151
|
Banks MI, Zahid Z, Jones NT, Sultan ZW, Wenthur CJ. Catalysts for change: the cellular neurobiology of psychedelics. Mol Biol Cell 2021; 32:1135-1144. [PMID: 34043427 PMCID: PMC8351556 DOI: 10.1091/mbc.e20-05-0340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
The resurgence of interest in the therapeutic potential of psychedelics for treating psychiatric disorders has rekindled efforts to elucidate their mechanism of action. In this Perspective, we focus on the ability of psychedelics to promote neural plasticity, postulated to be central to their therapeutic activity. We begin with a brief overview of the history and behavioral effects of the classical psychedelics. We then summarize our current understanding of the cellular and subcellular mechanisms underlying these drugs' behavioral effects, their effects on neural plasticity, and the roles of stress and inflammation in the acute and long-term effects of psychedelics. The signaling pathways activated by psychedelics couple to numerous potential mechanisms for producing long-term structural changes in the brain, a complexity that has barely begun to be disentangled. This complexity is mirrored by that of the neural mechanisms underlying psychiatric disorders and the transformations of consciousness, mood, and behavior that psychedelics promote in health and disease. Thus, beyond changes in the brain, psychedelics catalyze changes in our understanding of the neural basis of psychiatric disorders, as well as consciousness and human behavior.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Zarmeen Zahid
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Nathan T. Jones
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Cody J. Wenthur
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
152
|
de Abreu MS, Giacomini ACVV, Demin KA, Galstyan DS, Zabegalov KN, Kolesnikova TO, Amstislavskaya TG, Strekalova T, Petersen EV, Kalueff AV. Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra. Pharmacol Biochem Behav 2021; 207:173205. [PMID: 33991579 DOI: 10.1016/j.pbb.2021.173205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Anxiety is the most prevalent brain disorder and a common cause of human disability. Animal models are critical for understanding anxiety pathogenesis and its pharmacotherapy. The zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in anxiety research and anxiolytic drug screening. High similarity between human, rodent and zebrafish molecular targets implies shared signaling pathways involved in anxiety pathogenesis. However, mounting evidence shows that zebrafish behavior can be modulated by drugs beyond conventional anxiolytics or anxiogenics. Furthermore, these effects may differ from human and/or rodent responses, as such 'unconventional' drugs may affect zebrafish behavior despite having no such profiles (or exerting opposite effects) in humans or rodents. Here, we discuss the effects of several putative unconventional anxiotropic drugs (aspirin, lysergic acid diethylamide (LSD), nicotine, naloxone and naltrexone) and their potential mechanisms of action in zebrafish. Emphasizing the growing utility of zebrafish models in CNS drug discovery, such unconventional anxiety pharmacology may provide important, evolutionarily relevant insights into complex regulation of anxiety in biological systems. Albeit seemingly complicating direct translation from zebrafish into clinical phenotypes, this knowledge may instead foster the development of novel CNS drugs, eventually facilitating innovative treatment of patients based on novel 'unconventional' targets identified in fish models.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Konstantin N Zabegalov
- Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow, Russia; Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia.
| |
Collapse
|
153
|
Studerus E, Vizeli P, Harder S, Ley L, Liechti ME. Prediction of MDMA response in healthy humans: a pooled analysis of placebo-controlled studies. J Psychopharmacol 2021; 35:556-565. [PMID: 33781103 PMCID: PMC8155734 DOI: 10.1177/0269881121998322] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is used both recreationally and therapeutically. Little is known about the factors influencing inter- and intra-individual differences in the acute response to MDMA. Effects of other psychoactive substances have been shown to be critically influenced by personality traits and mood state before intake. METHODS We pooled data from 10 randomized, double-blind, placebo-controlled, cross-over studies performed in the same laboratory in 194 healthy subjects receiving doses of 75 or 125mg of MDMA. We investigated the influence of drug dose, body weight, sex, age, drug pre-experience, genetics, personality and mental state before drug intake on the acute physiological and psychological response to MDMA. RESULTS In univariable analyses, the MDMA plasma concentration was the strongest predictor for most outcome variables. When adjusting for dose per body weight, we found that (a) a higher activity of the enzyme CYP2D6 predicted lower MDMA plasma concentration, (b) a higher score in the personality trait "openness to experience" predicted more perceived "closeness", a stronger decrease in "general inactivation", and higher scores in the 5D-ASC (5 Dimensions of Altered States of Consciousness Questionnaire) scales "oceanic boundlessness" and "visionary restructuralization", and (c) subjects with high "neuroticism" or trait anxiety were more likely to have unpleasant and/or anxious reactions. CONCLUSIONS Although MDMA plasma concentration was the strongest predictor, several personality traits and mood state variables additionally explained variance in the response to MDMA. The results confirm that both pharmacological and non-pharmacological variables influence the response to MDMA. These findings may be relevant for the therapeutic use of MDMA.
Collapse
Affiliation(s)
- Erich Studerus
- Division of Personality and
Developmental Psychology, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Samuel Harder
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology
and Toxicology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
154
|
Cumming P, Scheidegger M, Dornbierer D, Palner M, Quednow BB, Martin-Soelch C. Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans. Molecules 2021; 26:2451. [PMID: 33922330 PMCID: PMC8122807 DOI: 10.3390/molecules26092451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Hallucinogens are a loosely defined group of compounds including LSD, N,N-dimethyltryptamines, mescaline, psilocybin/psilocin, and 2,5-dimethoxy-4-methamphetamine (DOM), which can evoke intense visual and emotional experiences. We are witnessing a renaissance of research interest in hallucinogens, driven by increasing awareness of their psychotherapeutic potential. As such, we now present a narrative review of the literature on hallucinogen binding in vitro and ex vivo, and the various molecular imaging studies with positron emission tomography (PET) or single photon emission computer tomography (SPECT). In general, molecular imaging can depict the uptake and binding distribution of labelled hallucinogenic compounds or their congeners in the brain, as was shown in an early PET study with N1-([11C]-methyl)-2-bromo-LSD ([11C]-MBL); displacement with the non-radioactive competitor ketanserin confirmed that the majority of [11C]-MBL specific binding was to serotonin 5-HT2A receptors. However, interactions at serotonin 5HT1A and other classes of receptors and pleotropic effects on second messenger pathways may contribute to the particular experiential phenomenologies of LSD and other hallucinogenic compounds. Other salient aspects of hallucinogen action include permeability to the blood-brain barrier, the rates of metabolism and elimination, and the formation of active metabolites. Despite the maturation of radiochemistry and molecular imaging in recent years, there has been only a handful of PET or SPECT studies of radiolabeled hallucinogens, most recently using the 5-HT2A/2C agonist N-(2[11CH3O]-methoxybenzyl)-2,5-dimethoxy- 4-bromophenethylamine ([11C]Cimbi-36). In addition to PET studies of target engagement at neuroreceptors and transporters, there is a small number of studies on the effects of hallucinogenic compounds on cerebral perfusion ([15O]-water) or metabolism ([18F]-fluorodeoxyglucose/FDG). There remains considerable scope for basic imaging research on the sites of interaction of hallucinogens and their cerebrometabolic effects; we expect that hybrid imaging with PET in conjunction with functional magnetic resonance imaging (fMRI) should provide especially useful for the next phase of this research.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
| | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
| | - Mikael Palner
- Odense Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark;
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, CH-8058 Zurich, Switzerland
| | | |
Collapse
|
155
|
Jefsen OH, Elfving B, Wegener G, Müller HK. Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. J Psychopharmacol 2021; 35:483-493. [PMID: 33143539 DOI: 10.1177/0269881120959614] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Psilocybin is a serotonergic psychedelic found in "magic mushrooms" with a putative therapeutic potential for treatment-resistant depression, anxiety, obsessive-compulsive disorder, and addiction. In rodents, psilocybin acutely induces plasticity-related immediate early genes in cortical tissue; however, studies into the effects on subcortical regions, of different doses, and the subsequent translation of corresponding proteins are lacking. METHODS We examined the acute effects of a single administration of psilocybin (0.5-20 mg/kg) on the expression of selected genes in the prefrontal cortex and hippocampus. In total, 46 target genes and eight reference genes were assessed using real-time quantitative polymerase chain reaction. Corresponding protein levels of the three most commonly regulated genes were assessed using Western blotting. RESULTS In the prefrontal cortex, psilocybin increased the expression of Cebpb, c-Fos, Dups1, Fosb, Junb, Iκβ-α, Nr4a1, P11, Psd95, and Sgk1, and decreased the expression of Clk1. In the hippocampus, psilocybin strongly increased the expression of Arrdc2, Dusp1, Iκβ-α, and Sgk1 in a dose-dependent manner, and decreased the expression of Arc, Clk1, Egr2, and Ptgs2. Protein levels of Sgk1, Dusp1, and Iκβ-α showed only partial agreement with transcriptional patterns, stressing the importance of assessing downstream translation when investigating rapid gene responses. CONCLUSION The present study demonstrates that psilocybin rapidly induces gene expression related to neuroplasticity, biased towards the prefrontal cortex, compared to the hippocampus. Our findings provide further evidence for the rapid plasticity-promoting effects of psilocybin.
Collapse
Affiliation(s)
- Oskar Hougaard Jefsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,AUGUST Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
156
|
Schmid Y, Gasser P, Oehen P, Liechti ME. Acute subjective effects in LSD- and MDMA-assisted psychotherapy. J Psychopharmacol 2021; 35:362-374. [PMID: 33853422 DOI: 10.1177/0269881120959604] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) and 3,4-methylenedioxymethamphetamine (MDMA) were used in psychotherapy in the 1960s-1980s, and are currently being re-investigated as treatments for several psychiatric disorders. In Switzerland, limited medical use of these substances is possible in patients not responding to other treatments (compassionate use). METHODS This study aimed to describe patient characteristics, treatment indications and acute alterations of mind in patients receiving LSD (100-200 µg) and/or MDMA (100-175 mg) within the Swiss compassionate use programme from 2014-2018. Acute effects were assessed using the 5 Dimensions of Altered States of Consciousness scale and the Mystical Experience Questionnaire, and compared with those in healthy volunteers administered with LSD or MDMA and patients treated alone with LSD in clinical trials. RESULTS Eighteen patients (including 12 women and six men, aged 29-77 years) were treated in group settings. Indications mostly included posttraumatic stress disorder and major depression. Generally, a drug-assisted session was conducted every 3.5 months after 3-10 psychotherapy sessions. LSD induced pronounced alterations of consciousness on the 5 Dimensions of Altered States of Consciousness scale, and mystical-type experiences with increases in all scales on the Mystical Experience Questionnaire. Effects were largely comparable between patients in the compassionate use programme and patients or healthy subjects treated alone in a research setting. CONCLUSION LSD and MDMA are currently used medically in Switzerland mainly in patients with posttraumatic stress disorder and depression in group settings, producing similar acute responses as in research subjects. The data may serve as a basis for further controlled studies of substance-assisted psychotherapy.
