151
|
Wang R, Li YH, Xu Y, Li YB, Wu HL, Guo H, Zhang JZ, Zhang JJ, Pan XY, Li XJ. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:147-53. [PMID: 19879308 DOI: 10.1016/j.pnpbp.2009.10.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/03/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Curcumin is a major constituent of curcuma longa, a traditional medicine used to manage mental disorders effectively in China. The neuroprotective effects of curcumin have been demonstrated in our previous studies. In the present research, we confirmed this effect by showing that curcumin application promoted the viability of cultured rodent cortical neurons. Moreover, when neurons were pretreated with tyrosine kinase B (TrkB) antibody, known to inhibit the activity of brain-derived neurotrophic factor (BDNF), the protective effect of curcumin was blocked. Additionally, treatment of curcumin increased BDNF and phosphor-TrkB and both of these enhancements can be suppressed by ERK and PI-3K inhibitors. The administration of curcumin led to increased levels of phosphor-ERK and AKT, which were each blocked by MAPK and PI-3K inhibitors. Furthermore, the curcumin-induced increase in phosphorylated cyclic AMP response element binding protein (CREB), which has been implicated as a possible mediator of antidepressant actions, was prevented by MAPK and PI-3K inhibitors. Therefore, we hypothesize the neuroprotection of curcumin might be mediated via BDNF/TrkB-MAPK/PI-3K-CREB signaling pathway.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Witkin JM, Li X. New approaches to the pharmacological management of major depressive disorder. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:347-79. [PMID: 20230766 DOI: 10.1016/s1054-3589(08)57009-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite effective and safe therapies for major depressive disorder (MDD), the current arsenal of antidepressant therapies does not fully satisfy the needs of patients or physicians. Many patients are only partial responders or are treatment resistant and side effects interfere with compliance. The majority of antidepressants directly affect monoamine neurotransmission within the central nervous system. Moving beyond this mechanism has been a challenge because of the lack of knowledge about the underlying etiology and pathophysiology of MDD. Provided in this report is a review of some of the major new advances in MDD research that suggest the possibility of novel and improved future therapeutic options. Emphasis is placed on studies of unipolar, but not bipolar, depression. New therapies include dual and triple monoamine uptake inhibitors, non-conventional antidepressants such as tianeptine, and a number of augmentation strategies. In addition, studies are underway on a number of mechanisms of action that might yield the next therapeutic advance. These include agents that interact with endocannabiniod systems, examination of natural products, and compounds that influence neuropeptide systems such as galanin and melanin-concentrating hormone, and growth and neurotrophic factors. Epigenetic mechanisms involving histone modification are also being explored. An area of intensive investigation is glutamate neurotransmission. Data support the hypothesis that NMDA receptor antagonists are effective in MDD individuals resistant to conventional therapies. The potential of metabotropic glutamate receptors as novel targets is also discussed. Accumulating evidence supports the idea that amplification of AMPA receptor function is a critical link in the transduction processes involved antidepressant effects.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | |
Collapse
|
153
|
Xu Y, Li S, Chen R, Li G, Barish PA, You W, Chen L, Lin M, Ku B, Pan J, Ogle WO. Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav 2009; 94:447-53. [PMID: 19857512 DOI: 10.1016/j.pbb.2009.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 09/15/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
Proanthocyanidin is a phenolic product present in plants which has antioxidant, antinociceptive and neuroprotective properties, without inducing significant toxicological effects. The present study tested the hypothesis that low molecular proanthocyanidin from grapes that has optimized bioavailability, would exert antidepressant-like activities in behavioral despair tests. The results suggested that oral administration proanthocyanidin at doses of 25 and 50mg/kg for 7days significantly reduced the duration of immobility in both the tail suspension and forced swimming tests. The doses that affected the immobile response did not affect locomotor activity. In addition, the neurochemical and neuropharmacological assays showed that proanthocyanidin produced a marked increase of 5-HT levels at 25 and 50mg/kg in three brain regions, the frontal cortex, hippocampus and hypothalamus. Noradrenaline and dopamine levels were also increased when higher dose of proanthocyanidin (50mg/kg) administration both in the frontal cortex and hippocampus. These effects were similar to those observed for the classical antidepressant imipramine (10mg/kg, i.p.). Moreover, Our study suggested that proanthocyanidin (12.5, 25 and 50mg/kg) dose dependently inhibited monoamine oxidase-A (MAO-A) activity, while MAO-B inhibitory activity was also found at higher doses (25 and 50mg/kg) after 7days administration. MAO-A selective inhibitor, moclobemide (20mg/kg, i.g.) produced MAO-A inhibition of 70.5% in the mouse brain. These findings suggest that the antidepressant-like effects of proanthocyanidin may involve the central monoaminergic neurotransmitter systems.
