151
|
Zhang Y, Xu JB, Xiao Y, Ji WS, Shan LH, Wan LX, Zhou XL, Lei Y, Gao F. Palladium-Catalyzed Synthesis, Acetylcholinesterase Inhibition, and Neuroprotective Activities of N-Aryl Galantamine Analogues. JOURNAL OF NATURAL PRODUCTS 2023; 86:939-946. [PMID: 36808969 DOI: 10.1021/acs.jnatprod.2c01150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A series of new N-aryl galantamine analogues (5a-5x) were designed and synthesized by modification of galantamine, using Pd-catalyzed Buchwald-Hartwig cross-coupling reaction in good to excellent yields. The cholinesterase inhibitory and neuroprotective activities of N-aryl derivatives of galantamine were evaluated. Among the synthesized compounds, the 4-methoxylpyridine-galantamine derivative (5q) (IC50 = 0.19 μM) exhibited excellent acetylcholinesterase inhibition activity, as well as significant neuroprotective effect against H2O2-induced injury in SH-SY5Y cells. Molecular docking, staining, and Western blotting analyses were performed to demonstrate the mechanism of action of 5q. Derivative 5q would be a promising multifunctional lead compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yang Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yao Xiao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Wan-Sheng Ji
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lian-Hai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lin-Xi Wan
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yu Lei
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
152
|
Fu J, Li J, Sun Y, Liu S, Song F, Liu Z. In-depth investigation of the mechanisms of Schisandra chinensis polysaccharide mitigating Alzheimer's disease rat via gut microbiota and feces metabolomics. Int J Biol Macromol 2023; 232:123488. [PMID: 36731694 DOI: 10.1016/j.ijbiomac.2023.123488] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Schisandra chinensis (S. chinensis) is an herbal medicine used for the treatment of Alzheimer's disease (AD). The purified polysaccharide fraction, namely SCP2, was previously isolated from S. chinensis crude polysaccharide (SCP) and its structure and in vitro activity were investigated. However, the in vivo activity of SCP2 and its potential mechanism for the treatment of AD have yet to be determined. This study used a combination of microbiomics and metabolomics to comprehensively explore the microbiota and metabolic changes in AD rats under SCP2 intervention, with the aim of elucidating the potential mechanisms of SCP2 in the treatment of AD. SCP2 showed significant therapeutic effects in AD rats, as evidenced by improved learning and memory capacity, reduced neuroinflammation, and restoration of the integrity of the intestinal barrier. Fecal metabolomic and microbiomic analyses revealed that SCP2 significantly modulated 19 endogenous metabolites and reversed gut microbiota disorders in AD rats. Moreover, SCP2 significantly increased the content of short-chain fatty acid (SCFAs) in the AD rats. Correlation analysis showed a significant correlation between gut microbes, metabolites and the content of SCFAs. Collectively, these findings will provide the basis for further development of SCP2.
Collapse
Affiliation(s)
- Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.; Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Jixun Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.; Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Yuzhen Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.; Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China..
| |
Collapse
|
153
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
154
|
Bianco A, Antonacci Y, Liguori M. Sex and Gender Differences in Neurodegenerative Diseases: Challenges for Therapeutic Opportunities. Int J Mol Sci 2023; 24:6354. [PMID: 37047320 PMCID: PMC10093984 DOI: 10.3390/ijms24076354] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The term "neurodegenerative diseases" (NDs) identifies a group of heterogeneous diseases characterized by progressive loss of selectively vulnerable populations of neurons, which progressively deteriorates over time, leading to neuronal dysfunction. Protein aggregation and neuronal loss have been considered the most characteristic hallmarks of NDs, but growing evidence confirms that significant dysregulation of innate immune pathways plays a crucial role as well. NDs vary from multiple sclerosis, in which the autoimmune inflammatory component is predominant, to more "classical" NDs, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. Of interest, many of the clinical differences reported in NDs seem to be closely linked to sex, which may be justified by the significant changes in immune mechanisms between affected females and males. In this review, we examined some of the most studied NDs by looking at their pathogenic and phenotypical features to highlight sex-related discrepancies, if any, with particular interest in the individuals' responses to treatment. We believe that pointing out these differences in clinical practice may help achieve more successful precision and personalized care.
Collapse
Affiliation(s)
| | | | - Maria Liguori
- National Research Council (CNR), Institute of Biomedical Technologies, Bari Unit, 70125 Bari, Italy
| |
Collapse
|
155
|
Oroszi T, Geerts E, Rajadhyaksha R, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-body vibration ameliorates glial pathological changes in the hippocampus of hAPP transgenic mice, but does not affect plaque load. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:5. [PMID: 36941713 PMCID: PMC10026461 DOI: 10.1186/s12993-023-00208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aβ) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aβ deposition and immunomarkers of astrocytes and microglia. RESULTS J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.
Collapse
Affiliation(s)
- Tamas Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary.
| | - Eva Geerts
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Reuben Rajadhyaksha
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis Univesity, Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
156
|
Martins MM, Branco PS, Ferreira LM. Enhancing the Therapeutic Effect in Alzheimer's Disease Drugs: The role of Polypharmacology and Cholinesterase inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- M. Margarida Martins
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| | - Paula S. Branco
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| | - Luísa M. Ferreira
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| |
Collapse
|
157
|
Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer's Disease-A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023; 15:916. [PMID: 36986776 PMCID: PMC10054386 DOI: 10.3390/pharmaceutics15030916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
158
|
Gao F, Lv X, Dai L, Wang Q, Wang P, Cheng Z, Xie Q, Ni M, Wu Y, Chai X, Wang W, Li H, Yu F, Cao Y, Tang F, Pan B, Wang G, Deng K, Wang S, Tang Q, Shi J, Shen Y. A combination model of AD biomarkers revealed by machine learning precisely predicts Alzheimer's dementia: China Aging and Neurodegenerative Initiative (CANDI) study. Alzheimers Dement 2023; 19:749-760. [PMID: 35668045 DOI: 10.1002/alz.12700] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION To test the utility of the "A/T/N" system in the Chinese population, we study core Alzheimer's disease (AD) biomarkers in a newly established Chinese cohort. METHODS A total of 411 participants were selected, including 96 cognitively normal individuals, 94 patients with mild cognitive impairment (MCI) patients, 173 patients with AD, and 48 patients with non-AD dementia. Fluid biomarkers were measured with single molecule array. Amyloid beta (Aβ) deposition was determined by 18F-Flobetapir positron emission tomography (PET), and brain atrophy was quantified using magnetic resonance imaging (MRI). RESULTS Aβ42/Aβ40 was decreased, whereas levels of phosphorylated tau (p-tau) were increased in cerebrospinal fluid (CSF) and plasma from patients with AD. CSF Aβ42/Aβ40, CSF p-tau, and plasma p-tau showed a high concordance in discriminating between AD and non-AD dementia or elderly controls. A combination of plasma p-tau, apolipoprotein E (APOE) genotype, and MRI measures accurately predicted amyloid PET status. DISCUSSION These results revealed a universal applicability of the "A/T/N" framework in a Chinese population and established an optimal diagnostic model consisting of cost-effective and non-invasive approaches for diagnosing AD.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xinyi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Linbin Dai
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhaozhao Cheng
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yan Wu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xianliang Chai
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenjing Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Huaiyu Li
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Feng Yu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yuqin Cao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Fang Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Bo Pan
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Guoping Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Shicun Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiqiang Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jiong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
159
|
Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol 2023; 211:115522. [PMID: 36996971 DOI: 10.1016/j.bcp.2023.115522] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases that affect millions of people worldwide, with both prevalence and incidence increasing with age. It is characterized by cognitive decline associated, specifically, with degeneration of cholinergic neurons. The problem of this disease is even more fundamental as the available therapies remain fairly limited and mainly focused on symptoms' relief. Although the aetiology of the disease remains elusive, two main pathological hallmarks are described: i) presence of neurofibrillary tangles formed by unfolded protein aggregates (hyperphosphorylated Tau protein) and ii) presence of extracellular aggregates of amyloid-beta peptide. Given the complexity surrounding the pathogenesis of the disease, several potential targets have been highlighted and interrelated upon its progression, such as oxidative stress and the accumulation of metal ions. Thus, advances have been made on the development of innovative multitarget therapeutical compounds to delay the disease progression and restore cell function. This review focuses the ongoing research on new insights and emerging disease-modifying drugs for AD treatment. Furthermore, classical and novel potential biomarkers for early diagnosis of the disease, and their role in assisting on the improvement of targeted therapies will also be approached.
