151
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|
152
|
Arabpoor B, Yousefi S, Weisany W, Ghasemlou M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106394] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
153
|
Muñoz-Shugulí C, Vidal CP, Cantero-López P, Lopez-Polo J. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
154
|
Homayonpour P, Jalali H, Shariatifar N, Amanlou M. Effects of nano-chitosan coatings incorporating with free /nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. Int J Food Microbiol 2021; 341:109047. [PMID: 33515813 DOI: 10.1016/j.ijfoodmicro.2021.109047] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/28/2020] [Accepted: 01/01/2021] [Indexed: 01/21/2023]
Abstract
Nowadays, adding biological compounds to food packaging is one of the types of active packaging. The aim of this study was to prepare a new degradable coating with free and nano-encapsulated Cumino cyminum L. essential oil (CCEO) with nanochitosan (Nch) base to evaluate the microbial, chemical and sensory properties of sardine fillet samples for 16 days at 4 °C. Nanoliposome using different soy lecithin ratios and cholesterol concentrations (60:0, 50:10, 40:20, and 30:30) and technique of thin-film hydration-sonication, were prepared with a range of 140-164 nm size. Encapsulation efficiency (EE) and distribution of nanoliposomes size were calculated 0.80-0.90 and 49.85-73.01% respectively. To coat sardine fillet samples, nanoliposomes with the lower size of droplet and higher EE percent were selected. The outcomes indicated that coating treatments can effectively inhibit microbial growth and chemical spoilage reflected at lower pH, peroxide value (PV) and thiobarbituric acid reactive substances (TBARs) (P < 0.05). In fact, the results of chemical and microbiological characteristics showed that the samples treated with nanocitosan/nano essential oil (NEO) showed the lowest value among other treatments during the experimental period, in the following, Nch-EO, Nch and control. pH, PV, TBARs, total viable counts (TVC), total pseudomonads count (TPC), and lactic acid bacteria (LAB) were 6.85, 0.03 (mg MDA/kg), 5.23 (mEq/kg), 3.67 (CFU/g), 3.47 (CFU/g), and 4.7 (CFU/g), respectively for Nch-NEO at the end of storage time. In addition, during the experimental period, the highest sensory properties were obtained for the Nch-NEO group. Encapsulation of CCEO reduces the rate of diffusion, thus increasing antimicrobial and antioxidant activity, as well as improving sensory properties. According to the results of this study, CCEO-encapsulated nanochitosan coatings can be used as a potent coating to increase sardine shelf life.
Collapse
Affiliation(s)
- Parisa Homayonpour
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Hossein Jalali
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran.
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
155
|
Yu D, Yu Z, Zhao W, Regenstein JM, Xia W. Advances in the application of chitosan as a sustainable bioactive material in food preservation. Crit Rev Food Sci Nutr 2021; 62:3782-3797. [PMID: 33401936 DOI: 10.1080/10408398.2020.1869920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chitosan is obtained from chitin and considered to be one of the most abundant natural polysaccharides. Due to its functional activity, chitosan has received intense and growing interest in terms of applications for food preservation over the last half-century. Compared with earlier studies, recent research has increasingly focused on the exploration of preservation mechanism as well as the targeted inhibition with higher efficiency, which is fueled by availability of more active composite ingredients and integration of more technologies, and gradually perceived as "chitosan-based biofilm preservation." In this Review, we comprehensively summarize the potential antimicrobial mechanisms or hypotheses of chitosan and its widely compounded ingredients, as well as their impacts on endogenous enzymes, oxidation and/or gas barriers. The strategies used for enhancing active function of the film-forming system and subsequent film fabrication processes including direct coating, bioactive packaging film and layer-by-layer assembly are introduced. Finally, future development of chitosan-based bioactive film is also proposed to broaden its application boundaries. Generally, our goal is that this Review is easily accessible and instructive for whose new to the field, as well as hope to advance to the filed forward.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijuan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenyu Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
156
|
Coating and Film-Forming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
157
|