Collapse
Affiliation(s)
- Yasmin Schmid
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Peter Gasser
- Practice for Psychiatry and Psychotherapy, Solothurn, Switzerland
| | - Peter Oehen
- Practice for Psychiatry and Psychotherapy, Biberist, Switzerland
| | - Matthias E Liechti
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
157
|
Agin-Liebes G, Haas TF, Lancelotta R, Uthaug MV, Ramaekers JG, Davis AK. Naturalistic Use of Mescaline Is Associated with Self-Reported Psychiatric Improvements and Enduring Positive Life Changes. ACS Pharmacol Transl Sci 2021; 4:543-552. [PMID: 33860184 PMCID: PMC8033766 DOI: 10.1021/acsptsci.1c00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/20/2022]
Abstract
Mescaline is a naturally occurring psychoactive alkaloid that has been used as a sacrament by Indigenous populations in spiritual ritual and healing ceremonies for millennia. Despite promising early preliminary research and favorable anecdotal reports, there is limited research investigating mescaline's psychotherapeutic potential. We administered an anonymous online questionnaire to adults (N = 452) reporting use of mescaline in naturalistic settings about mental health benefits attributed to mescaline. We assessed respondents' self-reported improvements in depression, anxiety, post-traumatic stress disorder (PTSD), and alcohol and drug use disorders (AUD and DUD). Of the respondents reporting histories of these clinical conditions, most (68-86%) reported subjective improvement following their most memorable mescaline experience. Respondents who reported an improvement in their psychiatric conditions reported significantly higher ratings of acute psychological factors including mystical-type, psychological insight, and ego dissolution effects compared to those who did not report improvements (Cohen's d range 0.7 - 1.5). Many respondents (35-50%) rated the mescaline experience as the single or top five most spiritually significant or meaningful experience(s) of their lives. Acute experiences of psychological insight during their mescaline experience were associated with increased odds of reporting improvement in depression, anxiety, AUD and DUD. Additional research is needed to corroborate these preliminary findings and to rigorously examine the efficacy of mescaline for psychiatric treatment in controlled, longitudinal clinical trials.
Collapse
Affiliation(s)
- Gabrielle Agin-Liebes
- Department
of Psychiatry, University of California,
San Francisco, 1001 Potrero
Ave., San Francisco, California 94110, United States,Zuckerberg
San Francisco General Hospital, 1001 Potrero Ave., Bldg. 80, San Francisco, California 94110, United States,Tel.: 646-641-2000.
| | - Trevor F. Haas
- University
of California, Davis, School of Medicine, 4610 X Street, Sacramento, California 95817, United States,Department
of Psychiatry and Behavioral Sciences, University
of Southern California, 3620 McClintock Ave., Los Angeles, California 90089-0001, United States
| | - Rafael Lancelotta
- Habituating
to Wholeness, LLC, 6500 W 13th Ave, Lakewood, Colorado 80214, United States
| | - Malin V. Uthaug
- Department
of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229, Maastricht, Limburg 6200
MD, The Netherlands
| | - Johannes G. Ramaekers
- Department
of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229, Maastricht, Limburg 6200
MD, The Netherlands
| | - Alan K. Davis
- College
of Social Work, The Ohio State University, 1947 College Road, Columbus, Ohio 43210, United States,Center
for Psychedelic and Consciousness Research, Johns Hopkins University, 5510 Nathan Shock Drive, Baltimore, Maryland 21224, United
States,Tel.: 614-292-5251.
| |
Collapse
|
158
|
dos Santos RG, Bouso JC, Rocha JM, Rossi GN, Hallak JE. The Use of Classic Hallucinogens/Psychedelics in a Therapeutic Context: Healthcare Policy Opportunities and Challenges. Risk Manag Healthc Policy 2021; 14:901-910. [PMID: 33707976 PMCID: PMC7943545 DOI: 10.2147/rmhp.s300656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 01/23/2023] Open
Abstract
Psychedelics or serotonergic hallucinogens are a group of substances that share the agonism of serotonergic 5-HT2A receptors as their main mechanism of action. Its main effects include changes in perception, cognitive process, and mood. Despite being used for centuries by different cultures in ritual contexts, these substances have currently aroused the interest of science and industry for their promising antidepressant, anxiolytic, and anti-addictive effects. Considering this evidence, this article aims to explore some of the possible health policy challenges to integrate these therapeutic tools into broad and heterogeneous health systems. As a main benefit, these substances produce rapid and enduring effects with the administration of single or few doses, which could lead to new treatment possibilities for patients with severe mental disorders resistant to the usual medications. The main challenge is associated with the fact that these substances remain scheduled in most countries and are associated with social stigma related to their recreational use (especially LSD and psilocybin). This situation makes it exceedingly difficult to conduct clinical trials, although international conventions allow such research. Ethically, this could be interpreted as a violation of human rights since thousands of people are prevented from having access to possible benefits. Interestingly, ritual ayahuasca use is more acceptable to the public than the use of psilocybin-containing mushrooms or LSD. The controlled, clinical use of LSD and psilocybin seems to be less criticized and is being explored by the industry. Rigorous scientific evidence coupled with industrial interests (LSD and psilocybin), together with respect for traditional uses (ayahuasca) and international conventions, seems to be the best way for these drugs to be integrated into health systems in the next years. Which highlights the need for an urgent dialogue between science, health system, society, and politics.
Collapse
Affiliation(s)
- Rafael Guimarães dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology – Translational Medicine, Ribeirão Preto, Brazil
- ICEERS Foundation, International Center for Ethnobotanical Education, Research and Services, Barcelona, Spain
| | - José Carlos Bouso
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- ICEERS Foundation, International Center for Ethnobotanical Education, Research and Services, Barcelona, Spain
- Medical Anthropology Research Center, Universitat Rovira i Virgili, Tarragona, Spain
| | - Juliana Mendes Rocha
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giordano Novak Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology – Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
159
|
De Gregorio D, Aguilar-Valles A, Preller KH, Heifets BD, Hibicke M, Mitchell J, Gobbi G. Hallucinogens in Mental Health: Preclinical and Clinical Studies on LSD, Psilocybin, MDMA, and Ketamine. J Neurosci 2021; 41:891-900. [PMID: 33257322 PMCID: PMC7880300 DOI: 10.1523/jneurosci.1659-20.2020] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
A revamped interest in the study of hallucinogens has recently emerged, especially with regard to their potential application in the treatment of psychiatric disorders. In the last decade, a plethora of preclinical and clinical studies have confirmed the efficacy of ketamine in the treatment of depression. More recently, emerging evidence has pointed out the potential therapeutic properties of psilocybin and LSD, as well as their ability to modulate functional brain connectivity. Moreover, MDMA, a compound belonging to the family of entactogens, has been demonstrated to be useful to treat post-traumatic stress disorders. In this review, the pharmacology of hallucinogenic compounds is summarized by underscoring the differences between psychedelic and nonpsychedelic hallucinogens as well as entactogens, and their behavioral effects in both animals and humans are described. Together, these data substantiate the potentials of these compounds in treating mental diseases.
Collapse
Affiliation(s)
- Danilo De Gregorio
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Argel Aguilar-Valles
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, CH-8032 Zurich, Switzerland
| | - Boris Dov Heifets
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Meghan Hibicke
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Jennifer Mitchell
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
160
|
De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, Posa L, Lopez-Canul M, He Q, Lafferty CK, Britt JP, Comai S, Aguilar-Valles A, Sonenberg N, Gobbi G. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc Natl Acad Sci U S A 2021; 118:e2020705118. [PMID: 33495318 PMCID: PMC7865169 DOI: 10.1073/pnas.2020705118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clinical studies have reported that the psychedelic lysergic acid diethylamide (LSD) enhances empathy and social behavior (SB) in humans, but its mechanism of action remains elusive. Using a multidisciplinary approach including in vivo electrophysiology, optogenetics, behavioral paradigms, and molecular biology, the effects of LSD on SB and glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) were studied in male mice. Acute LSD (30 μg/kg) injection failed to increase SB. However, repeated LSD (30 μg/kg, once a day, for 7 days) administration promotes SB, without eliciting antidepressant/anxiolytic-like effects. Optogenetic inhibition of mPFC excitatory neurons dramatically inhibits social interaction and nullifies the prosocial effect of LSD. LSD potentiates the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and 5-HT2A, but not N-methyl-D-aspartate (NMDA) and 5-HT1A, synaptic responses in the mPFC and increases the phosphorylation of the serine-threonine protein kinases Akt and mTOR. In conditional knockout mice lacking Raptor (one of the structural components of the mTORC1 complex) in excitatory glutamatergic neurons (Raptorf/f:Camk2alpha-Cre), the prosocial effects of LSD and the potentiation of 5-HT2A/AMPA synaptic responses were nullified, demonstrating that LSD requires the integrity of mTORC1 in excitatory neurons to promote SB. Conversely, in knockout mice lacking Raptor in GABAergic neurons of the mPFC (Raptorf/f:Gad2-Cre), LSD promotes SB. These results indicate that LSD selectively enhances SB by potentiating mPFC excitatory transmission through 5-HT2A/AMPA receptors and mTOR signaling. The activation of 5-HT2A/AMPA/mTORC1 in the mPFC by psychedelic drugs should be explored for the treatment of mental diseases with SB impairments such as autism spectrum disorder and social anxiety disorder.