Collapse
Affiliation(s)
- Ana R Monteiro
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel J Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
160
|
Wojtunik-Kulesza K, Rudkowska M, Orzeł-Sajdłowska A. Aducanumab-Hope or Disappointment for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054367. [PMID: 36901797 PMCID: PMC10002282 DOI: 10.3390/ijms24054367] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In June 2021, the world was informed about a new drug for Alzheimer's disease approved by the FDA. Aducanumab (BIIB037, ADU), being a monoclonal antibody IgG1, is the newest AD treatment. The activity of the drug is targeted towards amyloid β, which is considered one of the main causes of Alzheimer's disease. Clinical trials have revealed time- and dose-dependent activity towards Aβ reduction, as well as cognition improvement. Biogen, the company responsible for conducting research and introducing the drug to the market, presents the drug as a solution to cognitive impairment, but its limitations, costs, and side effects are controversial. The framework of the paper focuses on the mechanism of aducanumab's action along with the positive and negative sides of the therapy. The review presents the basis of the amyloid hypothesis that is the cornerstone of therapy, as well as the latest information about aducanumab, its mechanism of action, and the possibility of the use of the drug.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence:
| | - Monika Rudkowska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | | |
Collapse
|
161
|
Vogt ACS, Jennings GT, Mohsen MO, Vogel M, Bachmann MF. Alzheimer's Disease: A Brief History of Immunotherapies Targeting Amyloid β. Int J Mol Sci 2023; 24:3895. [PMID: 36835301 PMCID: PMC9961492 DOI: 10.3390/ijms24043895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-β protein.
Collapse
Affiliation(s)
- Anne-Cathrine S. Vogt
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | | | - Mona O. Mohsen
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Monique Vogel
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Centre for Cellular and Molecular Physiology (CCMP), Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
162
|
Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, Pozo-Molina G, Méndez-Catalá CF, Cardenas-Aguayo MDC, Diaz-Cintra S, Pacheco-Herrero M, Luna-Muñoz J, Soto-Rojas LO. Alzheimer's Disease: An Updated Overview of Its Genetics. Int J Mol Sci 2023; 24:ijms24043754. [PMID: 36835161 PMCID: PMC9966419 DOI: 10.3390/ijms24043754] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aβ) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Paola Jeronimo-Aguilar
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Ana Ruth Cadena-Suárez
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Edomex, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
- National Brain Bank-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 1423, Dominican Republic
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| |
Collapse
|
163
|
Ma K, Zheng ZR, Meng Y. Pathogenesis of Chronic Kidney Disease Is Closely Bound up with Alzheimer's Disease, Especially via the Renin-Angiotensin System. J Clin Med 2023; 12:jcm12041459. [PMID: 36835994 PMCID: PMC9966558 DOI: 10.3390/jcm12041459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical syndrome secondary to the definitive change in function and structure of the kidney, which is characterized by its irreversibility and slow and progressive evolution. Alzheimer's disease (AD) is characterized by the extracellular accumulation of misfolded β-amyloid (Aβ) proteins into senile plaques and the formation of neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. In the aging population, CKD and AD are growing problems. CKD patients are prone to cognitive decline and AD. However, the connection between CKD and AD is still unclear. In this review, we take the lead in showing that the development of the pathophysiology of CKD may also cause or exacerbate AD, especially the renin-angiotensin system (RAS). In vivo studies had already shown that the increased expression of angiotensin-converting enzyme (ACE) produces a positive effect in aggravating AD, but ACE inhibitors (ACEIs) have protective effects against AD. Among the possible association of risk factors in CKD and AD, we mainly discuss the RAS in the systemic circulation and the brain.
Collapse
Affiliation(s)
- Ke Ma
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Zi-Run Zheng
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Yu Meng
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- Institute of Nephrology, Jinan University, Guangzhou 510000, China
- Correspondence:
| |
Collapse
|
164
|
Donepezil accelerates the release of PLGA microparticles via catalyzing the polymer degradation regardless of the end groups and molecular weights. Int J Pharm 2023; 632:122566. [PMID: 36586633 DOI: 10.1016/j.ijpharm.2022.122566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is one of the most successful polymers for sustained parenteral drug products in the market. However, rational selection of PLGA in the formulations is still challenging due to the lack of fundamental studies. The present study aimed to investigate the influence of donepezil (DP) on the in-vitro and in-vivo performance of PLGA sustained microspheres. Three kinds of PLGAs with different end groups and molecular weights were selected. Then DP-loaded PLGA microspheres (DP-MSs) with similar particle size, drug loading, and encapsulation efficiency were prepared using an o/w emulsion-solvent evaporation method. Laser diffraction and scanning electron microscopy showed that the prepared DP-MSs were about 35 μm and spherical in shape. Differential scanning calorimetry and X-ray diffraction indicated that DP was in an amorphous state inside the microspheres. Unexpectedly, the molecular weight and end group of PLGAs did not significantly influence the in-vitro and in-vivo performance of the DP-MSs. The gel permeation chromatography indicated that the degradation rates of PLGAs were accelerated with the incorporation of DP into the microspheres, and the molecular weight of all three kinds of PLGAs sharply dropped to about 11,000 Da within the initial three days. The basic catalysis effect induced by DP might be responsible for the accelerated degradation of PLGAs, which led to similar in-vitro release profiles of DP from different PLGA matrices. A point-to-point level A correlation between the in-vitro release and the in-vivo absorption was observed, which confirmed the accelerated release of DP from the DP-MSs in-vivo. The results indicated that the influence of DP on the degradation of PLGA should be considered when developing DP-sustained microspheres.