Homayounpour P, Shariatifar N, Alizadeh‐Sani M. Development of nanochitosan-based active packaging films containing free and nanoliposome caraway ( Carum carvi. L) seed extract. Food Sci Nutr 2021; 9:553-563. [PMID: 33473316 PMCID: PMC7802560 DOI: 10.1002/fsn3.2025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The biocompatible active films were prepared based on nanochitosan (NCh) containing free and nanoliposome caraway seed extract (NLCE). The produced films were characterized by physico-mechanical, barrier, structural, color, antimicrobial, and antioxidant properties. The average particle size of NLCE was 78-122 nm, and the encapsulation efficiency (EE%) was obtained 49.87%-73.07%. Nanoliposomes with the lowest size and the highest encapsulation efficiency were merged with the film samples. NCh/CE3% and NCh/NLCE3% films had higher stability compared to other films and showed the highest antimicrobial activity (3.68 mm inhibition) and radical quenching capacity (51%), respectively. Likewise, biodegradable active films containing nanoliposomes had lower antimicrobial potential and higher antioxidant capacity than films containing free extract with similar concentration. The Fourier-transform infrared spectroscopy (FTIR) results revealed new interactions between NCh and nanoliposomes. Scanning electron microscopy (SEM) investigation also exhibited a homogenous structure and nearly smooth surface morphology with a good dispersion for NCh/NLCE films. Despite an increase in yellowness (b value) and a decrease in whiteness (L value) index, the incorporation of nanoliposomes within the NCh films improved the mechanical flexibility (from 10.2% to 15.05%) and reduced water vapor permeability (WVP) (from 14.2 × 10-12 g/m·s·Pa to 11.9 × 10-12 g/m·s·Pa). Today, due to the growing trend toward natural ingredients, the use of nanoparticles derived from plant derivatives has expanded in the food industry owing to their antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- Parisa Homayounpour
- Department of Food Science and TechnologyIslamic Azad UniversityDamghan BranchDamghanIran
| | - Nabi Shariatifar
- Food Safety and Hygiene DivisionDepartment of Environmental HealthSchool of Public HealthTehran University of Medical SciencesTehranIran
- Halal Research Center of Islamic Republic of IranTehranIran
| | - Mahmood Alizadeh‐Sani
- Food Safety and Hygiene DivisionDepartment of Environmental HealthSchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
158
|
Deepika, Singh A, Chaudhari AK, Das S, Dubey NK. Zingiber zerumbet L. essential oil-based chitosan nanoemulsion as an efficient green preservative against fungi and aflatoxin B 1 contamination. J Food Sci 2020; 86:149-160. [PMID: 33314161 DOI: 10.1111/1750-3841.15545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/26/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023]
Abstract
The present study envisages the potential application of chitosan-coated Zingiber zerumbet essential oil nanoemulsion (ZEO-CsNE) as green antimicrobial preservative against Aspergillus flavus, aflatoxin B1 (AFB1 ), and lipid peroxidation of stored functional foods. GC-MS analysis of ZEO exhibited the abundance of cis-geraniol (15.53%) as the major component. ZEO-CsNE showed biphasic release profile during in vitro release study conducted for 10 days. The ZEO-CsNE inhibited the growth of A. flavus (strain AF-LHP-SH1) and AFB1 production at 1.0 and 0.8 µL/mL, respectively. Interestingly, considerable reduction in ergosterol biosynthesis followed by enhanced leakage of vital cellular contents and methylglyoxal inhibition represents novel antifungal and antiaflatoxigenic mechanism of action, respectively. Further, ZEO-CsNE inhibited lipid peroxidation and AFB1 production in postharvest Salvia hispanica seeds during in situ trial and presented favorable safety profile (median lethal dose [LD50 ] = 29,114 µL/kg) for male mice. Based on overall observations, ZEO-CsNE could be recommended as a green antimicrobial substitute of synthetic preservatives for in vitro and in situ protection of functional food samples. PRACTICAL APPLICATION: Food industries are facing enormous amount of burden coming from fungal and aflatoxin contamination that can cause severe adverse effects to humans. Essential oils (EOs) are well known for their food preservative efficacy; however, some limitations such as oxidative instability in open system may limit their application directly into food system. The encapsulation of the EOs into polymeric matrix could provide a barrier that will protect the EOs from degradation. This research could provide a basis for utilization of EO after encapsulation into chitosan nanoemulsion for industrial-scale application for preservation of stored functional foods from fungal and aflatoxin contamination.
