151
|
Cvek M, Paul UC, Zia J, Mancini G, Sedlarik V, Athanassiou A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14654-14667. [PMID: 35302368 PMCID: PMC8972250 DOI: 10.1021/acsami.2c02181] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bio-based and biodegradable packaging combined with chemical sensors and indicators has attracted great attention as they can provide protection combined with information on the actual freshness of foodstuffs. In this study, we present an effective, biodegradable, mostly bio-sourced material ideal for sustainable packaging that can also be used as a smart indicator of ammonia (NH3) vapor and food spoilage. The developed material comprises a blend of poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) loaded with curcumin (CCM), which is fabricated via the scalable techniques of melt extrusion and compression molding. Due to the structural similarity of PLA and PPC, they exhibited good compatibility and formed hydrogen bonds within their blends, as proven by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis confirmed that the blends were thermally stable at the used processing temperature (180 °C) with minimal crystallinity. The rheological and mechanical properties of the PLA/PPC blends were easily tuned by changing the ratio of the biopolymers. Supplementing the PLA/PCC samples with CCM resulted in efficient absorption of UV radiation, yet the transparency of the films was preserved (T700 ∼ 68-84%). The investigation of CCM extract in ethanol with the DPPH• assay demonstrated that the samples could also provide effective antioxidant action, due to the tunable release of the CCM. Analyses for water vapor and oxygen permeability showed that the PPC improved the barrier properties of the PLA/PPC blends, while the presence of CCM did not hinder barrier performance. The capacity for real-time detection of NH3 vapor was quantified using the CIELab color space analysis. A change in color of the sample from a yellowish shade to red was observed by the naked eye. Finally, a film of PLA/PPC/CCM was successfully applied as a sticker indicator to monitor the spoilage of shrimps over time, demonstrating an evident color change from yellow to light orange, particularly for the PPC-containing blend. The developed system, therefore, has the potential to serve as a cost-effective, easy-to-use, nondestructive, smart indicator for food packaging, as well as a means for NH3 gas monitoring in industrial and environmental applications.
Collapse
Affiliation(s)
- Martin Cvek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Uttam C. Paul
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 161 63 Genoa, Italy
| | - Jasim Zia
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 161 63 Genoa, Italy
| | - Giorgio Mancini
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 161 63 Genoa, Italy
| | - Vladimir Sedlarik
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | | |
Collapse
|
152
|
He Y, Li B, Du J, Cao S, Liu M, Li X, Ren D, Wu X, Xu D. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. Int J Biol Macromol 2022; 201:203-215. [PMID: 34995663 DOI: 10.1016/j.ijbiomac.2021.12.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023]
Abstract
Absorbent pads with antioxidant and pH-responsive color changing functions have been developed based on polyvinyl alcohol (PVA), agarose (AG), and purple sweet potato anthocyanins (PSPA), aiming for fresh keeping and freshness indication of meat. The effects of PSPA content on the structure, physical properties, and colorimetric response towards pH changing of pads were evaluated. The results showed that PSPA interacted with PVA and AG and influenced the crystallinity, thermal stability and micro-morphology of pads. The increase of the PSPA content from 3% to 12% improved the strength and DPPH radical scavenging activity of the pads, but reduced the swelling ratio. Significant color change of the pads was observed when pH increased from 3 to 10, and the pad containing 9% PSPA presented the most distinguishable color change with the change of pH. When applied as an absorbent pad for minced meat packaging, the pad indicated the real-time spoilage of the meat through obvious color change, and also extended the shelf life by at least 24 h. Therefore, the dual-functional pad shows great potential to be applied as a smart and active packaging for fresh meat, which would play an important role in ensuring food safety and improving food storage quality.
Collapse
Affiliation(s)
- Yue He
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Baoxiang Li
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jin Du
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Siyuan Cao
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Min Liu
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiaonan Li
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China.
| |
Collapse
|
153
|
Gupta P, Toksha B, Rahaman M. A Review on Biodegradable Packaging Films from Vegetative and Food Waste. CHEM REC 2022; 22:e202100326. [PMID: 35253984 DOI: 10.1002/tcr.202100326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/19/2022] [Indexed: 01/11/2023]
Abstract
Plastics around the globe have been a matter of grave concern due to the unavoidable habits of human mankind. Taking waste statistics in India for the year 2019-20 into account, the data of 60 major cities show that the generation of plastic waste stands tall at around 26,000 tonnes/day, of which only about 60 % is recycled. A majority of the non-recycled plastic waste is petrochemical-based packaging materials that are non-biodegradable in nature. Vegetative/food waste is another global issue, evidenced by vastly populated countries such as China and India accounting for 91 and 69 tonnes of food wastage, respectively in 2019. The mitigation of plastic packaging issues has led to key scientific developments, one of which is biodegradable materials. However, there is a way that these two waste-related issues can be fronted as the analogy of "taking two shots with the same arrow". The presence of various bio-compounds such as proteins, cellulose, starch, lipids, and waxes, etc., in food and vegetative waste, creates an opportunity for the development of biodegradable packaging films. Although these flexible packaging films have limitations in terms of mechanical, permeation, and moisture absorption characteristics, they can be fine-tuned in order to convert the biobased raw material into a realizable packaging product. These strategies could work in replacing petrochemical-based non-biodegradable packaging plastics which are used in enormous quantities for various household and commercial packaging applications to combat the ever-increasing pollution in highly populated countries. This paper presents a systematic review based on modern scientific tools of the literature available with a major emphasis on the past decade and aims to serve as a standard resource for the development of biodegradable packaging films from food/vegetative waste.