Collapse
|
165
|
Anti-Neuroinflammatory Potential of Natural Products in the Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28031486. [PMID: 36771152 PMCID: PMC9920976 DOI: 10.3390/molecules28031486] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related chronic progressive neurodegenerative disease, which is the main cause of dementia in the elderly. Much evidence shows that the onset and late symptoms of AD are caused by multiple factors. Among them, aging is the main factor in the pathogenesis of AD, and the most important risk factor for AD is neuroinflammation. So far, there is no cure for AD, but the relationship between neuroinflammation and AD may provide a new strategy for the treatment of AD. We herein discussed the main etiology hypothesis of AD and the role of neuroinflammation in AD, as well as anti-inflammatory natural products with the potential to prevent and alleviate AD symptoms, including alkaloids, steroids, terpenoids, flavonoids and polyphenols, which are available with great potential for the development of anti-AD drugs.
Collapse
|
166
|
Mathew AT, Baidya ATK, Das B, Devi B, Kumar R. N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: A microsecond long molecular dynamics study. Proteins 2023; 91:147-160. [PMID: 36029032 DOI: 10.1002/prot.26417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023]
Abstract
Various posttranslational modifications like hyperphosphorylation, O-GlcNAcylation, and acetylation have been attributed to induce the abnormal folding in tau protein. Recent in vitro studies revealed the possible involvement of N-glycosylation of tau protein in the abnormal folding and tau aggregation. Hence, in this study, we performed a microsecond long all atom molecular dynamics simulation to gain insights into the effects of N-glycosylation on Asn-359 residue which forms part of the microtubule binding region. Trajectory analysis of the stimulations coupled with essential dynamics and free energy landscape analysis suggested that tau, in its N-glycosylated form tends to exist in a largely folded conformation having high beta sheet propensity as compared to unmodified tau which exists in a large extended form with very less beta sheet propensity. Residue interaction network analysis of the lowest energy conformations further revealed that Phe378 and Lys353 are the functionally important residues in the peptide which helped in initiating the folding process and Phe378, Lys347, and Lys370 helped to maintain the stability of the protein in the folded state.
Collapse
Affiliation(s)
- Alen T Mathew
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
167
|
Dos Santos A, Teixeira FC, da Silva DS, Veleda TA, de Mello JE, Luduvico KP, Tavares RG, Stefanello FM, Cunico W, Spanevello RM. Thiazolidin-4-one prevents against memory deficits, increase in phosphorylated tau protein, oxidative damage and cholinergic dysfunction in Alzheimer disease model: Comparison with donepezil drug. Brain Res Bull 2023; 193:1-10. [PMID: 36442692 DOI: 10.1016/j.brainresbull.2022.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is characterized mostly by memory decline. The current therapeutic arsenal for treating AD is limited, and the available drugs only produce symptomatic benefits, but do not stop disease progression. The search for effective therapeutic alternatives with multitarget actions is therefore imperative. One such a potential alternative is thiazolidin-4-one, a compound that exhibits anti-amnesic, anticholinesterase, and antioxidant activities. The aim of this study was evaluated the effects of 2-(4-(methylthio)phenyl)- 3-(3-(piperidin-1-yl)propyl) thiazolidin-4-one (DS12) on memory and neurochemical parameters in a model of AD induced by an intracerebroventricular injection of streptozotocin (STZ). Adult male rats were divided into five groups: I, control (saline); II, DS12 (10 mg/kg); III, STZ; IV, STZ + DS12 (10 mg/kg); V, STZ + donepezil (5 mg/kg). The rats were orally treated with DS12 and donepezil for a period of 20 days. Memory, acetylcholinesterase (AChE) activity, phosphorylated tau protein levels and oxidative stress were analyzed in the cerebral cortex, hippocampus, and cerebellum. Biochemical and hematological parameters were evaluated in the blood and serum. Memory impairment and the increase in AChE activity and phosphorylated tau protein level induced by STZ were prevented by DS12 and donepezil treatment. Streptozotocin induces an increase in reactive oxygen species levels and a decrease in catalase activity in the hippocampus, cerebral cortex, and cerebellum. DS12 treatment conferred protection from oxidative alterations in all brain structures. No changes were observed in serum biochemical parameters (glucose, triglycerides, cholesterol, uric acid, and urea) or hematological parameters, such as platelets, lymphocytes, hemoglobin, hematocrit, and total plasma protein. DS12 improved memory and neurochemical changes in an AD model and did not show toxic effects, suggesting the promising therapeutic potential of this compound.
Collapse
Affiliation(s)
- Alessandra Dos Santos
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil
| | - Daniel Schuch da Silva
- Program in Biochemistry and Bioprospecting, Laboratory of Chemistry Applied to Bioactives, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/N, Pelotas, RS, Brazil
| | - Tayná Amaral Veleda
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Julia Eisenhart de Mello
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Rejane Giacomelli Tavares
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Wilson Cunico
- Program in Biochemistry and Bioprospecting, Laboratory of Chemistry Applied to Bioactives, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil.
| |
Collapse
|
168
|
Tsitokana ME, Lafon PA, Prézeau L, Pin JP, Rondard P. Targeting the Brain with Single-Domain Antibodies: Greater Potential Than Stated So Far? Int J Mol Sci 2023; 24:ijms24032632. [PMID: 36768953 PMCID: PMC9916958 DOI: 10.3390/ijms24032632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Treatments for central nervous system diseases with therapeutic antibodies have been increasingly investigated over the last decades, leading to some approved monoclonal antibodies for brain disease therapies. The detection of biomarkers for diagnosis purposes with non-invasive antibody-based imaging approaches has also been explored in brain cancers. However, antibodies generally display a low capability of reaching the brain, as they do not efficiently cross the blood-brain barrier. As an alternative, recent studies have focused on single-domain antibodies (sdAbs) that correspond to the antigen-binding fragment. While some reports indicate that the brain uptake of these small antibodies is still low, the number of studies reporting brain-penetrating sdAbs is increasing. In this review, we provide an overview of methods used to assess or evaluate brain penetration of sdAbs and discuss the pros and cons that could affect the identification of brain-penetrating sdAbs of therapeutic or diagnostic interest.