Collapse
Affiliation(s)
- Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1;
- Department of Biochemistry, McGill University, Montreal, QC, Canada, H3A 1A3
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montreal, QC, Canada, H3A 1A3
| | - Justine P Enns
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Agnieszka Skalecka
- Department of Biochemistry, McGill University, Montreal, QC, Canada, H3A 1A3
| | - Athanasios Markopoulos
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Martha Lopez-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
| | - Qianzi He
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
| | | | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada, H3A 1B1
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada, H3A 1A3;
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1;
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
161
|
Kolaczynska KE, Liechti ME, Duthaler U. Development and validation of an LC-MS/MS method for the bioanalysis of psilocybin’s main metabolites, psilocin and 4-hydroxyindole-3-acetic acid, in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122486. [DOI: 10.1016/j.jchromb.2020.122486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
|
162
|
Müller F, Holze F, Dolder P, Ley L, Vizeli P, Soltermann A, Liechti ME, Borgwardt S. MDMA-induced changes in within-network connectivity contradict the specificity of these alterations for the effects of serotonergic hallucinogens. Neuropsychopharmacology 2021; 46:545-553. [PMID: 33219313 PMCID: PMC8027447 DOI: 10.1038/s41386-020-00906-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
It has been reported that serotonergic hallucinogens like lysergic acid diethylamide (LSD) induce decreases in functional connectivity within various resting-state networks. These alterations were seen as reflecting specific neuronal effects of hallucinogens and it was speculated that these shifts in connectivity underlie the characteristic subjective drug effects. In this study, we test the hypothesis that these alterations are not specific for hallucinogens but that they can be induced by monoaminergic stimulation using the non-hallucinogenic serotonin-norepinephrine-dopamine releasing agent 3,4-methylenedioxymethamphetamine (MDMA). In a randomized, placebo-controlled, double-blind, crossover design, 45 healthy participants underwent functional magnetic resonance imaging (fMRI) following oral administration of 125 mg MDMA. The networks under question were identified using independent component analysis (ICA) and were tested with regard to within-network connectivity. Results revealed decreased connectivity within two visual networks, the default mode network (DMN), and the sensorimotor network. These findings were almost identical to the results previously reported for hallucinogenic drugs. Therefore, our results suggest that monoaminergic substances can induce widespread changes in within-network connectivity in the absence of marked subjective drug effects. This contradicts the notion that these alterations can be regarded as specific for serotonergic hallucinogens. However, changes within the DMN might explain antidepressants effects of some of these substances.
Collapse
Affiliation(s)
- Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland.
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Alain Soltermann
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|
163
|
Higgins GA, Sellers EM. 5-HT 2A and 5-HT 2C receptors as potential targets for the treatment of nicotine use and dependence. PROGRESS IN BRAIN RESEARCH 2021; 259:229-263. [PMID: 33541678 DOI: 10.1016/bs.pbr.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine use and dependence, typically achieved through cigarette smoking, but increasingly through vape products, is the leading cause of preventable death today. Despite a recognition that many current smokers would like to quit, the success rate at doing so is low and indicative of the persistent nature of nicotine dependence and the high urge to relapse. There are currently three main forms of pharmacotherapy approved as aids to treat nicotine dependence: a variety of nicotine replacement products (NRT's), the mixed NA/DA reuptake inhibitor bupropion (Zyban®), and the preferential nicotinic α4β2 receptor agonist drug, varenicline (Chantix®); the latter being generally recognized to be the most effective. However, each of these approaches afford only limited efficacy, and various other pharmacological approaches are being explored. This chapter focusses on approaches targeted to the serotonin (5-HT) system, namely, selective serotonin reuptake inhibitors (SSRI's) which served a pioneer role in the investigation of serotoninergic modulators in human smoking cessation trials; and secondly drugs selectively interacting with the 5-HT2A and 5-HT2C receptor systems. From an efficacy perspective, measured as smoking abstinence, the 5-HT2A agonist psychedelics, namely psilocybin, seem to show the most promise; although as the article highlights, these findings are both preliminary and there are significant challenges to the route to approval, and therapeutic use of this class should they reach approval status. Additional avenues include 5-HT2C receptor agonists, which until recently was pioneered by lorcaserin, and 5-HT2A receptor antagonists represented by pimavanserin. Each of these approaches has distinct profiles across preclinical tests of nicotine dependence, and may have therapeutic potential. It is anticipated as diagnostic and predictive biomarkers emerge, they may provide opportunities for subject stratification and opportunities for personalizing smoking cessation treatment. The clinical assessment of SSRI, 5-HT2A and/or 5-HT2C receptor-based treatments may be best served by this process.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions Inc, Fergus, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Edward M Sellers
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine and Psychiatry, University of Toronto, Toronto, ON, Canada; DL Global Partners Inc., Toronto, ON, Canada
| |
Collapse
|
164
|
Podlewska S, Bugno R, Lacivita E, Leopoldo M, Bojarski AJ, Handzlik J. Low Basicity as a Characteristic for Atypical Ligands of Serotonin Receptor 5-HT2. Int J Mol Sci 2021; 22:ijms22031035. [PMID: 33494248 PMCID: PMC7864501 DOI: 10.3390/ijms22031035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin receptors are extensively examined by academic and industrial researchers, due to their vital roles, which they play in the organism and constituting therefore important drug targets. Up to very recently, it was assumed that the basic nitrogen in compound structure is a necessary component to make it active within this receptor system. Such nitrogen interacts in its protonated form with the aspartic acid from the third transmembrane helix (D3x32) forming a hydrogen bond tightly fitting the ligand in the protein binding site. However, there are several recent studies that report strong serotonin receptor affinity also for compounds without a basic moiety in their structures. In the study, we carried out a comprehensive in silico analysis of the low-basicity phenomenon of the selected serotonin receptor ligands. We focused on the crystallized representatives of the proteins of 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT2C receptors, and examined the problem both from the ligand- and structure-based perspectives. The study was performed for the native proteins, and for D3x32A mutants. The investigation resulted in the determination of nonstandard structural requirements for activity towards serotonin receptors, which can be used in the design of new nonbasic ligands.
Collapse
Affiliation(s)
- Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (R.B.); (A.J.B.)
- Correspondence: (S.P.); (J.H.); Tel.: +48-12-66-23-301 (S.P.); +48-12-620-55-84 (J.H.)
| | - Ryszard Bugno
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (R.B.); (A.J.B.)
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari, Italy; (E.L.); (M.L.)
| | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari, Italy; (E.L.); (M.L.)
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (R.B.); (A.J.B.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (S.P.); (J.H.); Tel.: +48-12-66-23-301 (S.P.); +48-12-620-55-84 (J.H.)
| |
Collapse
|
165
|
Jensen O, Rafehi M, Gebauer L, Brockmöller J. Cellular Uptake of Psychostimulants - Are High- and Low-Affinity Organic Cation Transporters Drug Traffickers? Front Pharmacol 2021; 11:609811. [PMID: 33551812 PMCID: PMC7854383 DOI: 10.3389/fphar.2020.609811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Psychostimulants are used therapeutically and for illegal recreational purposes. Many of these are inhibitors of the presynaptic noradrenaline, dopamine, and serotonin transporters (NET, DAT, and SERT). According to their physicochemical properties, some might also be substrates of polyspecific organic cation transporters (OCTs) that mediate uptake in liver and kidneys for metabolism and excretion. OCT1 is genetically highly polymorphic, with strong effects on transporter activity and expression. To study potential interindividual differences in their pharmacokinetics, 18 psychostimulants and hallucinogens were assessed in vitro for transport by different OCTs as well as by the high-affinity monoamine transporters NET, DAT, and SERT. The hallucinogenic natural compound mescaline was found to be strongly transported by wild-type OCT1 with a Km of 24.3 µM and a vmax of 642 pmol × mg protein−1 × min−1. Transport was modestly reduced in variants *2 and *7, more strongly reduced in *3 and *4, and lowest in *5 and *6, while *8 showed a moderately increased transport capacity. The other phenylethylamine derivatives methamphetamine, para-methoxymethamphetamine, (-)-ephedrine, and cathine ((+)-norpseudoephedrine), as well as dimethyltryptamine, were substrates of OCT2 with Km values in the range of 7.9–46.0 µM and vmax values between 70.7 and 570 pmol × mg protein−1 × min−1. Affinities were similar or modestly reduced and the transport capacities were reduced down to half in the naturally occurring variant A270S. Cathine was found to be a substrate for NET and DAT, with the Km being 21-fold and the vmax 10-fold higher for DAT but still significantly lower compared to OCT2. This study has shown that several psychostimulants and hallucinogens are substrates for OCTs. Given the extensive cellular uptake of mescaline by the genetically highly polymorphic OCT1, strong interindividual variation in the pharmacokinetics of mescaline might be possible, which could be a reason for highly variable adverse reactions. The involvement of the polymorphic OCT2 in the renal excretion of several psychostimulants could be one reason for individual differences in toxicity.
Collapse
Affiliation(s)
- Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
166
|
Caplan RA, Zuflacht JP, Barash JA, Fehnel CR. Neurotoxicology Syndromes Associated with Drugs of Abuse. Neurol Clin 2021; 38:983-996. [PMID: 33040873 DOI: 10.1016/j.ncl.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Substance use disorders-and their associated neurologic complications-are frequently encountered by neurologists as well as emergency room physicians, internists, psychiatrists, and medical intensivists. Prominent neurologic sequelae of drug abuse, such as seizure and stroke, are common and often result in patients receiving medical attention. However, less overt neurologic manifestations, such as dysautonomia and perceptual disturbances, may be initially misattributed to primary medical or psychiatric illness, respectively. This article focuses on the epidemiology, pharmacology, and complications associated with commonly used recreational drugs, including opioids, alcohol, marijuana, cocaine, and hallucinogens.