Collapse
Affiliation(s)
- Prashant Gupta
- MIT - Centre for Advanced Materials Research and Technology, Department of Plastic and Polymer Engineering, Maharashtra Institute of Technology, Aurangabad, 431010
| | - Bhagwan Toksha
- MIT - Centre for Advanced Materials Research and Technology, Department of Electronics and Telecommunication Engineering, Maharashtra Institute of Technology, Aurangabad, 431010
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
154
|
Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
155
|
Hoffmann TG, Angioletti BL, Bertoli SL, de Souza CK. Intelligent pH-sensing film based on jaboticaba peels extract incorporated on a biopolymeric matrix. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1001-1010. [PMID: 35185204 PMCID: PMC8814300 DOI: 10.1007/s13197-021-05104-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Food spoilage is associated with pH change. Thus, the aim of this study was to develop a pH-sensing film based on the addition of anthocyanin extracted from jaboticaba peel to a biopolymeric matrix. UV-Vis spectroscopy analysis of the anthocyanin extract was performed to detect the color change in a broad pH range (1-11). Also, the thermal properties, morphology, moisture content (MC), water solubility (WS), water vapor permeability (WVP) and release test results were examined. The applicability of the pH-sensing film as intelligent packaging was tested by monitoring milk spoilage. Results showed that the film developed has satisfactory thermal stability up to 200 °C. Also, the MC and WVP properties of the film were reduced when the anthocyanin extract was present, 11.5% and 6.5 × 10-10 g H2O Pa- 1 s-1 m-1, respectively, while the WS showed an increase (54.33%). Release tests showed remarkable performance in simulated alcoholic and fatty aqueous foods. The food application test demonstrated the potential use of the anthocyanin-based film as a food quality indicator due to film visual color change ( Δ E >10, after 8 days of milk spoilage monitoring).
Collapse
Affiliation(s)
- Tuany Gabriela Hoffmann
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| | - Betina Louise Angioletti
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| | - Sávio Leandro Bertoli
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| | - Carolina Krebs de Souza
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau, 89030-000 Brazil
| |
Collapse
|
156
|
Sun Y, Zhang M, Adhikari B, Devahastin S, Wang H. Double-layer indicator films aided by BP-ANN-enabled freshness detection on packaged meat products. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
157
|
Alizadeh Sani M, Tavassoli M, Salim SA, Azizi-lalabadi M, McClements DJ. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
158
|
Shi C, Ji Z, Zhang J, Jia Z, Yang X. Preparation and characterization of intelligent packaging film for visual inspection of tilapia fillets freshness using cyanidin and bacterial cellulose. Int J Biol Macromol 2022; 205:357-365. [PMID: 35182567 DOI: 10.1016/j.ijbiomac.2022.02.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
An intelligent pH-sensitive film was developed by incorporating cyanidin-3-glucoside (C3G) into bacterial cellulose (BC), and its application as a freshness indicator for tilapia fillets was investigated. The physical properties of the film were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results demonstrated the mechanical properties of the film were significantly changed due to higher crystallinity induced by C3G. XRD and FTIR analysis showed the increased crystallinity and transmittance intensity of the BC-C3G film. Moreover, this film exhibited distinctive color changes from red to green when exposed to buffers with a pH of 3 to 10. In accordance with changes in total volatile basic nitrogen (TVB-N) and total viable count (TVC) of tilapia fillets, the indicator demonstrated visualized color changes as rose-red (fresh), purple (still suitable), and lavender (spoiled) during storage at both 25 °C and 4 °C. The results suggest that this film has great potential to be used as an intelligent indicator to monitor the freshness of fish.
Collapse
Affiliation(s)
- Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zengtao Ji
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jiaran Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Zhixin Jia
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Xinting Yang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
159
|
Zhang T, Wang H, Qi D, Xia L, Li L, Li X, Jiang S. Multifunctional colorimetric cellulose acetate membrane incorporated with Perilla frutescens (L.) Britt. anthocyanins and chamomile essential oil. Carbohydr Polym 2022; 278:118914. [PMID: 34973733 DOI: 10.1016/j.carbpol.2021.118914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 12/30/2022]
Abstract
A colorimetric cellulose acetate (CA) membrane incorporated with Perilla frutescens (L.) Britt. anthocyanins (PFA) and chamomile essential oil (CO) is developed via electrospinning technique for food freshness monitoring and shelf-life extending. The moieties of PFA and CO are well-dispersed in fiber matrix by hydrogen bonds and their incorporation increases the fiber size but with no obvious influence on the fiber morphology at incorporation levels. The presence of CO enhances membrane hydrophobicity. The target membrane of CA-PFA6-CO15 (PFA6%, CO15%) has a wide color change range of pH 2-12 which is high sensitive and reversible towards external pH-stimuli. The membrane has good antibacterial activity against E. coli and S. aureus besides antioxidant activity. The release of bioactive moieties is predominantly controlled by Fickian diffusion. The target membrane can simultaneously monitor pork freshness in real-time and double the shelf-life at 25 °C, indicating its potential application in active and intelligent food packaging.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| | - Dongxiu Qi
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Li Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| |
Collapse
|
160
|
Self-Assembly of Cellulose Nanocrystals and Organic Colored Pigments as Reinforcement Matrix of Lipstick for Enhancing SPF. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2422618. [PMID: 35186182 PMCID: PMC8850073 DOI: 10.1155/2022/2422618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023]
Abstract
The vermilion of the human lip, covered by a skinny epithelium with little melanin, is quite susceptible to damage from ultraviolet (UV) radiation exposure. However, commercial sunscreen filters and indelible dyes used in lipsticks can cause health hazards after percutaneous absorption or accidentally oral administration. Inspired by plant pigmentation as natural filters to protect themselves against overexposure to UV, safer bio-based sunscreens of cellulose enveloped with anthocyanin (AN) were developed using bionic design. Cellulose nanocrystals (CNC), derived from acid hydrolysis of cellulose, reinforced enhancement of UV absorption and shielding properties of AN. This innovation addresses the issue that naturally sourced UV filter application to sunscreen does not achieve a desired sun protection factor (SPF) value because of the low specific extinction value (E1,1). We also stated that the diverse formula of anthocyanin sunscreen lipsticks with CNC exhibited 10 times more SPF value than AN alone. Furthermore, they possess competitive benefits such as pleasing texture, superior adhesion, impermeable, nonphototoxicity, ease of application, and removal. This work provides a promising proof-of-concept for studying the features of natural sunscreens in the design of simple, safe, efficient, and green sunscreens.