Collapse
|
169
|
Bhattarai K, Das T, Kim Y, Chen Y, Dai Q, Li X, Jiang X, Zong N. Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.26.23285064. [PMID: 36747733 PMCID: PMC9901063 DOI: 10.1101/2023.01.26.23285064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Alzheimer's Disease (AD) is a progressive neurological disorder with no specific curative medications. While only a few medications are approved by FDA (i.e., donepezil, galantamine, rivastigmine, and memantine) to relieve symptoms (e.g., cognitive decline), sophisticated clinical skills are crucial to optimize the appropriate regimens given the multiple coexisting comorbidities in this patient population. Objective Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians' decisions for AD patients based on the longitude records from Electronic Health Records (EHR). Methods In this study, we withdraw 1,736 patients fulfilling our criteria, from the Alzheimer's Disease Neuroimaging Initiative(ADNI) database. We focused on the two most frequent concomitant diseases, depression, and hypertension, thus resulting in five main cohorts, 1) whole data, 2) AD-only, 3) AD-hypertension, 4) AD-depression, and 5) AD-hypertension-depression. We modeled the treatment learning into an RL problem by defining the three factors (i.e., states, action, and reward) in RL in multiple strategies, where a regression model and a decision tree are developed to generate states, six main medications extracted (i.e., no drugs, cholinesterase inhibitors, memantine, hypertension drugs, a combination of cholinesterase inhibitors and memantine, and supplements or other drugs) are for action, and Mini-Mental State Exam (MMSE) scores are for reward. Results Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician's treatment regimen. With the smallest data samples, the optimal-policy (i.e., policy iteration and Q-learning) gained a lesser reward than the clinician's policy (mean -2.68 and -2.76 vs . -2.66, respectively), but it gained more reward once the data size increased (mean -3.56 and -2.48 vs . -3.57, respectively). Conclusions Our results highlight the potential of using RL to generate the optimal treatment based on the patients' longitude records. Our work can lead the path toward the development of RL-based decision support systems which could facilitate the daily practice to manage Alzheimer's disease with comorbidities.
Collapse
Affiliation(s)
- Kritib Bhattarai
- Department of Computer Science, Luther College Decorah, IA, United States
| | - Trisha Das
- Department of Computer Science, University of Illinois Urbana-Champaign Champaign, Champaign, IL, United States
| | - Yejin Kim
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | | | - Qiying Dai
- Mayo Clinic Rochester, MN, United States
| | | | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Nansu Zong
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
170
|
Kuang G, Salowe R, O’Brien J. Genetic Factors Implicated in the Investigation of Possible Connections between Alzheimer's Disease and Primary Open Angle Glaucoma. Genes (Basel) 2023; 14:338. [PMID: 36833265 PMCID: PMC9957421 DOI: 10.3390/genes14020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Both Alzheimer's disease (AD) and primary open angle glaucoma (POAG) are diseases of primary global neurodegeneration with complex pathophysiologies. Throughout the published literature, researchers have highlighted similarities associated with various aspects of both diseases. In light of the increasing number of findings reporting resemblance between the two neurodegenerative processes, scientists have grown interested in possible underlying connections between AD and POAG. In the search for explanations to fundamental mechanisms, a multitude of genes have been studied in each condition, with overlap in the genes of interest between AD and POAG. Greater understanding of genetic factors can drive the research process of identifying relationships and elucidating common pathways of disease. These connections can then be utilized to advance research as well as to generate new clinical applications. Notably, AD and glaucoma are currently diseases with irreversible consequences that often lack effective therapies. An established genetic connection between AD and POAG would serve as the basis for development of gene or pathway targeted strategies relevant to both diseases. Such a clinical application could be of immense benefit to researchers, clinicians, and patients alike. This paper aims to summarize the genetic associations between AD and POAG, describe common underlying mechanisms, discuss potential areas of application, and organize the findings in a review.
Collapse
Affiliation(s)
| | | | - Joan O’Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
171
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
172
|
Dendrimers in Neurodegenerative Diseases. Processes (Basel) 2023. [DOI: 10.3390/pr11020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Parkinson’s Disease (PD), Alzheimer’s Disease (AD), Multiple Sclerosis (MS) and amyotrophic lateral sclerosis (ALS), are characterized by progressive loss of structure or function of neurons. Current therapies for NDs are only symptomatic and long-term ineffective. This challenge has promoted the development of new therapies against relevant targets in these pathologies. In this review, we will focus on the most promising therapeutic approaches based on dendrimers (DDs) specially designed for the treatment and diagnosis of NDs. DDs are well-defined polymeric structures that provide a multifunctional platform for developing different nanosystems for a myriad of applications. DDs have been proposed as interesting drug delivery systems with the ability to cross the blood–brain barrier (BBB) and increase the bioavailability of classical drugs in the brain, as well as genetic material, by reducing the synthesis of specific targets, as β-amyloid peptide. Moreover, DDs have been shown to be promising anti-amyloidogenic systems against amyloid-β peptide (Aβ) and Tau aggregation, powerful agents for blocking α-synuclein (α-syn) fibrillation, exhibit anti-inflammatory properties, promote cellular uptake to certain cell types, and are potential tools for ND diagnosis. In summary, DDs have emerged as promising alternatives to current ND therapies since they may limit the extent of damage and provide neuroprotection to the affected tissues.