Collapse
Affiliation(s)
- Rachel A Caplan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street WACC 721G, Boston, Massachusetts 02114, USA; Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston MA 02115, USA
| | - Jonah P Zuflacht
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Kirstein 406D, Boston, MA 02215, USA
| | - Jed A Barash
- Soldiers' Home, 91 Crest Avenue, Chelsea, MA 02150, USA
| | - Corey R Fehnel
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Kirstein 471, Boston, MA 02215, USA; Hinda and Arthur Marcus Institute for Aging Research, 1200 Centre Street, Boston, MA 02131, USA.
| |
Collapse
|
167
|
Raval NR, Johansen A, Donovan LL, Ros NF, Ozenne B, Hansen HD, Knudsen GM. A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT 2A Receptor Density in the Pig Brain. Int J Mol Sci 2021; 22:E835. [PMID: 33467676 PMCID: PMC7830000 DOI: 10.3390/ijms22020835] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
A single dose of psilocybin, a psychedelic and serotonin 2A receptor (5-HT2AR) agonist, may be associated with antidepressant effects. The mechanism behind its antidepressive action is unknown but could be linked to increased synaptogenesis and down-regulation of cerebral 5-HT2AR. Here, we investigate if a single psychedelic dose of psilocybin changes synaptic vesicle protein 2A (SV2A) and 5-HT2AR density in the pig brain. Twenty-four awake pigs received either 0.08 mg/kg psilocybin or saline intravenously. Twelve pigs (n = 6/intervention) were euthanized one day post-injection, while the remaining twelve pigs were euthanized seven days post-injection (n = 6/intervention). We performed autoradiography on hippocampus and prefrontal cortex (PFC) sections with [3H]UCB-J (SV2A), [3H]MDL100907 (5-HT2AR antagonist) and [3H]Cimbi-36 (5-HT2AR agonist). One day post psilocybin injection, we observed 4.42% higher hippocampal SV2A density and lowered hippocampal and PFC 5-HT2AR density (-15.21% to -50.19%). These differences were statistically significant in the hippocampus for all radioligands and in the PFC for [3H]Cimbi-36 only. Seven days post-intervention, there was still significantly higher SV2A density in the hippocampus (+9.24%) and the PFC (+6.10%), whereas there were no longer any differences in 5-HT2AR density. Our findings suggest that psilocybin causes increased persistent synaptogenesis and an acute decrease in 5-HT2AR density, which may play a role in psilocybin's antidepressive effects.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lene Lundgaard Donovan
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nídia Fernandez Ros
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
- Department of Public Health, Section of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; (N.R.R.); (A.J.); (L.L.D.); (N.F.R.); (B.O.); (H.D.H.)
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
168
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
169
|
Donovan LL, Johansen JV, Ros NF, Jaberi E, Linnet K, Johansen SS, Ozenne B, Issazadeh-Navikas S, Hansen HD, Knudsen GM. Effects of a single dose of psilocybin on behaviour, brain 5-HT 2A receptor occupancy and gene expression in the pig. Eur Neuropsychopharmacol 2021; 42:1-11. [PMID: 33288378 DOI: 10.1016/j.euroneuro.2020.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Psilocybin has in some studies shown promise as treatment of major depressive disorder and psilocybin therapy was in 2019 twice designated as breakthrough therapy by the U.S. Food and Drug Administration (FDA). A very particular feature is that ingestion of just a single dose of psilocybin is associated with lasting changes in personality and mood. The underlying molecular mechanism behind its effect is, however, unknown. In a translational pig model, we here present the effects of a single dose of psilocybin on pig behaviour, receptor occupancy and gene expression in the brain. An acute i.v. injection of 0.08 mg/kg psilocybin to awake female pigs induced characteristic behavioural changes in terms of headshakes, scratching and rubbing, lasting around 20 min. A similar dose was associated with a cerebral 5-HT2A receptor occupancy of 67%, as determined by positron emission tomography, and plasma psilocin levels were comparable to what in humans is associated with an intense psychedelic experience. We found that 19 genes were differentially expressed in prefrontal cortex one day after psilocybin injection, and 3 genes after 1 week. Gene Set Enrichment Analysis demonstrated that multiple immunological pathways were regulated 1 week after psilocybin exposure. This provides a framework for future investigations of the lasting molecular mechanisms induced by a single dose of psilocybin. In the light of an ongoing debate as to whether psilocybin is a safe treatment for depression and other mental illnesses, it is reassuring that our data suggest that any effects on gene expression are very modest.
Collapse
Affiliation(s)
- Lene Lundgaard Donovan
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nídia Fernandez Ros
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Elham Jaberi
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kristian Linnet
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sys Stybe Johansen
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Department of Public Health, Section of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
170
|
|
171
|
Gatch MB, Hoch A, Carbonaro TM. Discriminative Stimulus Effects of Substituted Tryptamines in Rats. ACS Pharmacol Transl Sci 2020; 4:467-471. [PMID: 33860176 DOI: 10.1021/acsptsci.0c00173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 01/17/2023]
Abstract
Novel synthetic compounds have been available for decades as quasi-legal alternatives to controlled substances. The hallucinogen-like effects of eight novel substituted tryptamines were evaluated to determine their potential abuse liability. Male Sprague-Dawley rats were trained to discriminate 2,5-dimethoxy-4-methylamphetamine (DOM, 0.5 mg/kg, i.p., 30 min) from saline. 4-Acetoxy-N,N-diethyltryptamine (4-AcO-DET), 4-hydroxy-N-methyl-N-ethyltryptamine (4-OH-MET), 4-hydroxy-N,N-diethyltryptamine (4-OH-DET), 4-acetoxy-N-methyl-N-isopropyltryptamine (4-AcO-MiPT), 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), 4-hydroxy-N,N-dimethyltryptamine (4-OH-DMT, psilocin), 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT), 4-acetoxy-N,N-diisopropyltryptamine (4-AcO-DiPT), and 4-hydroxy-N,N-diisopropyltryptamine (4-OH-DiPT) were tested for their ability to substitute for the discriminative stimulus effects of DOM. All test compounds fully substituted for DOM with potencies less than or equal to that of DOM. 4-OH-MET, 4-OH-DET, 4-OH-DMT, and 4-AcO-DMT decreased response rate at doses that fully substituted. Because the test compounds produced DOM-like discriminative stimulus effects, they may have similar abuse liability as DOM. 4-Acetoxy substituted compounds were less potent than 4-hydroxy substituted compounds, and the N,N-diisopropyl compounds were less potent than the dimethyl, diethyl, N-methyl-N-ethyl, and N-methyl-N-isopropyl compounds.
Collapse
Affiliation(s)
- Michael B Gatch
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Adam Hoch
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Theresa M Carbonaro
- Diversion Control Division Drug and Chemical Evaluation Section, Drug Enforcement Administration Springfield, Virginia 22152, United States
| |
Collapse
|
172
|
Odland AU, Kristensen JL, Andreasen JT. Investigating the role of 5-HT2A and 5-HT2C receptor activation in the effects of psilocybin, DOI, and citalopram on marble burying in mice. Behav Brain Res 2020; 401:113093. [PMID: 33359368 DOI: 10.1016/j.bbr.2020.113093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Psychedelic drugs acting as 5-hydroxyptryptamine 2A receptor (5-HT2AR) agonists have shown promise as viable treatments of psychiatric disorders, including obsessive-compulsive disorder. The marble burying test is a test of compulsive-like behavior in mice, and psychedelics acting as 5-HT2AR agonists can reduce digging in this test. We assessed the 5-HT2R contribution to the mechanisms of two 5-HT2A agonists on digging behavior in female NMRI mice, using citalopram as a reference compound. While the 5-HT2AR antagonist M100907 blocked the effect of DOI and the 5-HT2CR antagonist SB242084 blocked the effect of citalopram, neither antagonist blocked the effect of psilocybin. This study confirms 5-HT2AR agonism as a mechanism for reduced compulsive-like digging in the MB test and suggests that 5-HT2A and 5-HT2CRs can work in parallel on this type of behavior. Our results with psilocybin suggest that a 5-HT2R-independent mechanism also contributes to the effect of psilocybin on repetitive digging behavior.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
173
|
Klein AK, Chatha M, Laskowski LJ, Anderson EI, Brandt SD, Chapman SJ, McCorvy JD, Halberstadt AL. Investigation of the Structure-Activity Relationships of Psilocybin Analogues. ACS Pharmacol Transl Sci 2020; 4:533-542. [PMID: 33860183 DOI: 10.1021/acsptsci.0c00176] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The 5-HT2A receptor is thought to be the primary target for psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) and other serotonergic hallucinogens (psychedelic drugs). Although a large amount of experimental work has been conducted to characterize the pharmacology of psilocybin and its dephosphorylated metabolite psilocin (4-hydroxy-N,N-dimethyltryptamine), there has been little systematic investigation of the structure-activity relationships (SAR) of 4-substituted tryptamine derivatives. In addition, structural analogs of psilocybin containing a 4-acetoxy group, such as 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), have appeared as new designer drugs, but almost nothing is known about their pharmacological effects. To address the gap of information, studies were conducted with 17 tryptamines containing a variety of symmetrical and asymmetrical N,N-dialkyl substituents and either a 4-hydroxy or 4-acetoxy group. Calcium mobilization assays were conducted to assess functional activity at human and mouse 5-HT2 subtypes. Head-twitch response (HTR) studies were conducted in C57BL/6J mice to assess 5-HT2A activation in vivo. All of the compounds acted as full or partial agonists at 5-HT2 subtypes, displaying similar potencies at 5-HT2A and 5-HT2B receptors, but some tryptamines with bulkier N-alkyl groups had lower potency at 5-HT2C receptors and higher 5-HT2B receptor efficacy. In addition, O-acetylation reduced the in vitro 5-HT2A potency of 4-hydroxy-N,N-dialkyltryptamines by about 10- to 20-fold but did not alter agonist efficacy. All of the compounds induce head twitches in mice, consistent with an LSD-like behavioral profile. In contrast to the functional data, acetylation of the 4-hydroxy group had little effect on HTR potency, suggesting that O-acetylated tryptamines may be deacetylated in vivo, acting as prodrugs. In summary, the tryptamine derivatives have psilocybin-like pharmacological properties, supporting their classification as psychedelic drugs.