Collapse
|
161
|
Azlim NA, Mohammadi Nafchi A, Oladzadabbasabadi N, Ariffin F, Ghalambor P, Jafarzadeh S, Al-Hassan AA. Fabrication and characterization of a pH-sensitive intelligent film incorporating dragon fruit skin extract. Food Sci Nutr 2022; 10:597-608. [PMID: 35154695 PMCID: PMC8825720 DOI: 10.1002/fsn3.2680] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
A novel intelligent pH-sensing indicator based on gelatin film and anthocyanin extracted from dragon fruit skin (Hylocereus polyrhizus) (DFSE) as a natural dye was developed to monitor food freshness by the casting method. Anthocyanin content of DFSE was 15.66 ± 1.59 mg/L. Dragon fruit bovine gelatin films were characterized by Fourier transform infrared spectroscopy (FTIR) and observed by a scanning electron microscope (SEM). Moisture content, mechanical properties, water solubility, water vapor permeability (WVP), light transmittance, color, and pH-sensing evaluations were evaluated for potential application. FTIR spectroscopy revealed that the extracted anthocyanin could interact with the other film components through hydrogen bonds. When the extract was added, films showed a smooth and clear surface as observed by SEM. The addition of anthocyanin increased the moisture content, thickness, and water solubility of the films, but decreased the WVP and light transmittance of films. Also, the incorporation of 15% v/v DFSE decreased the tensile strength from 17.04 to 12.91 MPa, increasing the elongation at break from 91.19% to 107.86%. The films showed higher ΔE with increasing DFSE content, which indicated that the film had good color variability. A significant difference in the color of the films was observed with exposure to different pH buffer solutions. The findings demonstrated that gelatin film incorporated with DFSE could be used as a visual indicator of pH variations to monitor the freshness of foods during storage time.
Collapse
Affiliation(s)
- Nurnabila Afiqah Azlim
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
- Department of Food Science and Technology, Damghan Branch Islamic Azad University Damghan Iran
| | - Nazila Oladzadabbasabadi
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
| | - Fazilah Ariffin
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
| | - Pantea Ghalambor
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Shima Jafarzadeh
- School of Engineering Edith Cowan University Joondalup Western Australia Australia
| | - A A Al-Hassan
- Department of Food Science and Human Nutrition College of Agriculture and vit. Medicine Qassim University Burydah Saudi Arabia
| |
Collapse
|
162
|
Evaluation of milk deterioration using simple biosensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
163
|
A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
164
|
Wangmo L, Suratsawadee A, Ratvijitvech T, Siripinyanond A. A novel sensor based on bead-counting of purple sweet potato tapioca pearl for freshness monitoring of shrimp. Food Chem 2022; 368:130863. [PMID: 34428691 DOI: 10.1016/j.foodchem.2021.130863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
A novel sensor based on bead-counting of purple sweet potato tapioca pearl for freshness monitoring of shrimp was proposed. The sensor was prepared from commercially available tapioca pearls with purple sweet potato as a natural colorant by using a similar procedure as to prepare "Thai Saku dessert". A novel concept of using five tapioca pearls stacked in a pipette tip was proposed to observe the color change of the pearls by bead counting approach. The color of the tapioca pearl changed from purple to greenish-blue upon the detection of volatile amines and then to green on prolonged exposure to volatile amines. This color change was observed from the first bead and gradually observed on the next beads according to the concept of distance-based colorimetric measurement. This work is the first to demonstrate the use of bead counting as a novel, low-cost sensor technology for estimating the freshness of shrimp.
Collapse
Affiliation(s)
- Lungten Wangmo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Atitaya Suratsawadee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Thanchanok Ratvijitvech
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| |
Collapse
|
165
|
Zhang X, Zou W, Xia M, Zeng Q, Cai Z. Intelligent colorimetric film incorporated with anthocyanins-loaded ovalbumin-propylene glycol alginate nanocomplexes as a stable pH indicator of monitoring pork freshness. Food Chem 2022; 368:130825. [PMID: 34496332 DOI: 10.1016/j.foodchem.2021.130825] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/04/2022]
Abstract
Protein-polysaccharide nanocomplexes system could improve the low stability of ACNs, making ACNs become a potential and stable pH indicator. In this study, intelligent colorimetric film was designed to monitor pork freshness by incorporating ACNs-loaded ovalbumin-propylene glycol alginate nanocomplexes (ACNs-loaded OVA-PGA) into polyvinyl alcohol/ glycerol (PG) matrix. The intelligent film (PG/ACNs-loaded OVA-PGA film) presented well barrier performance (lower water vapor permeability and light transmittance at 200-600 nm). Fourier transform infrared spectroscopy further confirmed the hydrogen bonds among film-forming components. Moreover, Scanning electron microscope and X-ray diffraction showed that ACNs-loaded OVA-PGA was uniformly distributed in film matrix but decreased the crystallinity of polyvinyl alcohol. PG/ACNs-loaded OVA-PGA film had distinguishable colorimetric response to pH 2.0-11.0 buffers and volatile ammonia. In the test, PG/ACNs-loaded OVA-PGA film displayed visible color alterations from purplish-red to dark-blue as pork freshness decreased, suggesting it can be used in intelligent packaging for real-time monitoring freshness of meat products.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Wenjie Zou
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China.