Collapse
Affiliation(s)
- Deepika
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
159
|
Mehdizadeh A, Shahidi SA, Shariatifar N, Shiran M, Ghorbani-HasanSaraei A. Evaluation of Chitosan-zein Coating Containing Free and Nano-encapsulated Pulicaria gnaphalodes (Vent.) Boiss. Extract on Quality Attributes of Rainbow Trout. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1855688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abbas Mehdizadeh
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Medicinal Plants Research Center, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Shiran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
160
|
Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat. Food Chem 2020; 332:127375. [DOI: 10.1016/j.foodchem.2020.127375] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
|
161
|
Pateiro M, Munekata PES, Sant'Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2020; 337:108966. [PMID: 33202297 DOI: 10.1016/j.ijfoodmicro.2020.108966] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023]
Abstract
Meat and meat products are perishable products that require the use additives to prevent the spoilage by foodborne microorganisms and pathogenic bacteria. Current trends for products without synthetic preservatives have led to the search for new sources of antimicrobial compounds. Essential oils (EOs), which has been used since ancient times, meet these goals since their effectiveness as antimicrobial agents in meat and meat products have been demonstrated. Cinnamon, clove, coriander, oregano, rosemary, sage, thyme, among others, have shown a greater potential to control and inhibit the growth of microorganisms. Although EOs are natural products, their quality must be evaluated before being used, allowing to grant the Generally Recognized as Safe (GRAS) classification. The bioactive compounds (BAC) present in their composition are linked to their activity, being the concentration and the quality of these compounds very important characteristics. Therefore, a single mechanism of action cannot be attributed to them. Extraction technique plays an important role, which has led to improve conventional techniques in favour of green emerging technologies that allow to preserve better target bioactive components, operating at lower temperatures and avoiding as much as possible the use of solvents, with more sustainable processing and reduced energy use and environmental pollution. Once extracted, these compounds display greater inhibition of gram-positive than gram-negative bacteria. Membrane disruption is the main mechanism of action involved. Their intense characteristics and the possible interaction with meat components make that their application combined with other EOs, encapsulated and being part of active film, increase their bioactivity without modifying the quality of the final product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
162
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Deepika, Dubey NK. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B 1 synthesizing genes based on molecular docking. Carbohydr Polym 2020; 255:117339. [PMID: 33436182 DOI: 10.1016/j.carbpol.2020.117339] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
The present investigation entails the fabrication and characterization of nanometric emulsion of eugenol (Nm-eugenol) encompassed into chitosan for assessing bio-efficacy in terms of in vitro antifungal actions, antiaflatoxigenic potential, and in situ preservative efficacy against Aspergillus flavus infestation and aflatoxin B1 (AFB1) mediated loss of dietary minerals, lipid triglycerides and alterations in composition of important macronutrients in stored rice. Nm-eugenol characterized by SEM, XRD, and FTIR exhibited biphasic burst release of eugenol. Reduction in ergosterol and methylglyoxal (AFB1-inducer) content after Nm-eugenol fumigation depicted biochemical mechanism of antifungal and antiaflatoxigenic activities. In silico 3D homology docking of eugenol with Ver-1 gene validated molecular mechanism of AFB1 inhibition. Further, significant protection of rice seeds from fungi, AFB1 contamination and preservation against loss of rice minerals, macronutrients and lipids during storage suggested deployment of chitosan as a biocompatible wall material for eugenol encapsulation and application as novel green preservative for food protection.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
163
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
164
|
Abbasi Z, Aminzare M, Hassanzad Azar H, Rostamizadeh K. Effect of corn starch coating incorporated with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on microbial quality of fresh chicken meat and fate of inoculated Listeria monocytogenes. Journal of Food Science and Technology 2020; 58:2677-2687. [PMID: 34194103 DOI: 10.1007/s13197-020-04774-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 11/29/2022]
Abstract
The present study compared the effects of corn starch coatings incorporated with Zataria multiflora essential oil (ZEO) and cinnamaldehyde (CIN) in conventional, nanoemulsion (NZEO) and fortified nanoemulsion (NZEOC) forms, on specific spoilage microorganisms of chicken meat and on the fate of inoculated Listeria monocytogenes during 20 days storage at 4 ± 1 °C. Based on the results of GC-MS analysis of ZEO, carvacrol (36.62%) was the most important compound of essential oil. Samples coated with the starch solution containing nanoemulsions had better antimicrobial activities than conventional forms. Also, NZEOC treatment had the best antimicrobial properties at the end of storage with the following results: Total viable count (7.96 log10 CFU/g), Psychrotrophic count (7.29 log10 CFU/g), Lactic acid bacteria (6.51 log10 CFU/g), Enterobacteriaceae count (6.98 log10 CFU/g), Mold and yeast count (5.16 log10 CFU/g) and inoculated L. monocytogenes (6.51 log10 CFU/g). Furthermore, the addition of CIN-ZEO during nanoemulsion formation (NZEOC) increased the antimicrobial properties of the samples compared to individual addition of NZEO and CIN (NZEO + CIN) to the starch solution. Therefore, corn starch coating containing NZEOC is recommended as a natural preservative to enhance the microbial stability of poultry meat.