Collapse
Affiliation(s)
- Adam K Klein
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093-0804, United States
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093-0804, United States
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509, United States
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509, United States
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | | | - John D McCorvy
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509, United States
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093-0804, United States.,Research Service, VA San Diego Healthcare System, San Diego, California 92161, United States
| |
Collapse
|
174
|
Malaca S, Lo Faro AF, Tamborra A, Pichini S, Busardò FP, Huestis MA. Toxicology and Analysis of Psychoactive Tryptamines. Int J Mol Sci 2020; 21:E9279. [PMID: 33291798 PMCID: PMC7730282 DOI: 10.3390/ijms21239279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Our understanding of tryptamines is poor due to the lack of data globally. Tryptamines currently are not part of typical toxicology testing regimens and their contribution to drug overdoses may be underestimated. Although their prevalence was low, it is increasing. There are few published data on the many new compounds, their mechanisms of action, onset and duration of action, toxicity, signs and symptoms of intoxication and analytical methods to identify tryptamines and their metabolites. We review the published literature and worldwide databases to describe the newest tryptamines, their toxicology, chemical structures and reported overdose cases. Tryptamines are 5-HT2A receptor agonists that produce altered perceptions of reality. Currently, the most prevalent tryptamines are 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT), 5-methoxy-N,N- diallyltryptamine (5-MeO-DALT) and dimethyltryptamine (DMT). From 2015 to 2020, 22 new analytical methods were developed to identify/quantify tryptamines and metabolites in biological samples, primarily by liquid chromatography tandem mass spectrometry. The morbidity accompanying tryptamine intake is considerable and it is critical for clinicians and laboratorians to be informed of the latest data on this public health threat.
Collapse
Affiliation(s)
- Sara Malaca
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Alice Tamborra
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V.Le Regina Elena 299, 00161 Rome, Italy;
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, 1020 Walnut St, Philadelphia, PA 19144, USA;
| |
Collapse
|
175
|
Åstrand A, Guerrieri D, Vikingsson S, Kronstrand R, Green H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci Int 2020; 317:110553. [DOI: 10.1016/j.forsciint.2020.110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
|
176
|
da Silva MG, Daros GC, de Bitencourt RM. Anti-inflammatory activity of ayahuasca: therapeutical implications in neurological and psychiatric diseases. Behav Brain Res 2020; 400:113003. [PMID: 33166569 DOI: 10.1016/j.bbr.2020.113003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/28/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
Ayahuasca is a decoction with psychoactive properties, used for millennia for therapeutic and religious purposes by indigenous groups and the population of amazonian countries. As described in this narrative review, it is essentially constituted by β-carbolines and tryptamines, and it has therapeutic effects on behavioral disorders due to the inhibition of the monoamine oxidase enzyme and the activation of 5-hydroxytryptamine receptors, demonstrated through preclinical and clinical studies. It was recently observed that the pharmacological response presented by ayahuasca is linked to its anti-inflammatory action, attributed mainly to dimethyltryptamines (N, N-dimethyltryptamine and 5-methoxy-N, N-dimethyltryptamine), which act as endogenous systemic regulators of inflammation and immune homeostasis, also through sigma-1 receptors. Therefore, since neuroinflammation is among the main pathophysiological mechanisms related to the development of neurological and psychiatric diseases, we suggest, based on the available evidence, that ayahuasca is a promising and very safe therapeutic strategy since extremely high doses are required to reach toxicity. However, even so, additional studies are needed to confirm such evidence, as well as the complete elucidation of the mechanisms involved.
Collapse
Affiliation(s)
- Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Av. José Acácio Moreira, 787, Dehon, 88704-900, Tubarão, Santa Catarina, Brazil.
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Av. José Acácio Moreira, 787, Dehon, 88704-900, Tubarão, Santa Catarina, Brazil.
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Av. José Acácio Moreira, 787, Dehon, 88704-900, Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
177
|
Pottie E, Cannaert A, Stove CP. In vitro structure-activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch Toxicol 2020; 94:3449-3460. [PMID: 32627074 DOI: 10.1007/s00204-020-02836-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Serotonergic psychedelics, substances exerting their effects primarily through the serotonin 2A receptor (5-HT2AR), continue to comprise a substantial portion of reported new psychoactive substances (NPS). The exact mechanisms of action of psychedelics still remain to be elucidated further, and certain pathways remain largely unexplored on a molecular level for this group of compounds. A systematic comparison of substances belonging to different subclasses, monitoring the receptor-proximal β-arrestin 2 recruitment, is lacking. Based on a previously reported in vitro bioassay employing functional complementation of a split nanoluciferase to monitor β-arrestin 2 recruitment to the 5-HT2AR, we here report on the setup of a stable HEK 293 T cell-based bioassay. Following verification of the performance of this new stable cell system as compared to a system based on transient transfection, the stable expression system was deemed suitable for the pharmacological characterization of psychedelic NPS. Subsequently, it was applied for the in vitro assessment of the structure-activity relationship of a set of 30 substances, representing different subclasses of phenylalkylamine psychedelics, among which 12 phenethylamine derivatives (2C-X), 7 phenylisopropylamines (DOx) and 11 N-benzylderivatives (25X-NB). The resulting potency and efficacy values provide insights into the structure-activity relationship of the tested compounds, overall confirm findings observed with other reported in vitro assays, and even show a significant correlation with estimated common doses. This approach, in which a large series of psychedelic NPS belonging to different subclasses is comparatively tested, using a same assay setup, monitoring a receptor-proximal event, not only gives pharmacological insights, but may also allow prioritization of legal actions related to the most potent -and potentially dangerous- compounds.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
178
|
Rosenbaum D, Weissman C, Anderson T, Petranker R, Dinh-Williams LA, Hui K, Hapke E. Microdosing psychedelics: Demographics, practices, and psychiatric comorbidities. J Psychopharmacol 2020; 34:612-622. [PMID: 32108529 DOI: 10.1177/0269881120908004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Microdosing psychedelics - the practice of consuming small, sub-hallucinogenic doses of substances such as LSD or psilocybin - is gaining attention in popular media but remains poorly characterized. Contemporary studies of psychedelic microdosing have yet to report the basic psychiatric descriptors of psychedelic microdosers. OBJECTIVES To examine the practices and demographics of a population of psychedelic microdosers - including their psychiatric diagnoses, prescription medications, and recreational substance use patterns - to develop a foundation on which to conduct future clinical research. METHODS Participants (n = 909; Mage = 26.9, SD = 8.6; male = 83.2%; White/European = 79.1%) recruited primarily from the online forum Reddit completed an anonymous online survey. Respondents who reported using LSD, psilocybin, or both for microdosing were grouped and compared with non-microdosing respondents using exploratory odds ratio testing on demographic variables, rates of psychiatric diagnoses, and past-year recreational substance use. RESULTS Of microdosers, most reported using LSD (59.3%; Mdose = 13 mcg, or 11.3% of one tab) or psilocybin (25.9%; Mdose = 0.3 g of dried psilocybin mushrooms) on a one-day-on, two-days-off schedule. Compared with non-microdosers, microdosers were significantly less likely to report a history of substance use disorders (SUDs; OR = 0.17 (95% CI: 0.05-0.56)) or anxiety disorders (OR = 0.61 (95% CI: 0.41-0.91)). Microdosers were also more likely to report recent recreational substance use compared with non-microdosers (OR = 5.2 (95% CI: 2.7-10.8)). CONCLUSIONS Well-designed randomized controlled trials are needed to evaluate the safety and tolerability of this practice in clinical populations and to test claims about potential benefits.
Collapse
Affiliation(s)
- Daniel Rosenbaum
- Psychiatry, University of Toronto Faculty of Medicine, Toronto, Canada
| | - Cory Weissman
- Psychiatry, University of Toronto Faculty of Medicine, Toronto, Canada
| | | | | | | | - Katrina Hui
- Psychiatry, University of Toronto Faculty of Medicine, Toronto, Canada
| | - Emma Hapke
- Psychiatry, University of Toronto Faculty of Medicine, Toronto, Canada
| |
Collapse
|
179
|
Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, Kalin NH, McDonald WM. Psychedelics and Psychedelic-Assisted Psychotherapy. Am J Psychiatry 2020; 177:391-410. [PMID: 32098487 DOI: 10.1176/appi.ajp.2019.19010035] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors provide an evidenced-based summary of the literature on the clinical application of psychedelic drugs in psychiatric disorders. METHODS Searches of PubMed and PsycINFO via Ovid were conducted for articles in English, in peer-reviewed journals, reporting on "psilocybin," "lysergic acid diethylamide," "LSD," "ayahuasca," "3,4-methylenedioxymethamphetamine," and "MDMA," in human subjects, published between 2007 and July 1, 2019. A total of 1,603 articles were identified and screened. Articles that did not contain the terms "clinical trial," "therapy," or "imaging" in the title or abstract were filtered out. The 161 remaining articles were reviewed by two or more authors. The authors identified 14 articles reporting on well-designed clinical trials investigating the efficacy of lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), psilocybin, and ayahuasca for the treatment of mood and anxiety disorders, trauma and stress-related disorders, and substance-related and addictive disorders as well as in end-of-life care. RESULTS The most significant database exists for MDMA and psilocybin, which have been designated by the U.S. Food and Drug Administration (FDA) as "breakthrough therapies" for posttraumatic stress disorder (PTSD) and treatment-resistant depression, respectively. The research on LSD and ayahuasca is observational, but available evidence suggests that these agents may have therapeutic effects in specific psychiatric disorders. CONCLUSIONS Randomized clinical trials support the efficacy of MDMA in the treatment of PTSD and psilocybin in the treatment of depression and cancer-related anxiety. The research to support the use of LSD and ayahuasca in the treatment of psychiatric disorders is preliminary, although promising. Overall, the database is insufficient for FDA approval of any psychedelic compound for routine clinical use in psychiatric disorders at this time, but continued research on the efficacy of psychedelics for the treatment of psychiatric disorders is warranted.