| |
Collapse
|
166
|
Zhao R, Zhang Y, Chen H, Song R, Li Y. Performance of eugenol emulsion/chitosan edible coating and application in fresh meat preservation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Runan Zhao
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
| | - Yu Zhang
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
| | - Huanle Chen
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
| | - Rong Song
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
| | - Yan Li
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology Ministry of Education China
- Functional Food Engineering &Technology Research Center of Hubei Province China
| |
Collapse
|
167
|
Qiao D, Lu J, Shi W, Li H, Zhang L, Jiang F, Zhang B. Deacetylation enhances the properties of konjac glucomannan/agar composites. Carbohydr Polym 2022; 276:118776. [PMID: 34823792 DOI: 10.1016/j.carbpol.2021.118776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
From a microstructural point of view, this work concerns how deacetylation improves the practical characteristics of deacetylated-konjac glucomannan/agar (DK/A) composite films. As disclosed by infrared spectroscopy and X-ray diffraction, the deacetylation of konjac glucomannan (KGM) enhanced the chain interactions in DK/A composites and suppressed the realignment of agar molecules into crystallites. The enhanced associations between acetyl-free regions of KGM and agar reduced the exposure of OH groups and thus increased the hydrophobicity of the composites. Besides, the partial removal of acetyl groups allowed shortened distances between chains; consequently, denser composite matrices emerged with lower water vapor permeability and higher tensile strength. Also, the KGM deacetylation increased the matrix flexibility and elongation at break for DK/A composites, associated with the hindered rearrangement of agar chains. Thus, altering the deacetylation degree of KGM may be an effective way to design KGM-based composites with improved hydrophobicity and mechanical performance.
Collapse
Affiliation(s)
- Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jieyi Lu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wenjuan Shi
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hao Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
168
|
Fabrication of an Immobilized Polyelectrolite Complex (PEC) Membrane from Pectin-Chitosan and Chromoionophore ETH 5294 for pH-Based Fish Freshness Monitoring. COATINGS 2022. [DOI: 10.3390/coatings12010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Considering the significance of its demand around the world, the accurate determination of fish freshness with a simple and rapid procedure has become an interesting issue for the fishing industry. Hence, we aimed to fabricate a new optical pH sensor based on a polyelectrolyte (PEC) membrane of pectin–chitosan and the active material chromoionophore ETH 5294. A trial-and-error investigation of the polymer compositions revealed that the optimum ratio of pectin to chitosan was 3:7. With an optimum wavelength region (λ) at 610 nm, the constructed sensor was capable of stable responses after 5 min exposure to phosphate-buffered solution. Furthermore, the obtained sensor achieved optimum sensitivity when the PBS concentration was 0.1 M, while the relative standard deviation values ranged from 2.07 to 2.34%, suggesting good reproducibility. Further investigation revealed that the sensor experienced decreased absorbance of 16.67–18.68% after 25 days of storage. Employing the optimum conditions stated previously, the sensor was tested to monitor fish freshness in samples that were stored at 4 °C and ambient temperature. The results suggested that the newly fabricated optical sensor could measure pH changes on fish skin after 25 h storage at room temperature (pH 6.37, 8.91 and 11.02, respectively) and 4 °C (pH 6.8, 7.31 and 7.92, respectively).
Collapse
|
169
|
Miranda Mugica M, McGuinness KL, Lawrence NS. Electropolymerised pH Insensitive Salicylic Acid Reference Systems: Utilization in a Novel pH Sensor for Food and Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:555. [PMID: 35062515 PMCID: PMC8777722 DOI: 10.3390/s22020555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This work summarizes the electrochemical response of a salicylic acid-based carbon electrode for use as a novel solid-state reference electrode in a redox-based pH sensor. This novel reference produces a pH insensitive response over a range of pH 3-10 in solutions with low buffer concentrations, different compositions, conductivities, and ionic strengths is produced. The pH of the local environment is shown to be determined by the chemistry and the electrochemical response of the redox active species on the surface of the electrode; the local pH can be controlled by the electropolymerized salicylic acid moieties due to the acid concentration on the surface, avoiding any perturbation in environmental pH and leading to a stable novel reference system. Sensitivities of -7.1 mV/pH unit, -2.4 mV/pH unit, -0.2 mV/pH unit, and 2.5 mV/pH units were obtained for different food medias, hydroponic solution, seawater, and cell-culture media, respectively, confirming its ability to control the local pH of the electrode. This reference system is paired with a new pH sensing element based on electropolymerized flavanone to provide a calibration free, pH sensitive sensor to effectively and accurately measure the pH of various media with high viscosity, low conductivity, low/high buffer concentration or cell-culture environment, presenting a maximum error of +/-0.03 pH units.
Collapse
|
170
|
Szadkowski B, Rogowski J, Maniukiewicz W, Beyou E, Marzec A. New natural organic–inorganic pH indicators: Synthesis and characterization of pro-ecological hybrid pigments based on anthraquinone dyes and mineral supports. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
171
|
Koshy RR, Reghunadhan A, Mary SK, Thomas K, K. R. A, Thomas S, Pothen LA. Intelligent pH-sensitive films from whole arrowroot powder and soy protein isolate incorporating red cabbage anthocyanin: monitoring freshness of shrimps and ammonia in fish farming ponds. NEW J CHEM 2022. [DOI: 10.1039/d1nj05970j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Whole arrowroot powder, soy protein isolate and red cabbage anthocyanin were used to fabricate packaging films that can monitor the freshness of shrimp and can be used to detect ammonia.