Collapse
Affiliation(s)
- Zahra Abbasi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hassan Hassanzad Azar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
165
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
166
|
Homayounpour P, Jalali H, Shariatifar N, Amanlou M, khanjari A. Protective Effect of Nanochitosan Incorporated with Free/nanoliposome Cumin (Cuminum cyminum L.) Aqueous Extract on Sardine Fish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1819497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Parisa Homayounpour
- Department of Food Science and Technology, Islamic Azad University, Damghan, Iran
| | - Hossein Jalali
- Department of Food Science and Technology, Islamic Azad University, Damghan, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali khanjari
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
167
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
168
|
Jiang Y, Lan W, Sameen DE, Ahmed S, Qin W, Zhang Q, Chen H, Dai J, He L, Liu Y. Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. Int J Biol Macromol 2020; 160:340-351. [DOI: 10.1016/j.ijbiomac.2020.05.202] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
|
169
|
Alirezalu K, Hesari J, Yaghoubi M, Khaneghah AM, Alirezalu A, Pateiro M, Lorenzo JM. Combined effects of ε-polylysine and ε-polylysine nanoparticles with plant extracts on the shelf life and quality characteristics of nitrite-free frankfurter-type sausages. Meat Sci 2020; 172:108318. [PMID: 32980722 DOI: 10.1016/j.meatsci.2020.108318] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
In this study, ɛ-polylysine (ɛ-PL) or ɛ-polylysine nanoparticle (ɛ-PLN) combined with plants extracts (including green tea, olive leaves and stinging nettle extracts) were used as nitrite replacers in frankfurter-type sausages. The sausage samples were wrapped in polyethylene bags (in vacuum conditions) and their physicochemical, microbiological and sensory properties were evaluated during 45 days of refrigerated storage. The results showed that the incorporation of ɛ-polylysine had no significant effects on proximate composition of sausages. However, ɛ-PL and ɛ-PLN sausages had significantly (P < 0.05) lower lightness, redness and higher yellowness compared to control samples. At the end of storage, sausages formulated with ɛ-PLN had significantly (P < 0.05) higher contents of phenolic compounds and lowest TBARS values. Microbiological counts also indicated that ɛ-PLN displayed significantly higher inhibitory effects. Higher sensory indices were obtained in ɛ-PLN sausages. Based on the obtained results, ɛ-PLN was effective to improve frankfurter-type sausages shelf life. Therefore, these ingredients could be useful for frankfurter-type sausages production as nitrite replacers.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran.
| | - Javad Hesari
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Technology, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
170
|
Influence of stinging nettle (Urtica dioica L.) extract-loaded nano-emulsion on the storage stability and antioxidant attributes of Doogh (Traditional Iranian yoghurt beverage). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00647-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
171
|
Bharti SK, Pathak V, Alam T, Arya A, Singh VK, Verma AK, Rajkumar V. Materialization of novel composite bio‐based active edible film functionalized with essential oils on antimicrobial and antioxidative aspect of chicken nuggets during extended storage. J Food Sci 2020; 85:2857-2865. [DOI: 10.1111/1750-3841.15365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/18/2020] [Accepted: 05/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjay Kumar Bharti
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry DUVASU Mathura Uttar Pradesh India
| | - Vikas Pathak
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry DUVASU Mathura Uttar Pradesh India
| | - Tanweer Alam
- Indian Institute of Packaging, an autonomous body under Aegis of Ministry of Commerce and Industry Government of India Delhi India
| | - Anita Arya
- Department of Livestock Products Technology College of Veterinary and Animal Sciences GBPUAT Pantnagar Uttarakhand India
| | - Vinod Kumar Singh
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry DUVASU Mathura Uttar Pradesh India
| | - Arun Kumar Verma
- Goat Products Technology Laboratory Central Institute for Research on Goats Mathura Uttar Pradesh India
| | - Vincentraju Rajkumar
- Goat Products Technology Laboratory Central Institute for Research on Goats Mathura Uttar Pradesh India
| |
Collapse
|
172
|
Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv Colloid Interface Sci 2020; 282:102210. [PMID: 32726708 DOI: 10.1016/j.cis.2020.102210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/07/2020] [Accepted: 07/04/2020] [Indexed: 12/31/2022]
Abstract