Collapse
|
173
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in structural MRI and diffusion tensor imaging underlie visuomotor performance declines in older adults with an increased risk for Alzheimer's disease. Front Aging Neurosci 2023; 14:1054516. [PMID: 36711200 PMCID: PMC9877535 DOI: 10.3389/fnagi.2022.1054516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Visuomotor impairments have been demonstrated in preclinical AD in individuals with a positive family history of dementia and APOE e4 carriers. Previous behavioral findings have also reported sex-differences in performance of visuomotor tasks involving a visual feedback reversal. The current study investigated the relationship between grey and white matter changes and non-standard visuomotor performance, as well as the effects of APOE status, family history of dementia, and sex on these brain-behavior relationships. Methods Older adults (n = 49) with no cognitive impairments completed non-standard visuomotor tasks involving a visual feedback reversal, plane-change, or combination of the two. Participants with a family history of dementia or who were APOE e4 carriers were considered at an increased risk for AD. T1-weighted anatomical scans were used to quantify grey matter volume and thickness, and diffusion tensor imaging measures were used to quantify white matter integrity. Results In APOE e4 carriers, grey and white matter structural measures were associated with visuomotor performance. Regression analyses showed that visuomotor deficits were predicted by lower grey matter thickness and volume in areas of the medial temporal lobe previously implicated in visuomotor control (entorhinal and parahippocampal cortices). This finding was replicated in the diffusion data, where regression analyses revealed that lower white matter integrity (lower FA, higher MD, higher RD, higher AxD) was a significant predictor of worse visuomotor performance in the forceps minor, forceps major, cingulum, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF). Some of these tracts overlap with those important for visuomotor integration, namely the forceps minor, forceps major, SLF, IFOF, and ILF. Conclusion These findings suggest that measuring the dysfunction of brain networks underlying visuomotor control in early-stage AD may provide a novel behavioral target for dementia risk detection that is easily accessible, non-invasive, and cost-effective. The results also provide insight into the structural differences in inferior parietal lobule that may underlie previously reported sex-differences in performance of the visual feedback reversal task.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,*Correspondence: Lauren E. Sergio, ✉
| |
Collapse
|
174
|
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. J Alzheimers Dis 2023; 91:43-70. [PMID: 36442193 DOI: 10.3233/jad-220720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-β and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-β, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marvi van Tongeren
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
175
|
Kim J, Um H, Kim NH, Kim D. Potential Alzheimer's disease therapeutic nano-platform: Discovery of amyloid-beta plaque disaggregating agent and brain-targeted delivery system using porous silicon nanoparticles. Bioact Mater 2023; 24:497-506. [PMID: 36685808 PMCID: PMC9841037 DOI: 10.1016/j.bioactmat.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
There has been a lot of basic and clinical research on Alzheimer's disease (AD) over the last 100 years, but its mechanisms and treatments have not been fully clarified. Despite some controversies, the amyloid-beta hypothesis is one of the most widely accepted causes of AD. In this study, we disclose a new amyloid-beta plaque disaggregating agent and an AD brain-targeted delivery system using porous silicon nanoparticles (pSiNPs) as a therapeutic nano-platform to overcome AD. We hypothesized that the negatively charged sulfonic acid functional group could disaggregate plaques and construct a chemical library. As a result of the in vitro assay of amyloid plaques and library screening, we confirmed that 6-amino-2-naphthalenesulfonic acid (ANA) showed the highest efficacy for plaque disaggregation as a hit compound. To confirm the targeted delivery of ANA to the AD brain, a nano-platform was created using porous silicon nanoparticles (pSiNPs) with ANA loaded into the pore of pSiNPs and biotin-polyethylene glycol (PEG) surface functionalization. The resulting nano-formulation, named Biotin-CaCl2-ANA-pSiNPs (BCAP), delivered a large amount of ANA to the AD brain and ameliorated memory impairment of the AD mouse model through the disaggregation of amyloid plaques in the brain. This study presents a new bioactive small molecule for amyloid plaque disaggregation and its promising therapeutic nano-platform for AD brain-targeted delivery.
Collapse
Affiliation(s)
- Jaehoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyeji Um
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea,Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea,UC San Diego Materials Research Science and Engineering Center, 9500 Gilman Drive La Jolla, CA, 92093, USA,Corresponding author. Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
176
|
Zyuz'kov GN, Miroshnichenko LA, Chayikovskyi AV, Kotlovskaya LY. Nf-κb: A Target for Synchronizing the Functioning Nervous Tissue Progenitors of Different Types in Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:234-241. [PMID: 35652396 DOI: 10.2174/1874467215666220601144727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The efficacy of Alzheimer's disease (AD) treatment can be enhanced by developing neurogenesis regulation approaches by synchronizing regenerative-competent cell (RCCs) activity. As part of the implementation of this direction, the search for drug targets among intracellular signaling molecules is promising. OBJECTIVE This study aims to test the hypothesis that NF-кB inhibitors are able to synchronize the activities of different types RCCs in AD. METHODS The effects of NF-κB inhibitor JSH-23 on the functioning of neural stem cells (NSCs), neuronal-committed progenitors (NCPs), and neuroglial cells were studied. Individual populations of C57B1/6 mice brain cells were obtained by immunomagnetic separation. Studies were carried out under conditions of modeling β-amyloid-induced neurodegeneration (βAIN) in vitro. RESULTS We showed that β-amyloid (Aβ) causes divergent changes in the functioning of NSCs and NCPs. Also demonstrated that different populations of neuroglia respond differently to exposure to Aβ. These phenomena indicate a significant discoordination of the activities of various RCCs. We revealed an important role of NF-κB in the regulation of progenitor proliferation and differentiation and glial cell secretory function. It was found that the NF-κB inhibitor causes synchronization of the pro-regenerative activities of NSCs, NCPs, as well as oligodendrocytes and microglial cells in βAIN. CONCLUSION The results show the promise of developing a novel approach to Alzheimer's disease treatment with NF-κВ inhibitors.
Collapse
Affiliation(s)
- Gleb Nikolaevich Zyuz'kov
- Tomsk National Research Medical Center, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk Russian Federation
| | - Larisa Arkad'evna Miroshnichenko
- Tomsk National Research Medical Center, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk Russian Federation
| | | | - Larisa Yur'evna Kotlovskaya
- Tomsk National Research Medical Center, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk Russian Federation
| |
Collapse
|
177
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
178
|
Bolinger AA, Zhou J. Exploring New Vista for Alzheimer's Disease Drug Targets (Part II). Curr Top Med Chem 2023; 23:1211-1213. [PMID: 37464550 PMCID: PMC11097592 DOI: 10.2174/156802662313230626121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), 301 University Blvd., Galveston, TX 77555 USA
| |
Collapse
|
179
|
Yan F, Liu J, Chen MX, Zhang Y, Wei SJ, Jin H, Nie J, Fu XL, Shi JS, Zhou SY, Jin F. Icariin ameliorates memory deficits through regulating brain insulin signaling and glucose transporters in 3ΧTg-AD mice. Neural Regen Res 2023; 18:183-188. [PMID: 35799540 PMCID: PMC9241391 DOI: 10.4103/1673-5374.344840] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
180
|
Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S. Nanomedicine-based immunotherapy for Alzheimer's disease. Neurosci Biobehav Rev 2023; 144:104973. [PMID: 36435391 DOI: 10.1016/j.neubiorev.2022.104973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease caused by the deposition of amyloid β (Aβ) fibrils forming extracellular plaques and the development of neurofibrillary tangles (NFT) of intracellular hyperphosphorylated tau protein. Currently, the AD treatments focus on improving cognitive and behavioral symptoms and have limited success. It is imperative to develop novel treatment approaches that can control/inhibit AD progression, especially in the elderly population. Immunotherapy provides a promising and safe treatment option for AD by boosting the patient's immune system. The minimum immune surveillance in the immune-privileged brain, however, makes immunotherapy for AD a challenging endeavor. Therefore, the success of AD immunotherapy depends mainly on the strategy by which therapeutics is delivered to the brain rather than its efficacy. The blood-brain barrier (BBB) is a major obstacle to therapeutic delivery into the brain microenvironment. Various nano-formulations have been exploited to improve the efficacy of AD immunotherapy. In this review, the applications of different types of nano-formulations in augmenting AD immunotherapy have been discussed.