Collapse
Affiliation(s)
- Collin M Reiff
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Elon E Richman
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Charles B Nemeroff
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Linda L Carpenter
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Alik S Widge
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Carolyn I Rodriguez
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Ned H Kalin
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - William M McDonald
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | -
- Department of Psychiatry, New York University School of Medicine, New York (Reiff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (Richman, McDonald); Department of Psychiatry, Dell Medical School and the Institute for Early Life Adversity Research, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| |
Collapse
|
180
|
Abstract
BACKGROUND Serotonin toxicity is a common cause of drug-induced altered mental status. However, data on the causes of serotonin toxicity, symptomatology, complications, and rate of antidotal treatment are limited. METHODS This study evaluated cases of serotonin toxicity in the ToxIC registry, an international database of prospectively collected cases seen by medical toxicologists. Serotonin toxicity was diagnosed by bedside evaluation of medical toxicology specialists and explicit criteria were not used. The database was searched for "serotonin syndrome" between January 1, 2010, and December 31, 2016. RESULTS There were 1010 cases included. Females made up 608 (60%) cases. Ages are as follows: younger than 2 years (3, 0.3%), 2 to 6 years (8, 0.8%), 7 to 12 years (9, 0.9%), 13 to 18 years (276, 27.3%), 19 to 65 years (675, 67%), older than 66 years (33, 3.4%), unknown (6, 0.6%). Reasons for encounter: intentional (768, 76%), adverse drug event/reaction (127, 12.6%), unintentional (66, 6%), and unknown (55, 5.4%). Signs/symptoms: hyperreflexia/clonus/myoclonus (601, 59.5%), agitation (337, 33.4%), tachycardia (256, 25.3%), rigidity (140, 13.9%), seizures (139, 13.7%), and hyperthermia (29, 2.9%). COMPLICATIONS rhabdomyolysis (97, 9.7%), dysrhythmias (8, 0.8%), and death (1, 0.1%). TREATMENTS benzodiazepines 67% (677/1010), cyproheptadine 15.1% (153/1010). There were 192 different xenobiotics reported with 2046 total exposures. Antidepressants were most common (915, 44.7%) with bupropion the most frequent overall (147, 7.2%). Common non-antidepressants were dextromethorphan (95, 6.9%), lamotrigine (64, 3.1%), and tramadol (60, 2.9%). DISCUSSION Serotonin toxicity most often occurred in adult patients with intentional overdose. Antidepressants were the most common agents of toxicity. Interestingly, bupropion, a norepinephrine/dopamine reuptake inhibitor, was the most frequently mentioned xenobiotic. Though often cited as a potential antidote, only 15% of patients received cyproheptadine. Severe toxicity was rare. A single death was reported.
Collapse
|
181
|
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol 2020; 94:1085-1133. [PMID: 32249347 PMCID: PMC7225206 DOI: 10.1007/s00204-020-02693-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Psychoactive substances with chemical structures or pharmacological profiles that are similar to traditional drugs of abuse continue to emerge on the recreational drug market. Internet vendors may at least temporarily sell these so-called designer drugs without adhering to legal statutes or facing legal consequences. Overall, the mechanism of action and adverse effects of designer drugs are similar to traditional drugs of abuse. Stimulants, such as amphetamines and cathinones, primarily interact with monoamine transporters and mostly induce sympathomimetic adverse effects. Agonism at μ-opioid receptors and γ-aminobutyric acid-A (GABAA) or GABAB receptors mediates the pharmacological effects of sedatives, which may induce cardiorespiratory depression. Dissociative designer drugs primarily act as N-methyl-D-aspartate receptor antagonists and pose similar health risks as the medically approved dissociative anesthetic ketamine. The cannabinoid type 1 (CB1) receptor is thought to drive the psychoactive effects of synthetic cannabinoids, which are associated with a less desirable effect profile and more severe adverse effects compared with cannabis. Serotonergic 5-hydroxytryptamine-2A (5-HT2A) receptors mediate alterations of perception and cognition that are induced by serotonergic psychedelics. Because of their novelty, designer drugs may remain undetected by routine drug screening, thus hampering evaluations of adverse effects. Intoxication reports suggest that several designer drugs are used concurrently, posing a high risk for severe adverse effects and even death.
Collapse
Affiliation(s)
- Dino Luethi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Währinger Strasse 13a, 1090, Vienna, Austria.
- Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria.
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
182
|
Dinis-Oliveira RJ, Pereira CL, da Silva DD. Pharmacokinetic and Pharmacodynamic Aspects of Peyote and Mescaline: Clinical and Forensic Repercussions. Curr Mol Pharmacol 2020; 12:184-194. [PMID: 30318013 DOI: 10.2174/1874467211666181010154139] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mescaline (3,4,5-trimethoxyphenethylamine), mainly found in the Peyote cactus (Lophophora williamsii), is one of the oldest known hallucinogenic agents that influence human and animal behavior, but its psychoactive mechanisms remain poorly understood. OBJECTIVES This article aims to fully review pharmacokinetics and pharmacodynamics of mescaline, focusing on the in vivo and in vitro metabolic profile of the drug and its implications for the variability of response. METHODS Mescaline pharmacokinetic and pharmacodynamic aspects were searched in books and in PubMed (U.S. National Library of Medicine) without a limiting period. Biological effects of other compounds found in peyote were also reviewed. RESULTS Although its illicit administration is less common, in comparison with cocaine and Cannabis, it has been extensively described in adolescents and young adults, and licit consumption often occurs in religious and therapeutic rituals practiced by the Native American Church. Its pharmacodynamic mechanisms of action are primarily attributed to the interaction with the serotonergic 5-HT2A-C receptors, and therefore clinical effects are similar to those elicited by other psychoactive substances, such as lysergic acid diethylamide (LSD) and psilocybin, which include euphoria, hallucinations, depersonalization and psychoses. Moreover, as a phenethylamine derivative, signs and symptoms are consistent with a sympathomimetic effect. Mescaline is mainly metabolized into trimethoxyphenylacetic acid by oxidative deamination but several minor metabolites with possible clinical and forensic repercussions have also been reported. CONCLUSION Most reports concerning mescaline were presented in a complete absence of exposure confirmation, since toxicological analysis is not widely available. Addiction and dependence are practically absent and it is clear that most intoxications appear to be mild and are unlikely to produce lifethreatening symptoms, which favors the contemporary interest in the therapeutic potential of the drugs of the class.
Collapse
Affiliation(s)
- Ricardo Jorge Dinis-Oliveira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.,UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal.,Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carolina Lança Pereira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Diana Dias da Silva
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.,UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| |
Collapse
|
183
|
Chen K, He X, Li C, Ou Y, Li Y, Lai J, Lv M, Li X, Ran P, Li Y. Lysergic acid diethylamide causes mouse retinal damage by up-regulating p-JAK1/p-STAT1. Cutan Ocul Toxicol 2020; 39:106-110. [PMID: 32064962 DOI: 10.1080/15569527.2020.1730883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Lysergic acid diethylamide (LSD) is a powerful hallucinogen with high potential for abuse. There is far less known about its effects on the retina, especially the underlying mechanisms. This study was to investigate the acute toxicity of LSD on the retina of C57 mice and its mechanisms of action.Methods: C57 mice were treated with LSD at progressively increasing doses (0.2-1.2 mg/kg) intraperitoneally two times daily for 5 days, mice treated with saline served as negative control. Electroretinography (ERG) was used to test the function of the retina. Toluidine blue staining was used to detect the morphology of the retina. Enzyme-linked immunosorbent assay (ELISA) was used to measure the apoptosis-related factors. Real-time PCR and western blot techniques were used to measure expression changes of genes and proteins, respectively.Results: LSD treatment caused retinal damage, as shown by a decrease in ERG response and the loss of photoreceptor cells. LSD treatment also increased apoptosis through up-regulating the expression of p-JAK1/p-STAT1.Conclusions: Our study indicated that intraperitoneal administration of LSD-induced retinal damage of C57 mice, at least partially through regulating the JAK/STAT pathway.