The shelf-life of foods is affected by several aspects, mainly chemical and microbial events, resulting in a considerable decline in consumer's acceptance. There is an increasing interest to substitute synthetic preservatives with the plant-based bioactive ingredients which are safe and natural. However, full implementation of this replacement is postponed by some challenges associated with bioactive ingredients, including their low chemical stability, off-flavor, low solubility, and short-term effectiveness. Encapsulation could overcome these limitations. The present review explains current trends in applying natural encapsulated ingredients for food preservation based on a classified description including essential oils, plant extracts, phenolics, carotenoids, etc. and their application for extending food shelf-life mostly dealing with antimicrobial, ant-browning and antioxidant properties. Encapsulation techniques, especially nanoencapsulation, is a promising strategy to overcome their limitations. Moreover, better results are obtained using a combination of proteins and polysaccharides as wall materials than single polymers. The encapsulation method and type of encapsulants highly influences the releasing mechanism and physicochemical properties of bioactive ingredients. These factors together with optimizing the conditions of encapsulation process leads to a cost-effective and well encapsulated ingredient which is more efficient than its free form in shelf-life improvement. It has been shown that the well-designed encapsulation systems, finally, boost the shelf-life-promoting functions of the bioactive ingredients, mostly due to enhancing their solubility, homogeneity in food matrices and contact surface with deteriorative agents, and providing their prolonged presence over food storage and processing via increasing the thermal and processing stability of bioactive compounds, as well as controlling their release on food surfaces, or/and within food packages. To this end and given the numerous wall and bioactive core substances available, further studies are needed to evaluate the efficiency of many encapsulated forms of both conventional and novel bioactive ingredients in food shelf-life extending since the interactions and anti-spoiling behaviors of the ingredients in various encapsulation systems and foodstuffs are highly variable that should be optimized and characterized before any industrial application.
Collapse
|
173
|
Zhang H, Liang Y, Li X, Kang H. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat Sci 2020; 166:108137. [DOI: 10.1016/j.meatsci.2020.108137] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
|
174
|
Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, Biswas S, McClements DJ. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2677-2700. [PMID: 33336977 DOI: 10.1111/1541-4337.12604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been growing interest in implementing innovative nanoscience-based technologies to improve the health, safety, and quality of food products. A major thrust in this area has been to use nanoemulsions because they can easily be formulated with existing food ingredients and technologies. In particular, oil-in-water nanoemulsions, which consist of small oil droplets (<200 nm) dispersed in water, are being utilized as delivery systems for various hydrophobic substances in foods, including nutrients, nutraceuticals, antioxidants, antimicrobials, colors, and flavors. In this article, we focus on the application of nanoemulsion-based delivery systems for improving the quality, safety, nutritional profile, and sensory attributes of muscle foods, such as meat and fish. The article also critically reviews the formulation and fabrication of food-grade nanoemulsions, their potential benefits and limitations in muscle food systems.
Collapse
Affiliation(s)
- Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Rituparna Banerjee
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts, MA 01003, USA
| |
Collapse
|
175
|
Xin S, Xiao L, Dong X, Li X, Wang Y, Hu X, Sameen DE, Qin W, Zhu B. Preparation of chitosan/curcumin nanoparticles based zein and potato starch composite films for Schizothorax prenati fillet preservation. Int J Biol Macromol 2020; 164:211-221. [PMID: 32679329 DOI: 10.1016/j.ijbiomac.2020.07.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/07/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to develop a zein/potato starch (PS) film based on chitosan nanoparticles incorporated with curcumin (CCN). The CCN film was characterized for encapsulation efficiency, particle size, zeta potential, polydispersity index (PDI), relative release, and DPPH radical scavenging test. Our results showed that the CCN encapsulated effectively curcumin (CUR) (84.8% ± 1.1%) and presented with high oxidation resistance and relative release efficiency. The CCN/zein/PS composite films were round, smooth, and compact. We measured and compared the mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), relative release efficiency, and DPPH radical scavenging properties of the composite films of different mass ratios. We observed that the composite film had good mechanical and barrier properties. Further, we evaluated the preservative efficacy of the composite film on Schizothorax prenati fillets by measuring pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid-reactive substances (TBARS), hardness, microbial counts, organoleptic characteristics, and other fillet quality parameters. The CCN/zein/PS composite film delayed physicochemical changes in the Schizothorax prenati fillets and prolonged their shelf life by up to 15 days. In conclusion, our work shows that CCN/zein/PS composite film holds promise as a potential bioactive packaging material for Schizothorax prenati fillets.