Collapse
Affiliation(s)
- Ying Xu
- J. Crayton Pruitt Family Department of Biomedical Engineering and Evelyn F. & William L. Mcknight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Pérez-Neri I, Montes S, Ríos C. Inhibitory effect of dehydroepiandrosterone on brain monoamine oxidase activity: in vivo and in vitro studies. Life Sci 2009; 85:652-6. [PMID: 19772862 DOI: 10.1016/j.lfs.2009.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/28/2009] [Accepted: 09/10/2009] [Indexed: 12/30/2022]
Abstract
AIMS To evaluate the acute effect of dehydroepiandrosterone (DHEA) on monoamine oxidase (MAO) activity in the corpus striatum (CS) and the nucleus accumbens (NAc) in vivo and in vitro. MAIN METHODS Male Wistar rats received an i.p. injection of DHEA (30, 60 and 120mg/kg) and MAO activity was assayed by formation of 4-hydroxyquinoline 2h later. For in vitro studies, DHEA (100nM-1mM) was added to brain tissue homogenates to assay MAO activity. KEY FINDINGS DHEA significantly reduced (-24%) total MAO activity in the NAc (F=8.5, p<0.001), but not in the CS, at 120mg/kg dose. No significant difference was observed when MAO A and MAO B activities were independently analyzed. When assayed in vitro, total MAO, MAO A and MAO B activities were reduced by DHEA to 55.7, 28.2 and 54.4% in the NAc and to 71.9, 44.2 and 61.2% in the CS, respectively (IC(50) 4.7-56.1microM). SIGNIFICANCE An inhibitory effect of DHEA on MAO activity may be involved in the antidepressant and neuroprotective effects of the steroid. Since MAO inhibition reduces neurodegeneration in clinical trials for Parkinson's disease, our results suggest that DHEA may be useful to treat depression and to prevent neuronal death in this disorder.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, Mexico City, Mexico
| | | | | |
Collapse
|
155
|
Li YC, Wang FM, Pan Y, Qiang LQ, Cheng G, Zhang WY, Kong LD. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:435-49. [PMID: 19302828 DOI: 10.1016/j.pnpbp.2009.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 11/18/2022]
Abstract
Serotonergic receptors take their physiologic effects by affecting adenylyl cyclase (AC) catalytic activity and cyclic adenosine monophosphate (cAMP) concentration. AC-cAMP second messenger pathway has been recently suggested to play an important role in depression. Therefore, the compound that regulates the signal pathway may have potential as antidepressant. Curcumin is the main component of Curcuma longa L, a well-known indigenous herb with comprehensive bioactivities. In the present study, we investigated the effects of chronic unpredictable mild stress (CUMS) and curcumin on behaviours and serotonergic receptor-coupled AC-cAMP signal pathway in rats. Curcumin produced beneficial effects on the stressed rats by effectively improving CUMS-induced low sucrose consumption and reducing serum corticosterone levels in rats. Moreover, curcumin enhanced AC activity and cAMP levels in platelet and various brain regions, and up-regulated mRNA expressions of AC subtypes AC 2, AC 8 and cAMP response element binding protein (CREB) in the hippocampus, cortex and hypothalamus of the CUMS rats. Curcumin also attenuated CUMS-induced reductions of 5-hydroxytryptamine (5-HT) levels and high expressions of central 5-HT(1A/1B/7) receptors in rats. These results suggested that the potent antidepressant property of curcumin might be attributed to its improvement of AC-cAMP pathway as well as CREB via suppressing central 5-HT(1A/1B/7) receptors in the CUMS rats. Our findings provided a basis for examining the interaction of serotonergic receptors and AC-cAMP pathway in depression and curcumin treatment.