Collapse
Affiliation(s)
- Kang Chen
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Xiangyu He
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Chen Li
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Yangjin Ou
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Yiru Li
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Jia Lai
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Meng Lv
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Xuqing Li
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Ping Ran
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| | - Ying Li
- Department of Ophthalmology, 958 Army Hospital, ChongQin, People's Republic of China
| |
Collapse
|
184
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
185
|
Zawilska JB, Kacela M, Adamowicz P. NBOMes-Highly Potent and Toxic Alternatives of LSD. Front Neurosci 2020; 14:78. [PMID: 32174803 PMCID: PMC7054380 DOI: 10.3389/fnins.2020.00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a new class of psychedelic compounds named NBOMe (or 25X-NBOMe) has appeared on the illegal drug market. NBOMes are analogs of the 2C family of phenethylamine drugs, originally synthesized by Alexander Shulgin, that contain a N-(2-methoxy)benzyl substituent. The most frequently reported drugs from this group are 25I-NBOMe, 25B-NBOMe, and 25C-NBOMe. NBOMe compounds are ultrapotent and highly efficacious agonists of serotonin 5-HT2A and 5-HT2C receptors (Ki values in low nanomolar range) with more than 1000-fold selectivity for 5-HT2A compared with 5-HT1A. They display higher affinity for 5-HT2A receptors than their 2C counterparts and have markedly lower affinity, potency, and efficacy at the 5-HT2B receptor compared to 5-HT2A or 5-HT2C. The drugs are sold as blotter papers, or in powder, liquid, or tablet form, and they are administered sublingually/buccally, intravenously, via nasal insufflations, or by smoking. Since their introduction in the early 2010s, numerous reports have been published on clinical intoxications and fatalities resulting from the consumption of NBOMe compounds. Commonly observed adverse effects include visual and auditory hallucinations, confusion, anxiety, panic and fear, agitation, uncontrollable violent behavior, seizures, excited delirium, and sympathomimetic signs such mydriasis, tachycardia, hypertension, hyperthermia, and diaphoresis. Rhabdomyolysis, disseminated intravascular coagulation, hypoglycemia, metabolic acidosis, and multiorgan failure were also reported. This survey provides an updated overview of the pharmacological properties, pattern of use, metabolism, and desired effects associated with NBOMe use. Special emphasis is given to cases of non-fatal and lethal intoxication involving these compounds. As the analysis of NBOMes in biological materials can be challenging even for laboratories applying modern sensitive techniques, this paper also presents the analytical methods most commonly used for detection and identification of NBOMes and their metabolites.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Monika Kacela
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
186
|
Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology 2020; 45:462-471. [PMID: 31733631 PMCID: PMC6969135 DOI: 10.1038/s41386-019-0569-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Lysergic acid diethylamide (LSD) is a classic psychedelic, 3,4-methylenedioxymethamphetamine (MDMA) is an empathogen, and D-amphetamine is a classic stimulant. All three substances are used recreationally. LSD and MDMA are being investigated as medications to assist psychotherapy, and D-amphetamine is used for the treatment of attention-deficit/hyperactivity disorder. All three substances induce distinct acute subjective effects. However, differences in acute responses to these prototypical psychoactive substances have not been characterized in a controlled study. We investigated the acute autonomic, subjective, and endocrine effects of single doses of LSD (0.1 mg), MDMA (125 mg), D-amphetamine (40 mg), and placebo in a randomized, double-blind, cross-over study in 28 healthy subjects. All of the substances produced comparable increases in hemodynamic effects, body temperature, and pupil size, indicating equivalent autonomic responses at the doses used. LSD and MDMA increased heart rate more than D-amphetamine, and D-amphetamine increased blood pressure more than LSD and MDMA. LSD induced significantly higher ratings on the 5 Dimensions of Altered States of Consciousness scale and Mystical Experience Questionnaire than MDMA and D-amphetamine. LSD also produced greater subjective drug effects, ego dissolution, introversion, emotional excitation, anxiety, and inactivity than MDMA and D-amphetamine. LSD also induced greater impairments in subjective ratings of concentration, sense of time, and speed of thinking compared with MDMA and D-amphetamine. MDMA produced greater ratings of good drug effects, liking, high, and ego dissolution compared with D-amphetamine. D-Amphetamine increased ratings of activity and concentration compared with LSD. MDMA but not LSD or D-amphetamine increased plasma concentrations of oxytocin. None of the substances altered plasma concentrations of brain-derived neurotrophic factor. These results indicate clearly distinct acute effects of LSD, MDMA, and D-amphetamine and may assist the dose-finding in substance-assisted psychotherapy research.
Collapse
|
187
|
dos Santos RG, Hallak JEC. Therapeutic use of serotoninergic hallucinogens: A review of the evidence and of the biological and psychological mechanisms. Neurosci Biobehav Rev 2020; 108:423-434. [DOI: 10.1016/j.neubiorev.2019.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/05/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
|
188
|
Kolaczynska KE, Luethi D, Trachsel D, Hoener MC, Liechti ME. Receptor Interaction Profiles of 4-Alkoxy-Substituted 2,5-Dimethoxyphenethylamines and Related Amphetamines. Front Pharmacol 2019; 10:1423. [PMID: 31849671 PMCID: PMC6893898 DOI: 10.3389/fphar.2019.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/07/2019] [Indexed: 01/19/2023] Open
Abstract
Background: 2,4,5-Trimethoxyamphetamine (TMA-2) is a potent psychedelic compound. Structurally related 4-alkyloxy-substituted 2,5-dimethoxyamphetamines and phenethylamine congeners (2C-O derivatives) have been described but their pharmacology is mostly undefined. Therefore, we examined receptor binding and activation profiles of these derivatives at monoamine receptors and transporters. Methods: Receptor binding affinities were determined at the serotonergic 5-HT1A, 5-HT2A, and 5-HT2C receptors, trace amine-associated receptor 1 (TAAR1), adrenergic α1 and α2 receptors, dopaminergic D2 receptor, and at monoamine transporters, using target-transfected cells. Additionally, activation of 5-HT2A and 5-HT2B receptors and TAAR1 was determined. Furthermore, we assessed monoamine transporter inhibition. Results: Both the phenethylamine and amphetamine derivatives (Ki = 8–1700 nM and 61–4400 nM, respectively) bound with moderate to high affinities to the 5-HT2A receptor with preference over the 5-HT1A and 5-HT2C receptors (5-HT2A/5-HT1A = 1.4–333 and 5-HT2A/5-HT2C = 2.1–14, respectively). Extending the 4-alkoxy-group generally increased binding affinities at 5-HT2A and 5-HT2C receptors but showed mixed effects in terms of activation potency and efficacy at these receptors. Introduction of a terminal fluorine atom into the 4-ethoxy substituent by trend decreased, and with progressive fluorination increased affinities at the 5-HT2A and 5-HT2C receptors. Little or no effect was observed at the 5-HT1A receptor for any of the substances tested (Ki ≥ 2700 nM). Phenethylamines bound more strongly to the TAAR1 (Ki = 21–3300 nM) compared with their amphetamine analogs (Ki = 630–3100 nM). Conclusion: As seen with earlier series investigated, the 4-alkyloxy-substituted 2,5-dimethoxyamphetamines and phenethylamines share some trends with the many other phenethylamine pharmacophore containing compounds, such as when increasing the size of the 4-substituent and increasing the lipophilicity, the affinities at the 5-HT2A/C subtype also increase, and only weak 5-HT2A/C subtype selectivities were achieved. At least from the binding data available (i.e., high affinity binding at the 5-HT2A receptor) one may predict mainly psychedelic-like effects in humans, at least for some of the compound investigated herein.
Collapse
Affiliation(s)
- Karolina E Kolaczynska
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
189
|
Toxicological Aspects and Determination of the Main Components of Ayahuasca: A Critical Review. MEDICINES 2019; 6:medicines6040106. [PMID: 31635364 PMCID: PMC6963515 DOI: 10.3390/medicines6040106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/11/2023]
Abstract
Ayahuasca is a psychoactive beverage prepared traditionally from a mixture of the leaves and stems of Psychotria viridis and Banisteriopsis caapi, respectively, being originally consumed by indigenous Amazonian tribes for ritual and medicinal purposes. Over the years, its use has spread to other populations as a means to personal growth and spiritual connection. Also, the recreational use of its isolated compounds has become prominent. The main compounds of this tea-like preparation are N,N-dimethyltryptamine (DMT), β-Carbolines, and harmala alkaloids, such as harmine, tetrahydroharmine, and harmaline. The latter are monoamine-oxidase inhibitors and are responsible for DMT psychoactive and hallucinogenic effects on the central nervous system. Although consumers defend its use, its metabolic effects and those on the central nervous system are not fully understood yet. The majority of studies regarding the effects of this beverage and of its individual compounds are based on in vivo experiments, clinical trials, and even surveys. This paper will not only address the toxicological aspects of the ayahuasca compounds but also perform a comprehensive and critical review on the analytical methods available for their determination in biological and non-biological specimens, with special focus on instrumental developments and sample preparation approaches.
Collapse
|
190
|
Pallavicini C, Vilas MG, Villarreal M, Zamberlan F, Muthukumaraswamy S, Nutt D, Carhart-Harris R, Tagliazucchi E. Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. Neuroimage 2019; 200:281-291. [DOI: 10.1016/j.neuroimage.2019.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023] Open
|
191
|
Kuypers KPC, Ng L, Erritzoe D, Knudsen GM, Nichols CD, Nichols DE, Pani L, Soula A, Nutt D. Microdosing psychedelics: More questions than answers? An overview and suggestions for future research. J Psychopharmacol 2019; 33:1039-1057. [PMID: 31303095 PMCID: PMC6732823 DOI: 10.1177/0269881119857204] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND In the past few years, the issue of 'microdosing' psychedelics has been openly discussed in the public arena where claims have been made about their positive effect on mood state and cognitive processes such as concentration. However, there are very few scientific studies that have specifically addressed this issue, and there is no agreed scientific consensus on what microdosing is. AIM This critique paper is designed to address questions that need to be answered by future scientific studies and to offer guidelines for these studies. APPROACH Owing to its proximity for a possible approval in clinical use and short-lasting pharmacokinetics, our focus is predominantly on psilocybin. Psilocybin is allegedly, next to lysergic acid diethylamide (LSD), one of the two most frequently used psychedelics to microdose. Where relevant and available, data for other psychedelic drugs are also mentioned. CONCLUSION It is concluded that while most anecdotal reports focus on the positive experiences with microdosing, future research should also focus on potential risks of (multiple) administrations of a psychedelic in low doses. To that end, (pre)clinical studies including biological (e.g. heart rate, receptor turnover and occupancy) as well as cognitive (e.g. memory, attention) parameters have to be conducted and will shed light on the potential negative consequences microdosing could have.