Collapse
Affiliation(s)
- Mehboob Hoque
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | - Arijit Samanta
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | | | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
181
|
Ishabiyi FO, Ogidi JO, Olukade BA, Amorha CC, El-Sharkawy LY, Okolo CC, Adeniyi TM, Atasie NH, Ibrahim A, Balogun TA. Computational Evaluation of Azadirachta indica-Derived Bioactive Compounds as Potential Inhibitors of NLRP3 in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S67-S85. [PMID: 36683510 PMCID: PMC10473084 DOI: 10.3233/jad-221020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The development of therapeutic agents against Alzheimer's disease (AD) has stalled recently. Drug candidates targeting amyloid-β (Aβ) deposition have often failed clinical trials at different stages, prompting the search for novel targets for AD therapy. The NLRP3 inflammasome is an integral part of innate immunity, contributing to neuroinflammation and AD pathophysiology. Thus, it has become a promising new target for AD therapy. OBJECTIVE The study sought to investigate the potential of bioactive compounds derived from Azadirachta-indica to inhibit the NLRP3 protein implicated in the pathophysiology of AD. METHODS Structural bioinformatics via molecular docking and density functional theory (DFT) analysis was utilized for the identification of novel NLRP3 inhibitors from A. indica bioactive compounds. The compounds were further subjected to pharmacokinetic and drug-likeness analysis. Results obtained from the compounds were compared against that of oridonin, a known NLRP3 inhibitor. RESULTS The studied compounds optimally saturated the binding site of the NLRP3 NACHT domain, forming principal interactions with the different amino acids at its binding site. The studied compounds also demonstrated better bioactivity and chemical reactivity as ascertained by DFT analysis and all the compounds except 7-desacetyl-7-benzoylazadiradione, which had two violations, conformed to Lipinski's rule of five. CONCLUSION In silico studies show that A. indica derived compounds have better inhibitory potential against NLRP3 and better pharmacokinetic profiles when compared with the reference ligand (oridonin). These compounds are thus proposed as novel NLRP3 inhibitors for the treatment of AD. Further wet-lab studies are needed to confirm the potency of the studied compounds.
Collapse
Affiliation(s)
- Felix Oluwasegun Ishabiyi
- Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - James Okwudirichukwu Ogidi
- Faculty of Pharmacy, University of Nigeria, Nsukka, Enugu, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Baliqis Adejoke Olukade
- Physiology Department, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu Campus, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chizoba Christabel Amorha
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, United Kingdom
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chukwuemeka Calistus Okolo
- Department of Veterinary Medicine University of Nigeria, Nsukka, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Titilope Mary Adeniyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Nkechi Hope Atasie
- Nigerian Correctional Services, Enugu Custodial Center, Enugu State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Abdulwasiu Ibrahim
- Department of Biochemistry, Drosophila Laboratory, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | | |
Collapse
|
182
|
Kashif M, Sivaprakasam P, Vijendra P, Waseem M, Pandurangan AK. A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer's Disease. Curr Pharm Des 2023; 29:3428-3441. [PMID: 38038007 DOI: 10.2174/0113816128264355231121064704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
AIM Alzheimer's disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of β-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression. BACKGROUND Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD. OBJECTIVE The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer's disease. MATERIALS AND METHODS The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar. RESULTS Accumulated pieces of evidence reveal that extracellular aggregation of β-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer's disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer's disease. CONCLUSION The pathological features of AD are extracellular deposition of β-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Prathibha Sivaprakasam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Poornima Vijendra
- Department of Studies in Food Technology, Davangere University, Davangere, Karnataka, India
| | - Mohammad Waseem
- Department of Pharmaceutical Science, University of Maryland, Eastern Shore, Baltimore, USA
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
183
|
Pharmacotherapy Evolution in Alzheimer's Disease: Current Framework and Relevant Directions. Cells 2022; 12:cells12010131. [PMID: 36611925 PMCID: PMC9818415 DOI: 10.3390/cells12010131] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD), once considered a rare disease, is now the most common form of dementia in the elderly population. Current drugs (cholinesterase inhibitors and glutamate antagonists) are safe but of limited benefit to most patients, offering symptomatic relief without successful cure of the disease. Since the last several decades, there has been a great need for the development of a treatment that might cure the underlying causes of AD and thereby slow its progression in vulnerable individuals. That is why phase I, II, and III studies that act on several fronts, such as cognitive improvement, symptom reduction, and enhancing the basic biology of AD, are imperative to stop the disease. This review discusses current treatment strategies, summarizing the clinical features and pharmacological properties, along with molecular docking analyses of the existing medications.
Collapse
|
184
|
Predicting Genetic Disorder and Types of Disorder Using Chain Classifier Approach. Genes (Basel) 2022; 14:genes14010071. [PMID: 36672812 PMCID: PMC9858679 DOI: 10.3390/genes14010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Genetic disorders are the result of mutation in the deoxyribonucleic acid (DNA) sequence which can be developed or inherited from parents. Such mutations may lead to fatal diseases such as Alzheimer's, cancer, Hemochromatosis, etc. Recently, the use of artificial intelligence-based methods has shown superb success in the prediction and prognosis of different diseases. The potential of such methods can be utilized to predict genetic disorders at an early stage using the genome data for timely treatment. This study focuses on the multi-label multi-class problem and makes two major contributions to genetic disorder prediction. A novel feature engineering approach is proposed where the class probabilities from an extra tree (ET) and random forest (RF) are joined to make a feature set for model training. Secondly, the study utilizes the classifier chain approach where multiple classifiers are joined in a chain and the predictions from all the preceding classifiers are used by the conceding classifiers to make the final prediction. Because of the multi-label multi-class data, macro accuracy, Hamming loss, and α-evaluation score are used to evaluate the performance. Results suggest that extreme gradient boosting (XGB) produces the best scores with a 92% α-evaluation score and a 84% macro accuracy score. The performance of XGB is much better than state-of-the-art approaches, in terms of both performance and computational complexity.
Collapse
|
185
|
Geng R, Zhang Y, Liu M, Deng S, Ding J, Zhong H, Tu Q. Elevated serum uric acid is associated with cognitive improvement in older American adults: A large, population-based-analysis of the NHANES database. Front Aging Neurosci 2022; 14:1024415. [PMID: 36570535 PMCID: PMC9772611 DOI: 10.3389/fnagi.2022.1024415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background The many studies revealing a connection between serum uric acid (SUA) and dementia have reported conflicting results. This study sought to investigate the relations between SUA and cognitive function in older adults. Materials and methods The sample was 2,767 American adults aged ≥60 years from the National Health and Nutrition Examination Survey 2011-2014. Cognitive performance was evaluated by the Consortium to Establish a Registry for Alzheimer's Disease test, animal fluency test, digit symbol substitution test, and composite z-score. Multivariate linear regression analyses were conducted to estimate the association between SUA and cognitive function. Results SUA level and cognitive function were significantly, positively correlated. Age significantly correlated with the association between SUA and cognitive function. Conclusion These findings support a connection between SUA and cognition, showing a positive link between SUA and cognitive scores among older American adults. We contend that a slight rise in uric acid within the normal range is advantageous for enhanced cognition. To confirm the precise dose-time-response relation, more tests will be needed.