Collapse
MESH Headings
- Adenylyl Cyclases/classification
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Analysis of Variance
- Animals
- Antidepressive Agents/therapeutic use
- Body Weight/drug effects
- Brain/drug effects
- Brain/metabolism
- Corticosterone/blood
- Curcumin/therapeutic use
- Cyclic AMP/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drinking/drug effects
- Eating/drug effects
- Fluoxetine/therapeutic use
- Food Deprivation/physiology
- Food Preferences/drug effects
- Food Preferences/physiology
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Serotonin/classification
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Signal Transduction/drug effects
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Up-Regulation/drug effects
- Water Deprivation/physiology
Collapse
Affiliation(s)
- Yu-Cheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
156
|
Bharal N, Sahaya K, Jain S, Mediratta PK, Sharma KK. Curcumin has anticonvulsant activity on increasing current electroshock seizures in mice. Phytother Res 2009; 22:1660-4. [PMID: 18661468 DOI: 10.1002/ptr.2551] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epilepsy is one of the most common serious disorders of the brain. Several experimental studies have reported neuroprotective and antioxidant activity of certain natural products like curcumin, an active ingredient of turmeric. The present study was designed to explore the effect of acute administration of curcumin at doses 50, 100 and 200 mg/kg, orally (p.o.) and its chronic (x 21 days) administration in 100 mg/kg, p.o. on increasing current electroshock (ICES) test, elevated plus maze and actophotometer in mice. Curcumin in a dose of 100 mg/kg significantly increased the seizure threshold in ICES test on both acute and chronic administration. The same dose of 100 mg/kg on acute administration showed anxiogenic effect on elevated plus maze and actophotometer test. However, this anxiogenic effect of curcumin disappeared on chronic administration. These results suggest that curcumin appears to possess anticonvulsant activity in mice.
Collapse
Affiliation(s)
- Nidhi Bharal
- Department of Pharmacology, University College of Medical Sciences, University of Delhi, Delhi 110095, India
| | | | | | | | | |
Collapse
|
157
|
Zhou H, Li X, Gao M. Curcumin protects PC12 cells from corticosterone-induced cytotoxicity: possible involvement of the ERK1/2 pathway. Basic Clin Pharmacol Toxicol 2009; 104:236-40. [PMID: 19175364 DOI: 10.1111/j.1742-7843.2008.00369.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antiglucocorticoid therapy in depressed patients is effective, which indicates that glucocorticoids play a key role in the occurrence of depression. Our previous work demonstrated the efficacy of curcumin in treating depression in rat and mouse models. We characterized the protective effects of curcumin against corticosterone-induced cytotoxicity in PC12 cells and explored the mechanisms of these protective effects in association with the phosphorylation and expression of ERK1/2 in PC12 cells. MTT assay showed that curcumin significantly protected PC12 cells from corticosterone-induced cytotoxicity. Curcumin at concentrations from 10(-8) to 10(-6) M rescued PC12 cells from corticosterone-induced cytotoxicity. Cell viability was increased more than 20% with curcumin treatment. Western blot analysis showed that corticosterone increased ERK1/2 phosphorylation in PC12 cells and curcumin 10(-9) M to 10(-6) M significantly inhibited corticosterone-induced ERK1/2 phosphorylation in PC12 cells in a dose-dependent manner. These results suggest that curcumin is able to protect PC12 cells which may be associated with inhibition of ERK phosphorylation.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | | | | |
Collapse
|
158
|
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41:40-59. [PMID: 18662800 PMCID: PMC2637808 DOI: 10.1016/j.biocel.2008.06.010] [Citation(s) in RCA: 1204] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022]
Abstract
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
159
|
Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201:435-42. [PMID: 18766332 DOI: 10.1007/s00213-008-1300-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/10/2008] [Indexed: 01/20/2023]
Abstract
RATIONALE Curcumin is a major active principle of Curcuma longa, one of the widely used preparations in the Indian system of medicine. It is known for its diverse biological actions. OBJECTIVE The present study was designed to investigate the involvement of monoaminergic system(s) in the antidepressant activity of curcumin and the effect of piperine, a bioavailability enhancer, on the bioavailability and biological effects of curcumin. METHODS AND OBSERVATIONS Behavioral (forced swim test), biochemical (monoamine oxidase (MAO) enzyme inhibitory activity), and neurochemical (neurotransmitter levels estimation) tests were carried out. Curcumin (10-80 mg/kg, i.p.) dose dependently inhibited the immobility period, increased serotonin (5-hydroxytryptamine, 5-HT) as well as dopamine levels (at higher doses), and inhibited the monoamine oxidase enzymes (both MAO-A and MAO-B, higher doses) in mice. Curcumin (20 mg/kg, i.p.) enhanced the anti-immobility effect of subthreshold doses of various antidepressant drugs like fluoxetine, venlafaxine, or bupropion. However, no significant change in the anti-immobility effect of imipramine and desipramine was observed. Furthermore, combination of subthreshold dose of curcumin and various antidepressant drugs resulted in synergistic increase in serotonin (5-HT) levels as compared to their effect per se. There was no change in the norepinephrine levels. The coadministration of piperine (2.5 mg/kg, i.p.), a bioavailability enhancing agent, with curcumin (20 and 40 mg/kg, i.p.) resulted in potentiation of pharmacological, biochemical, and neurochemical activities. CONCLUSION The study provides evidences for mechanism-based antidepressant actions of curcumin. The coadministration of curcumin along with piperine may prove to be a useful and potent natural antidepressant approach in the management of depression.