Collapse
Affiliation(s)
- Kim PC Kuypers
- Department of Neuropsychology and
Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University,
Maastricht, The Netherlands
| | - Livia Ng
- Department of Psychology, University
College London, London, UK
| | - David Erritzoe
- Department of Psychology,
Neuropsychopharmacology Unit, Imperial College London, London, UK
| | - Gitte M Knudsen
- Neurobiology Research Unit,
Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Charles D Nichols
- Department of Pharmacology and
Experimental Therapeutics, Louisiana State University Health Sciences Center, New
Orleans, LA, USA
| | - David E Nichols
- Purdue University College of Pharmacy,
West Lafayette, LA, USA
| | - Luca Pani
- Department of Psychiatry and Behavioral
Sciences, Psychiatry University of Miami, Miami, FL, USA
- Department of Biomedical, Metabolic
& Neural Sciences, University of Modena, Modena, Italy
| | | | - David Nutt
- Neuropsychopharmacology, Imperial
College London, London, UK
| |
Collapse
|
192
|
Sexton JD, Crawford MS, Sweat NW, Varley A, Green EE, Hendricks PS. Prevalence and epidemiological associates of novel psychedelic use in the United States adult population. J Psychopharmacol 2019; 33:1058-1067. [PMID: 30816808 DOI: 10.1177/0269881119827796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Novel psychedelics approximate classic psychedelics, but unlike classic psychedelics, novel psychedelics have been used by humans for a shorter period of time, with fewer data available on these substances. AIMS The purpose of this study was to determine the prevalence of novel psychedelic use and the associations of novel psychedelic use with mental health outcomes. METHODS We estimated the prevalence of self-reported, write-in lifetime novel psychedelic use and evaluated the associations of novel psychedelic use with psychosocial characteristics, past month psychological distress, and past year suicidality among adult respondents pooled from years 2008-2016 of the National Survey on Drug Use and Health (weighted n=234,914,788). RESULTS A fraction (weighted n=273,720; 0.12%) reported lifetime novel psychedelic use. This cohort tended to be younger, male, and White, have greater educational attainment but less income, be more likely to have never been married, engage in self-reported risky behavior, and report lifetime illicit use of other drugs, particularly classic psychedelics (96.9%). (2-(4-Bromo-2,5-dimethoxyphenyl)ethanamine) (2C-B) (30.01%), (2,5-dimethoxy-4-iodophenethylamine) (2C-I) (23.9%), and (1-(2,5-dimethoxy-4-ethylphenyl)-2-aminoethane) (2C-E) (14.8%) accounted for the majority of lifetime novel psychedelic use. Although lifetime novel psychedelic use was not associated with psychological distress or suicidality compared to no lifetime novel psychedelic use or classic psychedelic use, relative to lifetime use of classic psychedelics but not novel psychedelics, lifetime novel psychedelic use was associated with a greater likelihood of past year suicidal thinking (adjusted Odds Ratio (aOR)=1.4 (1.1-1.9)) and past year suicidal planning (aOR=1.6 (1.1-2.4)). CONCLUSION Novel psychedelics may differ from classic psychedelics in meaningful ways, though additional, directed research is needed.
Collapse
Affiliation(s)
- James D Sexton
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael S Crawford
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noah W Sweat
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allyson Varley
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emma E Green
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter S Hendricks
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
193
|
Abstract
Lysergic acid diethylamide (LSD) is the most potent hallucinogen known and its pharmacological effect results from stimulation of central serotonin receptors (5-HT2). Since LSD is seen as physiologically safe compound with low toxicity, its use in therapeutics has been renewed during the last few years. This review aims to discuss LSD metabolism, by presenting all metabolites as well as clinical and toxicological relevance. LSD is rapidly and extensively metabolized into inactive metabolites; whose detection window is higher than parent compound. The metabolite 2-oxo-3-hydroxy LSD is the major human metabolite, which detection and quantification is important for clinical and forensic toxicology. Indeed, information about LSD pharmacokinetics in humans is limited and for this reason, more research studies are needed.
Collapse
Affiliation(s)
- Rui Filipe Libânio Osório Marta
- Department of Sciences, INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL , Gandra , Portugal.,Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO, REQUIMTE, University of Porto , Porto , Portugal
| |
Collapse
|
194
|
Luethi D, Widmer R, Trachsel D, Hoener MC, Liechti ME. Monoamine receptor interaction profiles of 4-aryl-substituted 2,5-dimethoxyphenethylamines (2C-BI derivatives). Eur J Pharmacol 2019; 855:103-111. [DOI: 10.1016/j.ejphar.2019.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
195
|
Rickli A, Hoener MC, Liechti ME. Pharmacological profiles of compounds in preworkout supplements ("boosters"). Eur J Pharmacol 2019; 859:172515. [PMID: 31265842 DOI: 10.1016/j.ejphar.2019.172515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Preworkout supplements ("boosters") are used to enhance physical and mental performance during workouts. These products may contain various chemical substances with undefined pharmacological activity. We investigated whether substances that are contained in commercially available athletic multiple-ingredient preworkout supplements exert amphetamine-type activity at norepinephrine, dopamine, and serotonin transporters (NET, DAT, and SERT, respectively). We assessed the in vitro monoamine transporter inhibition potencies of the substances using human embryonic kidney 293 cells that expressed the human NET, DAT, and SERT. The phenethylamines β-phenethylamine, N-methylphenethylamine, β-methylphenethylamine, N-benzylphenethylamine, N-methyl-β-methylphenethylamine, and methylsynephrine inhibited the NET and less potently the DAT similarly to D-amphetamine. β-phenethylamine was the most potent, with IC50 values of 0.05 and 1.8 μM at the NET and DAT, respectively. These IC50 values were comparable to D-amphetamine (IC50 = 0.09 and 1.3 μM, respectively). The alkylamines 1,3-dimethylbutylamine and 1,3-dimethylamylamine blocked the NET but not the DAT. Most of the phenethylamines interacted with trace amine-associated receptor 1, serotonin 5-hydroxytryptamine-1A receptor, and adrenergic α1A and α2A receptors at submicromolar concentrations. None of the compounds blocked the SERT. In conclusion, products that are used by athletes may contain substances with mainly noradrenergic amphetamine-type properties.
Collapse
Affiliation(s)
- Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
196
|
Canal CE. Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action. Handb Exp Pharmacol 2019; 252:227-260. [PMID: 29532180 PMCID: PMC6136989 DOI: 10.1007/164_2018_107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent, well-controlled - albeit small-scale - clinical trials show that serotonergic psychedelics, including psilocybin and lysergic acid diethylamide, possess great promise for treating psychiatric disorders, including treatment-resistant depression. Additionally, fresh results from a deluge of clinical neuroimaging studies are unveiling the dynamic effects of serotonergic psychedelics on functional activity within, and connectivity across, discrete neural systems. These observations have led to testable hypotheses regarding neural processing mechanisms that contribute to psychedelic effects and therapeutic benefits. Despite these advances and a plethora of preclinical and clinical observations supporting a central role for brain serotonin 5-HT2A receptors in producing serotonergic psychedelic effects, lingering and new questions about mechanisms abound. These chiefly pertain to molecular neuropharmacology. This chapter is devoted to illuminating and discussing such questions in the context of preclinical experimental approaches for studying mechanisms of action of serotonergic psychedelics, classic and new.
Collapse
Affiliation(s)
- Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
197
|
Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 2019; 44:1328-1334. [PMID: 30685771 PMCID: PMC6785028 DOI: 10.1038/s41386-019-0324-9] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 11/08/2022]
Abstract
The main psychedelic component of magic mushrooms is psilocybin, which shows promise as a treatment for depression and other mental disorders. Psychedelic effects are believed to emerge through stimulation of serotonin 2A receptors (5-HT2ARs) by psilocybin's active metabolite, psilocin. We here report for the first time the relationship between intensity of psychedelic effects, cerebral 5-HT2AR occupancy and plasma levels of psilocin in humans. Eight healthy volunteers underwent positron emission tomography (PET) scans with the 5-HT2AR agonist radioligand [11C]Cimbi-36: one at baseline and one or two additional scans on the same day after a single oral intake of psilocybin (3-30 mg). 5-HT2AR occupancy was calculated as the percent change in cerebral 5-HT2AR binding relative to baseline. Subjective psychedelic intensity and plasma psilocin levels were measured during the scans. Relations between subjective intensity, 5-HT2AR occupancy, and plasma psilocin levels were modeled using non-linear regression. Psilocybin intake resulted in dose-related 5-HT2AR occupancies up to 72%; plasma psilocin levels and 5-HT2AR occupancy conformed to a single-site binding model. Subjective intensity was correlated with both 5-HT2AR occupancy and psilocin levels as well as questionnaire scores. We report for the first time that intake of psilocybin leads to significant 5-HT2AR occupancy in the human brain, and that both psilocin plasma levels and 5-HT2AR occupancy are closely associated with subjective intensity ratings, strongly supporting that stimulation of 5-HT2AR is a key determinant for the psychedelic experience. Important for clinical studies, psilocin time-concentration curves varied but psilocin levels were closely associated with psychedelic experience.
Collapse
|
198
|
Rodrigues AVSL, Almeida FJ, Vieira-Coelho MA. Dimethyltryptamine: Endogenous Role and Therapeutic Potential. J Psychoactive Drugs 2019; 51:299-310. [DOI: 10.1080/02791072.2019.1602291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandra VSL Rodrigues
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Jcg Almeida
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry and Mental Health Clinic, Hospital de São João, Porto, Portugal
| |
Collapse
|
199
|
Yanakieva S, Polychroni N, Family N, Williams LTJ, Luke DP, Terhune DB. The effects of microdose LSD on time perception: a randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2019; 236:1159-1170. [PMID: 30478716 PMCID: PMC6591199 DOI: 10.1007/s00213-018-5119-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE Previous research demonstrating that lysergic acid diethylamide (LSD) produces alterations in time perception has implications for its impact on conscious states and a range of psychological functions that necessitate precise interval timing. However, interpretation of this research is hindered by methodological limitations and an inability to dissociate direct neurochemical effects on interval timing from indirect effects attributable to altered states of consciousness. METHODS We conducted a randomised, double-blind, placebo-controlled study contrasting oral administration of placebo with three microdoses of LSD (5, 10, and 20 μg) in older adults. Subjective drug effects were regularly recorded and interval timing was assessed using a temporal reproduction task spanning subsecond and suprasecond intervals. RESULTS LSD conditions were not associated with any robust changes in self-report indices of perception, mentation, or concentration. LSD reliably produced over-reproduction of temporal intervals of 2000 ms and longer with these effects most pronounced in the 10 μg dose condition. Hierarchical regression analyses indicated that LSD-mediated over-reproduction was independent of marginal differences in self-reported drug effects across conditions. CONCLUSIONS These results suggest that microdose LSD produces temporal dilation of suprasecond intervals in the absence of subjective alterations of consciousness.
Collapse
Affiliation(s)
- Steliana Yanakieva
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK
| | - Naya Polychroni
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK
| | | | - Luke T J Williams
- Eleusis Pharmaceuticals Ltd, London, UK
- Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David P Luke
- Department of Psychology, Social Work, & Counselling, University of Greenwich, London, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
200
|
Stereochemistry of phase-1 metabolites of mephedrone determines their effectiveness as releasers at the serotonin transporter. Neuropharmacology 2019; 148:199-209. [DOI: 10.1016/j.neuropharm.2018.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022]
|