Collapse
Affiliation(s)
- Songlin Xin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; School of Cuisine, Sichuan Tourism University, Chengdu 610100, Sichuan, China
| | - Lan Xiao
- School of Food Science, Sichuan Tourism University, Chengdu 610100, Sichuan, China
| | - Xiuping Dong
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiang Li
- School of Cuisine, Sichuan Tourism University, Chengdu 610100, Sichuan, China
| | - Yue Wang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinxin Hu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
176
|
Chaudhari AK, Singh VK, Das S, Deepika, Singh BK, Dubey NK. Antimicrobial, Aflatoxin B1 Inhibitory and Lipid Oxidation Suppressing Potential of Anethole-Based Chitosan Nanoemulsion as Novel Preservative for Protection of Stored Maize. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02479-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
177
|
Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
178
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Nakisozi H, Van der Meeren P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
179
|
Kumar Chaudhari A, Singh A, Kumar Singh V, Kumar Dwivedy A, Das S, Grace Ramsdam M, Dkhar MS, Kayang H, Kishore Dubey N. Assessment of chitosan biopolymer encapsulated α-Terpineol against fungal, aflatoxin B1 (AFB1) and free radicals mediated deterioration of stored maize and possible mode of action. Food Chem 2020; 311:126010. [DOI: 10.1016/j.foodchem.2019.126010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
180
|
Umaraw P, Munekata PE, Verma AK, Barba FJ, Singh V, Kumar P, Lorenzo JM. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
181
|
Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv Colloid Interface Sci 2020; 278:102140. [PMID: 32171115 DOI: 10.1016/j.cis.2020.102140] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing the demands of consumers for organic and safer foods has led to applying new technologies for food preservation. Active packaging (AP) containing natural antimicrobial agents is a good candidate for promoting the shelf life of food products. The efficiency of AP has been enhanced through nanoencapsulation methods, in which antimicrobial-loaded nanocarriers could provide a controlled release of antimicrobial active packaging for keeping the quality of foods during storage. The main objective of this review is to introduce common methods for designing novel encapsulation delivery systems offering controlled release of antimicrobials in the AP systems. The common nanocarriers for enveloping antimicrobial agents are described and the current state of art in the application of nanoencapsulated antimicrobials in development of antimicrobial APs have been summarized and tabulated. Incorporation of a carrier loaded with natural antimicrobial agents is the most effective method for developing AP in the food packaging sector which has become possible by using nanoencapsulated antimicrobials in films or coating structures, instead of using their free form. Nanoencapsulation approaches provide many advantages including protection against environmental stresses, release control, and improving the solubility and absorption of natural antimicrobials in AP, which are the main achievements overcoming the barriers for using natural antimicrobials in food packaging.
Collapse
|
182
|
Esmaeili H, Cheraghi N, Khanjari A, Rezaeigolestani M, Basti AA, Kamkar A, Aghaee EM. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci 2020; 166:108135. [PMID: 32259681 DOI: 10.1016/j.meatsci.2020.108135] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
Abstract
The efficacy of chitosan (CH) and whey protein (WP) films impregnated with garlic essential oil (GEO, 2% v/v) or nanoencapsulated GEO (NGEO, 2% v/v) to extend the shelf life of refrigerated vacuum-packed sausages were assessed and compared during 50 days. The primary evaluation of GEO and NGEO showed that GEO had a considerable amount of active compounds diallyl sulfide derivatives (~67%) and the mean size and zeta potential of NGEO were 101 nm and -7.27 mV, respectively. Based on the microbiological and lipid stability analysis of the sausages, all active films retarded lipid oxidation and the growth of main spoilage bacterial groups compared to the control, and CH film containing NGEO exhibited the best result with the peroxide value, thiobarbituric acid reactive substances and aerobic plate count of 0.37 (meq/kg lipid), 0.47 (mg malondialdehyde/kg) and 3.69 (log CFU/g), respectively, on day 50. The nanoencapsulation of GEO made no significant differences in the sensory properties comparing to free-GEO samples (P < .05).