Collapse
Affiliation(s)
- Shrinivas K Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | | | |
Collapse
|
160
|
Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2008; 92:39-43. [PMID: 19000708 DOI: 10.1016/j.pbb.2008.10.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
Abstract
Curcumin, a yellow pigment extracted from rhizomes of the plant Curcuma longa (turmeric), has been widely used as food additive and also as a herbal medicine throughout Asia. The present study was designed to study the pharmacological, biochemical and neurochemical effects of daily administration of curcumin to rats subjected to chronic unpredictable stress. Curcumin treatment (20 and 40 mg/kg, i.p., 21 days) significantly reversed the chronic unpredictable stress-induced behavioral (increase immobility period), biochemical (increase monoamine oxidase activity) and neurochemical (depletion of brain monoamine levels) alterations. The combination of piperine (2.5 mg/kg, i.p., 21 days), a bioavailability enhancer, with curcumin (20 and 40 mg/kg, i.p., 21 days) showed significant potentiation of its anti-immobility, neurotransmitter enhancing (serotonin and dopamine) and monoamine oxidase inhibitory (MAO-A) effects as compared to curcumin effect per se. This study provided a scientific rationale for the use of curcumin and its co-administration with piperine in the treatment of depressive disorders.
Collapse
|
161
|
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008; 267:133-64. [DOI: 10.1016/j.canlet.2008.03.025] [Citation(s) in RCA: 752] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/07/2023]
|
162
|
Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 2008; 1210:84-91. [PMID: 18420184 DOI: 10.1016/j.brainres.2008.01.104] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
Abstract
Curcumin is a major active component isolated from Curcuma longa. Previously, we have reported its significant antidepressant effect. However, the mechanisms underlying the antidepressant effects are still obscure. In the present study, we explored the effect of curcumin against glutamate excitotoxicity, mainly focusing on the neuroprotective effects of curcumin on the expression of Brain-Derived Neurotrophic Factor (BDNF), which is deeply involved in the etiology and treatment of depression. Exposure of rat cortical neurons to 10 microM glutamate for 24 h caused a significant decrease in BDNF level, accompanied with reduced cell viability and enhanced cell apoptosis. Pretreatment of neurons with curcumin reversed the BDNF expression and cell viability in a dose- and time-dependent manner. However, K252a, a Trk receptor inhibitor which is known to inhibit the activity of BDNF, could block the survival-promoting effect of curcumin. In addition, the up-regulation of BDNF levels by curcumin was also suppressed by K252a. Taken together, these results suggest that the neuroprotective effect of curcumin might be mediated via BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
163
|
The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 2008; 578:43-50. [DOI: 10.1016/j.ejphar.2007.08.045] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/26/2007] [Accepted: 08/30/2007] [Indexed: 11/17/2022]
|
164
|
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. CURCUMIN: THE INDIAN SOLID GOLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:1-75. [PMID: 17569205 DOI: 10.1007/978-0-387-46401-5_1] [Citation(s) in RCA: 881] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Curcuma/chemistry
- Curcumin/analogs & derivatives
- Curcumin/chemistry
- Curcumin/metabolism
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Humans
- India
- Medicine, Ayurvedic
- Models, Biological
- Molecular Structure
- Neoplasms/drug therapy
- Phytotherapy
- Plants, Medicinal
- Spices
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
165
|
Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007; 1162:9-18. [PMID: 17617388 DOI: 10.1016/j.brainres.2007.05.071] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 11/17/2022]
Abstract
Curcuma longa is a major constituent of Xiaoyao-san, the traditional Chinese medicine, which has been used to effectively manage stress and depression-related disorders in China. As the active component of curcuma longa, curcumin possesses many therapeutic properties; we have previously described its antidepressant activity in our earlier studies using the chronic unpredictable stress model of depression in rats. Recent studies show that stress-induced damage to hippocampal neurons may contribute to the phathophysiology of depression. The aim of this study was to investigate the effects of curcumin on hippocampal neurogenesis in chronically stressed rats. We used an unpredictable chronic stress paradigm (20 days) to determine whether chronic curcumin treatment with the effective doses for behavioral responses (5, 10 and 20 mg/kg, p.o.), could alleviate or reverse the effects of stress on adult hippocampal neurogenesis. Our results suggested that curcumin administration (10 and 20 mg/kg, p.o.) increased hippocampal neurogenesis in chronically stressed rats, similar to classic antidepressant imipramine treatment (10 mg/kg, i.p.). Our results further demonstrated that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers. In addition, curcumin significantly prevented the stress-induced decrease in 5-HT(1A) mRNA and BDNF protein levels in the hippocampal subfields, two molecules involved in hippocampal neurogenesis. These results raise the possibility that increased cell proliferation and neuronal populations may be a mechanism by which curcumin treatment overcomes the stress-induced behavioral abnormalities and hippocampal neuronal damage. Moreover, curcumin treatment, via up-regulation of 5-HT(1A) receptors and BDNF, may reverse or protect hippocampal neurons from further damage in response to chronic stress, which may underlie the therapeutic actions of curcumin.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Bromodeoxyuridine/metabolism