Collapse
Affiliation(s)
- Rekha Rose Koshy
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Alappuzha, University of Kerala, Kerala 690110, India
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, Kerala, India
| | - Arunima Reghunadhan
- Department of Chemistry, TKM College of Engineering, Karicode, Kollam, Kerala 691005, India
| | - Siji. K. Mary
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Alappuzha, University of Kerala, Kerala 690110, India
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, Kerala, India
| | - Kiran Thomas
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Alappuzha, University of Kerala, Kerala 690110, India
| | - Ajish K. R.
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, Kerala, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laly A. Pothen
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
172
|
Cheng H, Xu H, Julian McClements D, Chen L, Jiao A, Tian Y, Miao M, Jin Z. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem 2021; 375:131738. [PMID: 34922277 DOI: 10.1016/j.foodchem.2021.131738] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, food packaging is used for improving food quality and providing consumers with descriptions of products. A new generation of intelligent ("smart") packaging materials is being developed to continuously monitor the properties of packaged foods and provide real-time information about their maturity, quality, and safety. In this paper, recent research in the development, properties, and applications of intelligent food packaging materials is summarized. Initially, we review the different sensing methods that can be used to detect alterations in food properties, such as those based on changes in time, temperature, humidity, oxygen levels, pH, chemical composition, or microbial contamination. The different approaches that can be used to design intelligent packaging materials are then highlighted, including films, bar codes, and labels. A number of applications of these packaging materials are then discussed to demonstrate their potential in the food industry. Finally, the challenges and future directions of food packaging are discussed.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
173
|
Shao P, Liu L, Yu J, Lin Y, Gao H, Chen H, Sun P. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
174
|
Zhou W, Wu Z, Xie F, Tang S, Fang J, Wang X. 3D printed nanocellulose-based label for fruit freshness keeping and visual monitoring. Carbohydr Polym 2021; 273:118545. [PMID: 34560957 DOI: 10.1016/j.carbpol.2021.118545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Food packaging systems with a single function of freshness keeping or monitoring may not be able to meet all practical needs. Herein, cellulose nanofibers (CNF)-based labels with dual functions of fruit freshness keeping and visual monitoring were prepared by coaxial 3D printing. CNF-based ink with blueberry anthocyanin was used to create the shell of fibers, exhibiting high formability and print fidelity as well as sensitive visual pH-responsiveness for freshness monitoring. Chitosan containing 1-methylcyclopropene (1-MCP) was loaded into the hollow microchannels of fibers, in which 1-MCP was trapped by the electrostatic effect of chitosan and CNF and exhibited a sustained release behavior. The 3D printed labels prolonged the shelf life of litchis for 6 days, meanwhile, they sensitively indicated the changes in freshness and the accuracy was confirmed by Headspace-Gas Chromatography-Ion Mobility Spectrometry. The CNF-based integrated labels developed in this work provided a new idea for the development of food intelligent packaging.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Zhengguo Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, UK
| | - Shuwei Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jiawei Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
175
|
Boonsiriwit A, Lee M, Kim M, Inthamat P, Siripatrawan U, Lee YS. Hydroxypropyl methylcellulose/microcrystalline cellulose biocomposite film incorporated with butterfly pea anthocyanin as a sustainable pH-responsive indicator for intelligent food-packaging applications. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
176
|
Naghdi S, Rezaei M, Abdollahi M. A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish. Int J Biol Macromol 2021; 191:161-170. [PMID: 34536478 DOI: 10.1016/j.ijbiomac.2021.09.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
An easy-to-use food packaging label with pH and ammonia sensitivity was developed by adding betacyanin (5, 10 and 15 mg per g of starch) from flowers of paperflower (Bougainvillea glabra) to potato starch film made using the solvent casting method. The betacyanin was well dispersed into the starch matrix and formed new interactions with it as revealed by FTIR. The film containing 15 mg/g of betacyanin showed a color change from light pink to yellow as a response to pH adjustment of between 2 to 13. It was also able to detect the presence of ammonia in a range of 0.1 and 0.01 mg of ammonia per ml of water. Surface hydrophobicity and water vapor barrier capacity of the starch film increased by addition of the betacyanin, yet their mechanical strength decreased in the presence of the betacyanin. The ability of the film in the real-time indication of fish quality as a label was also evaluated during the storage of Caspian sprat at 4 °C. A visual change in the color of the packaging label from pink to yellow in parallel with the increase in the total volatile basic nitrogen (TVB-N), microbial count of the fish samples was detected. The starch/betacyanin film could be a novel intelligent label for application in food packaging.