Collapse
Affiliation(s)
- Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Narjes Cheraghi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Tehran Hamburger Company, Tehran, Iran
| | - Ali Khanjari
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadreza Rezaeigolestani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran..
| | - Afshin Akhondzadeh Basti
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abolfazl Kamkar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Molaee Aghaee
- Department of Environmental Health, Division of Food Safety & Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
183
|
Becerril R, Nerín C, Silva F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020; 25:E1134. [PMID: 32138320 PMCID: PMC7179124 DOI: 10.3390/molecules25051134] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobially active packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintaining their quality and sensorial properties. In the last years, a great effort has been made to develop more efficient, long-lasting and eco-friendly antimicrobial materials by improving the performance of the incorporated antimicrobial substances. With this purpose, more effective antimicrobial compounds of natural origin such as bacteriocins, bacteriophages and essential oils have been preferred over synthetic ones and new encapsulation strategies such as emulsions, core-shell nanofibres, cyclodextrins and liposomes among others, have been applied in order to protect these antimicrobials from degradation or volatilization while trying to enable a more controlled release and sustained antimicrobial action. On that account, this article provides an overview of the types of antimicrobials agents used and the most recent trends on the strategies used to encapsulate the antimicrobial agents for their stable inclusion in the packaging materials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their application in food products is presented.
Collapse
Affiliation(s)
- Raquel Becerril
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Cristina Nerín
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Filomena Silva
- ARAID–Agencia Aragonesa para la Investigación y el Desarollo, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018 Zaragoza, Spain
- Faculty of Veterinary Medicine, University of Zaragoza, Calle de Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
184
|
Kiarsi Z, Hojjati M, Behbahani BA, Noshad M. In vitro antimicrobial effects of
Myristica fragrans
essential oil on foodborne pathogens and its influence on beef quality during refrigerated storage. J Food Saf 2020. [DOI: 10.1111/jfs.12782] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahra Kiarsi
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| |
Collapse
|
185
|
Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
186
|
Keykhosravy K, Khanzadi S, Hashemi M, Azizzadeh M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int J Biol Macromol 2020; 150:904-913. [PMID: 32057880 DOI: 10.1016/j.ijbiomac.2020.02.092] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
This study was targeted to investigate the effect of chitosan-loaded nanoemulsion enriched with two types of essential oils on the microbial quality of turkey meat. To this end, the effects of essential oils of Zataria Multiflora Boiss (ZEO) and Bunium persicum Boiss (BEO) were evaluated at two concentrations (0.5% and 1% (w/v)) during 18 days of storage at 4 °C. Initially, in vitro evaluations were performed on the prepared nanoemulsions, namely essential oil nanoemulsions and chitosan-loaded nanoemulsions containing essential oils, using micro-dilution method and agar diffusion methods, respectively. Meat samples were analyzed for microbial indicators and inoculated salmonella Enteritidis, and Listeria monocytogenes during 3-day intervals. The highest reduction rate of total viable bacteria (2.06 log CFU/g), total psychrophilic (2.59 log CFU/g), Pseudomonas spp. (2.07 log CFU/g), Enterobacteriaceae (2.51 log CFU/g), lactic acid bacteria (2.51 log CFU/g), and yeast and mold count (2.10 log CFU/g) were observed in chitosan-loaded nanoemulsion containing ZEO 1%, in comparison with control samples. Moreover, the shelf life significantly increased due to the application of chitosan-loaded nanoemulsions (15-18 days), compared to that of the control group (6 days). Therefore, the edible chitosan-based nanoemulsion could play an effective role in the preservation of the microbial qualities of turkey meat.