Collapse
|
186
|
Zhang Z, Wu H, Qi S, Tang Y, Qin C, Liu R, Zhang J, Cao Y, Gao X. 5-Methyltetrahydrofolate Alleviates Memory Impairment in a Rat Model of Alzheimer's Disease Induced by D-Galactose and Aluminum Chloride. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16426. [PMID: 36554305 PMCID: PMC9779170 DOI: 10.3390/ijerph192416426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The effects of 5-methyltetrahydrofolate (5-MTHF) on a rat model of Alzheimer's disease (AD) induced by D-galactose (D-gal) and aluminum chloride (AlCl3) were investigated. Wistar rats were given an i.p. injection of 60 mg/kg D-gal and 10 mg/kg AlCl3 to induce AD and three doses of 1 mg/kg, 5 mg/kg or 10 mg/kg 5-MTHF by oral gavage. A positive control group was treated with 1 mg/kg donepezil by gavage. Morris water maze performance showed that 5 and 10 mg/kg 5-MTHF significantly decreased escape latency and increased the number of platform crossings and time spent in the target quadrant for AD rats. The administration of 10 mg/kg 5-MTHF decreased the brain content of amyloid β-protein 1-42 (Aβ1-42) and phosphorylated Tau protein (p-Tau) and decreased acetylcholinesterase and nitric oxide synthase activities. Superoxide dismutase activity, vascular endothelial growth factor level and glutamate concentration were increased, and malondialdehyde, endothelin-1, interleukin-6, tumor necrosis factor-alpha and nitric oxide decreased. The administration of 10 mg/kg 5-MTHF also increased the expression of disintegrin and metallopeptidase domain 10 mRNA and decreased the expression of β-site amyloid precursor protein cleavage enzyme 1 mRNA. In summary, 5-MTHF alleviates memory impairment in a D-gal- and AlCl3-exposed rat model of AD. The inhibition of Aβ1-42 and p-Tau release, reduced oxidative stress, the regulation of amyloid precursor protein processing and the release of excitatory amino acids and cytokines may be responsible.
Collapse
Affiliation(s)
- Zhengduo Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shaojun Qi
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanjin Tang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chuan Qin
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiacheng Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yiyao Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
187
|
Emerging Potential of the Phosphodiesterase (PDE) Inhibitor Ibudilast for Neurodegenerative Diseases: An Update on Preclinical and Clinical Evidence. Molecules 2022; 27:molecules27238448. [PMID: 36500540 PMCID: PMC9737612 DOI: 10.3390/molecules27238448] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases constitute a broad range of central nervous system disorders, characterized by neuronal degeneration. Alzheimer's disease, Parkinson's disease, amyolotrophic lateral sclerosis (ALS), and progressive forms of multiple sclerosis (MS) are some of the most frequent neurodegenerative diseases. Despite their diversity, these diseases share some common pathophysiological mechanisms: the abnormal aggregation of disease-related misfolded proteins, autophagosome-lysosome pathway dysregulation, impaired ubiquitin-proteasome system, oxidative damage, mitochondrial dysfunction and excessive neuroinflammation. There is still no effective drug that could halt the progression of neurodegenerative diseases, and the current treatments are mainly symptomatic. In this regard, the development of novel multi-target pharmaceutical approaches presents an attractive therapeutic strategy. Ibudilast, an anti-inflammatory drug firstly developed as an asthma treatment, is a cyclic nucleotide phosphodiesterases (PDEs) inhibitor, which mainly acts by increasing the amount of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), while downregulating the pro-inflammatory factors, such as tumor necrosis factor-α (TNF-α), macrophage migration inhibitory factor (MIF) and Toll-like receptor 4 (TLR-4). The preclinical evidence shows that ibudilast may act neuroprotectively in neurodegenerative diseases, by suppressing neuroinflammation, inhibiting apoptosis, regulating the mitochondrial function and by affecting the ubiquitin-proteasome and autophagosome-lysosome pathways, as well as by attenuating oxidative stress. The clinical trials in ALS and progressive MS also show some promising results. Herein, we aim to provide an update on the emerging preclinical and clinical evidence on the therapeutic potential of ibudilast in these disorders, discuss the potential challenges and suggest the future directions.
Collapse
|
188
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
189
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
190
|
Rastegari A, Manayi A, Rezakazemi M, Eftekhari M, Khanavi M, Akbarzadeh T, Saeedi M. Phytochemical analysis and anticholinesterase activity of aril of Myristica fragrans Houtt. BMC Chem 2022; 16:106. [PMID: 36437466 PMCID: PMC9703800 DOI: 10.1186/s13065-022-00897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the ethyl acetate fraction of Myristica fragrans Houtt. was investigated for its in vitro anticholinesterase activity as well as neuroprotectivity against H2O2-induced cell death in PC12 neuronal cells and the ability to chelate bio-metals (Zn2+, Fe2+, and Cu2+). The fraction was inactive toward acetylcholinesterase (AChE); however, it inhibited the butyrylcholinesterase (BChE) with IC50 value of 68.16 µg/mL, compared with donepezil as the reference drug (IC50 = 1.97 µg/mL) via Ellman's method. It also showed good percentage of neuroprotection (86.28% at 100 µg/mL) against H2O2-induced neurotoxicity and moderate metal chelating ability toward Zn2+, Fe2+, and Cu2+. The phytochemical study led to isolation and identification of malabaricone A (1), malabaricone C (2), 4-(4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl)benzene-1,2-diol (3), nectandrin B (4), macelignan (5), and 4-(4-(benzo[d][1,3]dioxol-5-yl)-1-methoxy-2,3-dimethylbutyl)-2-methoxyphenol (6) which were assayed for their cholinesterase (ChE) inhibitory activity. Compounds 1 and 3 were not previously reported for M. fragrans. Among isolated compounds, compound 2 showed the best activity toward both AChE and BChE with IC50 values of 25.02 and 22.36 μM, respectively, compared with donepezil (0.07 and 4.73 μM, respectively).
Collapse
Affiliation(s)
- Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rezakazemi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
191
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
192
|
Shi Z, Chen H, Zhou X, Yang W, Lin Y. Pharmacological effects of natural medicine ginsenosides against Alzheimer's disease. Front Pharmacol 2022; 13:952332. [PMID: 36467099 PMCID: PMC9708891 DOI: 10.3389/fphar.2022.952332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 08/04/2023] Open
Abstract
Ginsenosides are the most important pharmacological active ingredient of ginseng, with multiple biological therapeutic targets, mild action and no side effects. It is having shown beneficial effects in vitro and in vivo models of AD. In this review, we analyze large literature, summarize the inhibition of ginsenosides fibrous extracellular deposition of β-amyloid (Aβ) and neurofibrillary tangles (NFTs) of possible mechanisms, and explain the effects of ginsenosides on AD neuroprotection from the aspects of antioxidant, anti-inflammatory, and anti-apoptosis, prove the potential of ginsenosides as a new class of drugs for the treatment of AD. In addition, according to the current clinical application status of natural drugs, this paper analysis the delivery route and delivery mode of ginsenosides from the perspective of pharmacokinetics, providing a deeper insight into the clinical application of ginsenosides in the treatment of AD.