Collapse
Affiliation(s)
- Shahab Naghdi
- Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
177
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
178
|
Sun Y, Wen J, Chen Z, Qiu S, Wang Y, Yin E, Li H, Liu X. Non-destructive and Rapid Method for Monitoring Fish Freshness of Grass Carp Based on Printable Colorimetric Paper Sensor in Modified Atmosphere Packaging. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
179
|
Zhu J, Liu Z, Chen H, Liu H, Bao X, Li C, Chen L, Yu L. Designing and developing biodegradable intelligent package used for monitoring spoilage seafood using aggregation-induced emission indicator. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
180
|
Song HG, Choi I, Lee JS, Chung MN, Yoon CS, Han J. Comparative study on physicochemical properties of starch films prepared from five sweet potato (Ipomoea batatas) cultivars. Int J Biol Macromol 2021; 189:758-767. [PMID: 34419545 DOI: 10.1016/j.ijbiomac.2021.08.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Five different sweet potato (Ipomoea batatas) cultivars (Daeyumi, Gogeonmi, Sincheonmi [SCM], Singeonmi, and Sinyulmi [SYM]) were used to extract sweet potato starch (SPS) for developing starch-based films. After the chemical composition and amylose contents of all SPSs were evaluated, the morphological, moisture, mechanical, and barrier properties of the SPS-based films were investigated. As one of the film characteristics, the X-ray diffractograms revealed that the SCM-based film with the highest amylose content (26.34%) had the highest relative crystallinity (24.31%). The SCM-based film also showed higher tensile strength (3.05-fold) and elastic modulus (2.38-fold) than the SYM-based film with the lowest amylose content (21.84%). The water vapor and oxygen permeabilities of the SPS-based films were negatively correlated with the amylose content. Thus, the SCM-based film was less permeable for water vapor (3.16-fold) and oxygen (1.81-fold) than the SYM-based film. These results demonstrated that the sweet potato cultivar, especially the amylose content, plays a significant role in determining the physicochemical properties of the SPS-based films.
Collapse
Affiliation(s)
- Hong-Geon Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Inyoung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Soo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Nam Chung
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan-gun, Jeollanam-do 58545, Republic of Korea.
| | - Chan Suk Yoon
- Agency for Korea National Food Cluster (AnFC), Iksan 54576, Republic of Korea.
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
181
|
Liu D, Dang S, Zhang L, Munsop K, Li X. Corn starch/polyvinyl alcohol based films incorporated with curcumin-loaded Pickering emulsion for application in intelligent packaging. Int J Biol Macromol 2021; 188:974-982. [PMID: 34403676 DOI: 10.1016/j.ijbiomac.2021.08.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/04/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
The intelligent pH indicator films were prepared by incorporating curcumin-loaded Pickering emulsion with corn starch (CS) and polyvinyl alcohol (PVA) matrix. The mechanical properties, barrier properties and functional characteristics of the films were studied and the films were applied to monitor fish freshness. Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) showed that Pickering emulsion can form hydrogen bonds with CS and PVA. The antioxidant activity of the films was detected, which showed that Pickering emulsion could reduce the decomposition of curcumin during the process of preparation and storage. Bactericidal tests showed that the films can inhibit the growth of S. aureus, B. subtilis, and E. coli, and the effect of the films on Gram-positive (G+) bacteria is stronger than Gram-negative (G-) bacteria. Application of the films presented here is supported by an activation test of Pangasius bocouti. With time changed, the color of films changed from yellow to red, and the color change of films prepared with curcumin-loaded Pickering emulsion was more evident than the films prepared with curcumin solution. Therefore, the films prepared with curcumin-loaded Pickering emulsion had better performance and can be used to indicate the quality of food.
Collapse
Affiliation(s)
- Di Liu
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Shuai Dang
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Kang Munsop
- Hwang Nam University of Technology, Democratic People's Republic of Korea
| | - Xinxin Li
- College of Food Science and Engineering, Jilin University, People's Republic of China.
| |
Collapse
|
182
|
Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
183
|
Cui C, Ji N, Wang Y, Xiong L, Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
184
|
|
185
|
Yan J, Cui R, Tang Z, Wang Y, Wang H, Qin Y, Yuan M, Yuan M. Development of pH-sensitive films based on gelatin/chitosan/nanocellulose and anthocyanins from hawthorn (Crataegus scabrifolia) fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Guo Z, Ge X, Li W, Yang L, Han L, Yu QL. Active-intelligent film based on pectin from watermelon peel containing beetroot extract to monitor the freshness of packaged chilled beef. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
187
|
Safitri EA, Mahendra IP, Putra AE, Ghifari MA, Yanti DD, Yusnaidar Y, Ariwahjoedi B, Mendez JA. Multicolor PEGDA/LCNF Hydrogel in the Presence of Red Cabbage Anthocyanin Extract. Gels 2021; 7:gels7040160. [PMID: 34698158 PMCID: PMC8544528 DOI: 10.3390/gels7040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Colorimetric indicator gels were developed by incorporating anthocyanin (AC) obtained from red cabbage into poly (ethylene glycol) diacrylate (PEGDA)-based hydrogel containing lignocellulose nanofiber (LCNF). The PEGDA-based hydrogel was prepared by mixing all of the mentioned components at the specific composition, and the hydrogels were cured under UV light (245 nm) for 1 min. The pH-response, UV absorption, swelling ratio, and mechanical properties of PEGDA/LCNF were determined. It was further found that PEGDA and LCNF mount play an important role in adjusting the mechanical properties of PEGDA/LCNF. In general, the presence of LCNF improved the mechanical properties and swelling ratio of PEGDA. The incorporation of red cabbage anthocyanin into the PEGDA/LCNF film showed multicolor response when specific pH buffers were introduced. Based on the multicolor response of PEGDA/LCNF/CA, this gel film indicator can be developed as a food freshness indicator that focuses on the detection of ammonia and amine compound.