- Curcumin/therapeutic use
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/therapeutic use
- Gene Expression Regulation/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Hippocampus/pathology
- In Situ Hybridization
- Intermediate Filament Proteins/metabolism
- Male
- Nerve Tissue Proteins/metabolism
- Nestin
- Neurons/drug effects
- Neurons/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Stress, Psychological/complications
- Stress, Psychological/drug therapy
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Xia X, Cheng G, Pan Y, Xia ZH, Kong LD. Behavioral, neurochemical and neuroendocrine effects of the ethanolic extract from Curcuma longa L. in the mouse forced swimming test. JOURNAL OF ETHNOPHARMACOLOGY 2007; 110:356-63. [PMID: 17134862 DOI: 10.1016/j.jep.2006.09.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/28/2006] [Accepted: 09/22/2006] [Indexed: 05/12/2023]
Abstract
Curcuma longa L. (turmeric) has been used for centuries in traditional Chinese medicine as a treatment for mental disorders including depression. The studies described here were undertaken to determine the behavioral, neurochemical and neuroendocrine effects of the ethanolic extract from Curcuma longa using the forced swimming test (FST) in male ICR strain of mice. The ethanolic extract was found to reduce the duration of immobility in the mouse FST when orally administered for 21 days. The extract markedly attenuated swim stress-induced decreases in serotonin, 5-hydroxyindoleacetic acid, noradrenaline and dopamine concentrations, as well as increases in serotonin turnover. Furthermore, the ethanolic extract of Curcuma longa significantly reversed the swim stress-induced increases in serum corticotropin-releasing factor and cortisol levels. Under these conditions, the ethanolic extract of Curcuma longa was partly different from fluoxetine and amitriptyline. These results suggested that antidepressant properties of the ethanolic extract of Curcuma longa was mediated through regulations of neurochemical and neuroendocrine systems and it may be a useful agent against depression.
Collapse
Affiliation(s)
- X Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecule, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
167
|
Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, Li X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 2006; 1122:56-64. [PMID: 17022948 DOI: 10.1016/j.brainres.2006.09.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/03/2006] [Accepted: 09/05/2006] [Indexed: 11/28/2022]
Abstract
Curcuma longa is a major constituent of the traditional Chinese medicine Xiaoyao-san, which has been used to effectively manage stress and depression-related disorders in China. Curcumin is the active component of curcuma longa, and its antidepressant effects were described in our prior studies in mouse models of behavioral despair. We hypothesized that curcumin may also alleviate stress-induced depressive-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Thus in present study we assessed whether curcumin treatment (2.5, 5 and 10 mg/kg, p.o.) affects behavior in a chronic unpredictable stress model of depression in rats and examined what its molecular targets may be. We found that subjecting animals to the chronic stress protocol for 20days resulted in performance deficits in the shuttle-box task and several physiological effects, such as an abnormal adrenal gland weight to body weight (AG/B) ratio and increased thickness of the adrenal cortex as well as elevated serum corticosterone levels and reduced glucocorticoid receptor (GR) mRNA expression. These changes were reversed by chronic curcumin administration (5 or 10 mg/kg, p.o.). In addition, we also found that the chronic stress procedure induced a down-regulation of brain-derived neurotrophic factor (BDNF) protein levels and reduced the ratio of phosphorylated cAMP response element-binding protein (pCREB) to CREB levels (pCREB/CREB) in the hippocampus and frontal cortex of stressed rats. Furthermore, these stress-induced decreases in BDNF and pCREB/CREB were also blocked by chronic curcumin administration (5 or 10 mg/kg, p.o.). These results provide compelling evidence that the behavioral effects of curcumin in chronically stressed animals, and by extension humans, may be related to their modulating effects on the HPA axis and neurotrophin factor expressions.
Collapse
Affiliation(s)
- Ying Xu
- Department of Pharmacology, School of Basic Medical Science, Peking University, 38 Xueyuan Road, Beijing, 100083, PR China
| | | | | | | | | | | | | |
Collapse
|