Collapse
Affiliation(s)
- Zhikun Shi
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xu Zhou
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
193
|
Cao Y, Yu F, Lyu Y, Lu X. Promising candidates from drug clinical trials: Implications for clinical treatment of Alzheimer's disease in China. Front Neurol 2022; 13:1034243. [PMID: 36457865 PMCID: PMC9706102 DOI: 10.3389/fneur.2022.1034243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Alzheimer's disease is the most common neurodegenerative disease. Prior to 2017, National Medical Products Administration approved only four drugs to treat Alzheimer's disease, including three cholinesterase inhibitors and one N-methyl-D-aspartate receptor antagonist. We queried ClinicalTrials.gov to better understand Alzheimer's drug development over the past 5 years and found 16 promising candidates that have entered late-stage trials and analyzed their impact on clinical treatment of Alzheimer's disease in China. The 16 compounds selected include disease-modifying therapies and symptomatic therapies. The research and development pipeline now focuses on disease-modifying therapies such as gantenerumab, aducanumab, ALZ-801, ALZT-OP1, donanemab, lecanemab, simufilam, NE3107, semaglutide, and GV-971, which could put an end to the situation where Alzheimer's patients in China have no effective treatment alternatives. The reuse of drugs or combinations currently under investigation for the psychiatric treatment of Alzheimer's disease, including AXS-05, AVP-786, nabilone, brexpiprazole, methylphenidate, and pimavanserin, could provide physicians with additional treatment options. Although most of these drugs have not been explored in China yet, due to the current development trend in this field in China, it is expected that China will be involved in research on these drugs in the future.
Collapse
Affiliation(s)
- Yuxia Cao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi Lyu
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xianfu Lu
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Anesthesiology, Anqing First People's Hospital of Anhui Medical University, Anqing, China
| |
Collapse
|
194
|
Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic Potential of Targeting Mitochondria for Alzheimer's Disease Treatment. J Clin Med 2022; 11:6742. [PMID: 36431219 PMCID: PMC9697019 DOI: 10.3390/jcm11226742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| |
Collapse
|
195
|
Murakami S, Lacayo P. Biological and disease hallmarks of Alzheimer’s disease defined by Alzheimer’s disease genes. Front Aging Neurosci 2022; 14:996030. [PMID: 36437990 PMCID: PMC9682170 DOI: 10.3389/fnagi.2022.996030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
An increasing number of genes associated with Alzheimer’s disease (AD genes) have been reported. However, there is a lack of an overview of the genetic relationship between AD and age-related comorbidities, such as hypertension, myocardial infarction, and diabetes, among others. Previously, we used Reactome analysis in conjunction with the AD genes to identify both the biological pathways and the neurological diseases. Here we provide systematic updates on the genetic and disease hallmarks defined by AD genes. The analysis identified 50 pathways (defined as biological hallmarks). Of them, we have successfully compiled them into a total of 11 biological hallmarks, including 6 existing hallmarks and 5 newly updated hallmarks. The AD genes further identified 20 diverse diseases (defined as disease hallmarks), summarized into three major categories: (1) existing hallmarks, including neurological diseases; (2) newly identified hallmarks, including common age-related diseases such as diabetes, hypertension, other cardiovascular diseases, and cancers; (3) and other health conditions; note that cancers reportedly have an inverse relation with AD. We previously suggested that a single gene is associated with multiple neurological diseases, and we are further extending the finding that AD genes are associated with common age-related comorbidities and others. This study indicates that the heterogeneity of Alzheimer’s disease predicts complex clinical presentations in people living with AD. Taken together, the genes define AD as a part of age-related comorbidities with shared biological mechanisms and may raise awareness of a healthy lifestyle as potential prevention and treatment of the comorbidities.
Collapse
|
196
|
Chin E, Jaqua E, Safaeipour M, Ladue T. Conventional Versus New Treatment: Comparing the Effects of Acetylcholinesterase Inhibitors and N-Methyl-D-Aspartate Receptor Antagonist With Aducanumab. Cureus 2022; 14:e31065. [DOI: 10.7759/cureus.31065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
|
197
|
Hao W, Chen J, Zhang Y, Mou T, Wang J, Zhang C, Gu S, Zhao T, Sun Y, Cui M, Wei B. Integration of Metabolomics and Network Pharmacology to Validate the Mechanism of Schisandra chinensis(Turcz.)Baill - Acorus tatarinowii Schott Ameliorating the Alzheimer's Disease by Regulating the Aromatase Activity to affect Local Estrogen in Brain of AD Model Rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
198
|
Jiang Y, Zeng Z, Yao J, Guan Y, Jia P, Zhao X, Xu L. Treatment of Alzheimer's disease with small-molecule photosensitizers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
199
|
Qi H, Rizopoulos D, van Rosmalen J. Incorporating historical control information in ANCOVA models using the meta-analytic-predictive approach. Res Synth Methods 2022; 13:681-696. [PMID: 35439840 PMCID: PMC9790567 DOI: 10.1002/jrsm.1561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
The meta-analytic-predictive (MAP) approach is a Bayesian meta-analytic method to synthesize and incorporate information from historical controls in the analysis of a new trial. Classically, only a single parameter, typically the intercept or rate, is assumed to vary across studies, which may not be realistic in more complex models. Analysis of covariance (ANCOVA) is often used to analyze trials with a pretest-posttest design, where both the intercept and the baseline effect (coefficient of the outcome at baseline) affect the estimated treatment effect. We extended the MAP approach to ANCOVA, to allow for variation in the intercept and the baseline effect across studies, and possibly also correlation between these parameters. The method was illustrated using data from the Alzheimer's Disease Cooperative Study (ADCS) and assessed with a simulation study. In the ADCS data, the proposed multivariate MAP approach yielded a prior effective sample size of 79 and 58 for the intercept and the baseline effect respectively and reduced the posterior standard deviation of the treatment effect by 12.6%. The result was robust to the choice of prior for the between-study variation. In the simulations, the proposed approach yielded power gains with a good control of the type I error rate. Ignoring the between-study correlation of the parameters or assuming no variation in the baseline effect generally led to less power gain. In conclusion, the MAP approach can be extended to a multivariate version for ANCOVA, which may improve the estimation of the treatment effect.
Collapse
Affiliation(s)
- Hongchao Qi
- Department of BiostatisticsErasmus University Medical CenterRotterdamthe Netherlands
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Dimitris Rizopoulos
- Department of BiostatisticsErasmus University Medical CenterRotterdamthe Netherlands
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Joost van Rosmalen
- Department of BiostatisticsErasmus University Medical CenterRotterdamthe Netherlands
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
200
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| |
Collapse
|