Collapse
Affiliation(s)
- Erlin Arda Safitri
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - I Putu Mahendra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
- Pusat Riset dan Inovasi Sanitasi dan Kesehatan Lingkungan, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
- Correspondence:
| | - Anggi Eka Putra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - M Alvien Ghifari
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - Demi Dama Yanti
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; (E.A.S.); (A.E.P.); (M.A.G.); (D.D.Y.)
| | - Yusnaidar Yusnaidar
- Program Studi Pendidikan Kimia, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Jambi, Jambi 36361, Indonesia;
| | - Bambang Ariwahjoedi
- Program Studi Teknik Material, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia;
| | - Jose Alberto Mendez
- Enginyeria Quimica, Universitat de Girona, 17003 Girona, Spain;
- Laboratori d’Enginyeria Paperera i Materials Polimers, Universitat de Girona, 17003 Girona, Spain
| |
Collapse
|
188
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
189
|
Azizi-Lalabadi M, Rahimzadeh-Sani Z, Feng J, Hosseini H, Jafari SM. The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Crit Rev Food Sci Nutr 2021; 63:1822-1845. [PMID: 34486886 DOI: 10.1080/10408398.2021.1971154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food industries attempt to introduce a new food packaging by blending essential oils (EOs) into the polymeric matrix as an active packaging, which has great ability to preserve the quality of food and increase its shelf life by releasing active compounds within storage. The main point in designing the active packaging is controlled-release of active substances for their enhanced activity. Biopolymers are functional substances, which suggest structural integrity to sense external stimuli like temperature, pH, or ionic strength. The controlled release of EOs from active packaging and their stimuli-responsive properties can be very important for practical applications of these novel biocomposites. EOs can affect the uniformity of the polymeric matrix and physical and structural characteristics of the composites, such as moisture content, solubility in water, water vapor transmission rate, elongation at break, and tensile strength. To measure the ingredients of EOs and their migration from food packaging, chromatographic methods can be used. A head-space-solid phase micro-extraction coupled to gas chromatography (HS-SPME-GC-MS) technique is as a good process for evaluating the release of Eos. Therefore, the aims of this review were to evaluate the qualitative characteristics, release profile, and stimuli-responsiveness of active and smart food packaging nanocomposites loaded with essential oils and developing such multi-faceted packaging for advanced applications.
Collapse
Affiliation(s)
- Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Rahimzadeh-Sani
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hamed Hosseini
- Department of Mechanical Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
190
|
Wen Y, Liu J, Jiang L, Zhu Z, He S, He S, Shao W. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
191
|
Zhang J, Huang X, Shi J, Liu L, Zhang X, Zou X, Xiao J, Zhai X, Zhang D, Li Y, Shen T. A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chem 2021; 355:129573. [PMID: 33799267 DOI: 10.1016/j.foodchem.2021.129573] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/06/2021] [Accepted: 03/06/2021] [Indexed: 02/05/2023]
Abstract
This study designed a new type indicator with hydrophobic Polyvinylidene Fluoride (PVDF) film as a moisture prevent-layer. And the sensor layer was provided based on polyvinyl alcohol/Sodium alginate (PS) and Roselle anthocyanins (RAs). Physical properties, microstructure, and color stability of the bi-layer indicator have been investigated. The Water contact angle (WCA) of PS/RAs/ PVDF film (PSRF) was 108.85°, which can be considered as an excellent hydrophobic surface. The lowest Water Vapor Permeability (WVP) value of PSRF exhibited a good barrier property for moisture. Therefore, PSRF film was used to monitor the griskin freshness. The Total volatile basic nitrogen (TVB-N) level was increased to 18.02 mg/100 g at 72 h, and the color of the indicator presented visible color changes. The acquired results revealed a good correlation between TVB-N, pH and color change of the indicator. The research indicated that PSRF indicator has increasing potential application on food intelligent packaging.
Collapse
Affiliation(s)
- Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Li Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004, Ourense, Spain
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Di Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
192
|
Liu H, Shi C, Sun X, Zhang J, Ji Z. Intelligent colorimetric indicator film based on bacterial cellulose and pelargonidin dye to indicate the freshness of tilapia fillets. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
193
|
Sohany M, Tawakkal ISMA, Ariffin SH, Shah NNAK, Yusof YA. Characterization of Anthocyanin Associated Purple Sweet Potato Starch and Peel-Based pH Indicator Films. Foods 2021; 10:2005. [PMID: 34574115 PMCID: PMC8465675 DOI: 10.3390/foods10092005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
In food packaging, smart indicator films based on natural resources have greatly attracted researchers to minimize the environmental issues as well as to satisfy consumer preferences for food safety. In this research, pH-sensitive films were prepared using purple-fleshed sweet potato starch (SPS) and sweet potato peel (SPP). Two categories of the film (i) SPS and (ii) SPS/SPP, were fabricated via solvent casting technique, incorporating different concentrations of commercial purple sweet potato anthocyanin (CA) at 0%, 1%, 1.5%, and 2% (w/v) and the physicochemical, mechanical, thermal, and morphological properties of the films were investigated. The thickness, water solubility, and swelling degree of the films increased with the increment of CA, whereas there were no significant changes in the water content (WC) of the films. Water vapor permeability (WVP) was decreased for SPS films while statistically similar for SPS/SPP films. The addition of CA reduced the tensile strength (TS) and tensile modulus (TM) yet increased the elongation at break (EaB) of the films as compared to films without CA. The FTIR results confirmed the immobilization of anthocyanin into the film. In SEM images, roughness in the surfaces of the CA-associated films was observed. A reduction of thermal stability was found for the films with anthocyanin except for the SPS/SPP CA 2% film. Furthermore, the CA-associated films showed a remarkable color response when subjected to pH buffers (pH 1 to 12) and successfully monitored chicken freshness. The fastest color migration was observed in acidic conditions when the films were immersed into aqueous, acidic, low fat, and fatty food simulants. The findings of this work demonstrated that the developed pH indicator films have the potential to be implemented as smart packaging to monitor food freshness and quality for safe consumption.
