for the understanding of microscopic basis of radiation effects. Due to the large problem size and many-body simulation problem in the chemical stage, existing CPU-based computational packages encounter the problem of low computational efficiency. This paper reports our development on a GPU-based microscopic Monte Carlo simulation tool gMicroMC using advanced GPU-acceleration techniques. METHODS gMicroMC simulated electron transport in the physical stage using an interaction-by-interaction scheme to calculate the initial events generating radicals in water. After the physicochemical stage, initial positions of all radicals were determined. Simulation of radicals' diffusion and reactions in the chemical stage was achieved using a step-by-step model using GPU-accelerated parallelization together with a GPU-enabled box-sorting algorithm to reduce the computations of searching for interaction pairs and therefore improve efficiency. A multi-scale DNA model of the whole lymphocyte cell nucleus containing ~6.2 Gbp of DNA was built. RESULTS Accuracy of physical stage simulation was demonstrated by computing stopping power and track length. The results agreed with published data and the data produced by GEANT4-DNA (version 10.3.3) simulations with 10 -20% difference in most cases. Difference of yield values of major radiolytic species from GEANT4-DNA results was within 10%. We computed DNA damages caused by monoenergetic 662 keV photons, approximately representing 137 Cs decay. Single-strand break (SSB) and double-strand break (DSB) yields were 196 ± 8 SSB/Gy/Gbp and 7.3 ± 0.7 DSB/Gy/Gbp, respectively, which agreed with the result of 188 SSB/Gy/Gbp and 8.4 DSB/Gy/Gbp computed by Hsiao et al. Compared to computation using a single CPU, gMicroMC achieved a speedup factor of ~540x using an NVidia TITAN Xp GPU card. CONCLUSIONS The achieved accuracy and efficiency demonstrated that gMicroMC can facilitate research on microscopic radiation transport simulation and DNA damage calculation. gMicroMC is an open-source package available to the research community.
Collapse
Affiliation(s)
- Min-Yu Tsai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen Tian
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Nan Qin
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Congchong Yan
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Youfang Lai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shih-Hao Hung
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xun Jia
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| |
Collapse
|
199
|
Margis S, Magouni M, Kyriakou I, Georgakilas AG, Incerti S, Emfietzoglou D. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code. Phys Med Biol 2020; 65:045007. [PMID: 31935692 DOI: 10.1088/1361-6560/ab6b47] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To calculate the yield of direct DNA damage induced by low energy electrons using Monte Carlo generated microdosimetric spectra at the nanometer scale and examine the influence of various simulation inputs. The potential of classical microdosimetry to offer a viable and simpler alternative to more elaborate mechanistic approaches for practical applications is discussed. Track-structure simulations with the Geant4-DNA low-energy extension of the Geant4 Monte Carlo toolkit were used for calculating lineal energy spectra in spherical volumes with dimensions relevant to double-strand-break (DSB) induction. The microdosimetric spectra were then used to calculate the yield of simple and clustered DSB based on literature values of the threshold energy of DNA damage. The influence of the different implementations of the dielectric function of liquid water available in Geant4-DNA (Option 2 and Option 4 constructors), as well as the effect of particle tracking cutoff energy and target size are examined. Frequency- and dose-mean lineal energies in liquid-water spheres of 2, 2.3, 2.6, and 3.4 nm diameter, as well as, number of simple and clustered DSB/Gy/cell are presented for electrons over the 100 eV to 100 keV energy range. Results are presented for both the 'default' (Option 2) and 'Ioannina' (Option 4) physics models of Geant4-DNA applying several commonly used tracking cutoff energies (10, 20, 50, 100 eV). Overall, the choice of the physics model and target diameter has a moderate effect (up to ~10%-30%) on the DSB yield whereas the effect of the tracking cutoff energy may be significant (>100%). Importantly, the yield of both simple and clustered DSB was found to vary significantly (by a factor of 2 or more) with electron energy over the examined range. The yields of electron-induced simple and clustered DSB exhibit a strong energy dependence over the 100 eV-100 keV range with implications to radiation quality issues. It is shown that a classical microdosimetry approach for the calculation of DNA damage based on lineal energy spectra in nanometer-size targets predicts comparable results to computationally intensive mechanistic approaches which use detailed atomistic DNA geometries, thus, offering a relatively simple and robust alternative for some practical applications.
Collapse
Affiliation(s)
- Stefanos Margis
- Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
200
|
Incerti S, Brown JM, Guatelli S. Advances in Geant4 applications in medicine. Phys Med 2020; 70:224-227. [DOI: 10.1016/j.ejmp.2020.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
|