Collapse
Affiliation(s)
- Mouluda Sohany
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Department of Food Engineering and Technology, Faculty of Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Intan Syafinaz Mohamed Amin Tawakkal
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Hajar Ariffin
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nor Nadiah Abdul Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
194
|
Luo Q, Hossen A, Sameen DE, Ahmed S, Dai J, Li S, Qin W, Liu Y. Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Crit Rev Food Sci Nutr 2021; 63:1102-1118. [PMID: 34382866 DOI: 10.1080/10408398.2021.1959296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over a few decades, anthocyanin (ACN)-based colorimetric indicators in intelligent packaging systems have been widely used to monitor the freshness or spoilage of perishable food products. Most of the perishable food products are highly susceptible to enzymatic/microbial spoilage and produce several volatile or nonvolatile organic acid and nitrogenous compounds. As a result, the natural pH of fresh foods significantly changes. Fabrication of CAN-based colorimetric indicators in intelligent packaging systems is an advanced technique that monitors the freshness or spoilage of perishable foods based on the display of color variations at varying pH values. This study focuses on the advancement of pH-sensitive indicators and extraction of colorimetric indicators from commercially available natural sources. Moreover, the fabrication techniques and widespread industrial applications of such indicators have also been discussed. In addition, readers will get information about the color-changing and antioxidant mechanisms of ACN-based indicator films in food packaging.
Collapse
Affiliation(s)
- Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
195
|
Zhu B, Lu W, Qin Y, Cheng G, Yuan M, Li L. An intelligent pH indicator film based on cassava starch/polyvinyl alcohol incorporating anthocyanin extracts for monitoring pork freshness. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bifen Zhu
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Wangwei Lu
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Guiguang Cheng
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan Yunnan Nationalities University Kunming China
| | - Lin Li
- School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan China
| |
Collapse
|
196
|
Cheng H, Chen L, McClements DJ, Yang T, Zhang Z, Ren F, Miao M, Tian Y, Jin Z. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
197
|
Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
198
|
Gasti T, Dixit S, D'souza OJ, Hiremani VD, Vootla SK, Masti SP, Chougale RB, Malabadi RB. Smart biodegradable films based on chitosan/methylcellulose containing Phyllanthus reticulatus anthocyanin for monitoring the freshness of fish fillet. Int J Biol Macromol 2021; 187:451-461. [PMID: 34324903 DOI: 10.1016/j.ijbiomac.2021.07.128] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The current work aims to prepare biologically active and pH responsive smart films based on Chitosan (CS)/Methylcellulose (MC) matrix integrated with Phyllanthus reticulatus (PR) ripen fruit anthocyanin. The prepared smart films (CMPR) were fabricated through a cost-effective solvent casting technique. The existences of secondary interactions were confirmed by the FT-IR analysis. The smooth SEM images revealed the miscibility and compatibility of the CS/MC matrix with PR anthocyanin. The incorporation of PR anthocyanin significantly blocked the UV light transmission of the CS/MC films while slight decrease in the transparency was observed. The water solubility, moisture retention capacity, and water vapor transmission rate were significantly enhanced with an increase in the PR anthocyanin content. Additionally, the prepared CMPR smart films showed pink color in acidic pH while yellowish in basic pH solution and further exhibited strong antioxidant activity as well as antibacterial activity against the common foodborne pathogens such as S. aureus, P. aeruginosa, and E. coli. The CMPR smart film also displayed potential result for monitoring the fish fillet freshness at room temperature. The results proclaim that the prepared CMPR smart films could be utilized for quality assurance as well as shelf life extension of the marine food products.
Collapse
Affiliation(s)
- Tilak Gasti
- Department of Studies in Chemistry, Karnatak University Dharwad, India
| | - Shruti Dixit
- Department of Biotechnology, Karnatak University, Dharwad, India
| | - Oshin J D'souza
- Department of Studies in Chemistry, Karnatak University Dharwad, India
| | | | | | | | | | | |
Collapse
|
199
|
Design and characterization of bio-amine responsive films enriched with colored potato (Black King Kong) anthocyanin for visual detecting pork freshness in cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
200
|
Huang J, Liu J, Chen M, Yao Q, Hu Y. Immobilization of roselle anthocyanins into polyvinyl alcohol/hydroxypropyl methylcellulose film matrix: Study on the interaction behavior and mechanism for better shrimp freshness monitoring. Int J Biol Macromol 2021; 184:666-677. [PMID: 34146561 DOI: 10.1016/j.ijbiomac.2021.06.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
The roselle anthocyanin extracts (RAE) were immobilized into polyvinyl alcohol (PVA)/hydroxypropyl methylcellulose (HPMC) film matrix, their interaction behavior and mechanism was fully understood for better shrimp freshness monitoring. Structural characterizations revealed RAE was firmly immobilized PVA/HPMC matrix by hydrogen bonds. With increasing RAE contents, dramatic increases of film thickness (from 15.90 ± 0.14 to 23.20 ± 3.35 μm), tensile strength (from 45.66 ± 1.07 to 56.98 ± 0.24 MPa), light barrier and active properties (increased by 83.18% for antioxidant and 146.91%, 59.18% for antibacterial activity against E. coli and S. aureus) were observed, while hydrophobic properties decreased significantly. Owing to great ammonia-sensitive ability, the PVA/HPMC/RAE (PHR) films were applied on shrimp freshness qualitative monitoring and greater visible color variations were identified with increasing RAE contents. Furthermore, mathematical models were established for quantitative monitoring. In conclusion, with the increasing RAE contents, the tighter interaction between RAE and PVA/HPMC matrix contributed to the better functional properties and freshness monitoring effects of PHR films.
Collapse
Affiliation(s)
- Jiayin Huang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jialin Liu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Meiyu Chen
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|