Collapse
Affiliation(s)
- Kobra Keykhosravy
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
187
|
Liu Q, Zhang M, Bhandari B, Xu J, Yang C. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106771] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
188
|
Dong C, Wang B, Li F, Zhong Q, Xia X, Kong B. Effects of edible chitosan coating on Harbin red sausage storage stability at room temperature. Meat Sci 2020; 159:107919. [DOI: 10.1016/j.meatsci.2019.107919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
|
189
|
Chitosan coatings incorporated with free or nano-encapsulated Paulownia Tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108580] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
190
|
Performance of mechanically deboned chicken meat protein coatings containing thyme or clove essential oil for storage quality improvement of beef sucuks. Meat Sci 2019; 158:107912. [DOI: 10.1016/j.meatsci.2019.107912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023]
|
191
|
Preparation of α-tocopherol-chitosan nanoparticles/chitosan/montmorillonite film and the antioxidant efficiency on sliced dry-cured ham. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
192
|
Mehdizadeh T, Mojaddar Langroodi A. Chitosan coatings incorporated with propolis extract and Zataria multiflora Boiss oil for active packaging of chicken breast meat. Int J Biol Macromol 2019; 141:401-409. [PMID: 31487519 DOI: 10.1016/j.ijbiomac.2019.08.267] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
The impact of dipping in combination of propolis extract (PE) and chitosan (CH) coating enriched with Zataria multiflora essential oil (ZEO) on chemical, microbial and organoleptic properties of poultry meat was determined at 4 °C. GC-MS analysis showed that the most components of PE were Dihydrochrysin (9.69%) and b- Pinostrobin (7.41%). The results of mesophilic total viable plate counts (TVC), lactic acid bacteria (LAB), Psychotropic bacteria and Pseudomonas spp. showed detectably lower (p < 0.05) microbial count in CH-PE 1%-Z 0.5% and CH-PE 1%-Z 1% samples at the last day of storage. The results of chemical characteristics (pH, total volatile base nitrogen (TVB-N), 2-thiobarbituric acid reactive substances (TBARS)) in all treated samples compared with the control, revealed that there is a synergistic effect between CH, PE and ZEO. In the sensorial assessment, treatments containing 1% PE- 0.5% ZEO and 1% PE- 1% ZEO were mostly acceptable by the sensory analyst. These results offer a successful approach that chitosan coating enriched with combination of ZEO and PE can be an improving method to reducing deterioration of fresh packed chicken meat.
Collapse
Affiliation(s)
- Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Ali Mojaddar Langroodi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| |
Collapse
|
193
|
Khaledian Y, Pajohi‐Alamoti M, Bazargani‐Gilani B. Development of cellulose nanofibers coating incorporated with ginger essential oil and citric acid to extend the shelf life of ready‐to‐cook barbecue chicken. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yousef Khaledian
- Faculty of Veterinary Science, Department of Food Hygiene and Quality Control Bu‐Ali Sina University Hamedan Iran
| | - Mohammadreza Pajohi‐Alamoti
- Faculty of Veterinary Science, Department of Food Hygiene and Quality Control Bu‐Ali Sina University Hamedan Iran
| | - Behnaz Bazargani‐Gilani
- Faculty of Veterinary Science, Department of Food Hygiene and Quality Control Bu‐Ali Sina University Hamedan Iran
| |
Collapse
|
194
|
Cardoso GP, Andrade MPD, Rodrigues LM, Massingue AA, Fontes PR, Ramos ADLS, Ramos EM. Retail display of beef steaks coated with monolayer and bilayer chitosan-gelatin composites. Meat Sci 2019; 152:20-30. [DOI: 10.1016/j.meatsci.2019.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/24/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
|
195
|
Liu F, Chang W, Chen M, Xu F, Ma J, Zhong F. Tailoring physicochemical properties of chitosan films and their protective effects on meat by varying drying temperature. Carbohydr Polym 2019; 212:150-159. [DOI: 10.1016/j.carbpol.2019.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
|
196
|
Sultana A, Yoshii H. Kinetic study of controlled release of flavor compounds from spray-dried encapsulated yeast powder using dynamic vapor sorption–gas chromatography. Biosci Biotechnol Biochem 2019; 83:738-746. [DOI: 10.1080/09168451.2018.1564618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ABSTRACT
The release profile of d-limonene and ethyl hexanoate was investigated using a dynamic vapor sorption (DVS) system coupled with gas chromatography. The flavors were encapsulated by spray drying using Saccharomyces cerevisiae cells from which β-glucan had been partially extracted. Relative humidity (RH) was stepped from 20% to 50, 60, 70, and 80% at 30, 40, 50, and 60ºC. The maximum release flux for d-limonene and ethyl hexanoate was around 12 and 28 mg/s∙m2∙g-powder at 80% RH and 60ºC incubation. The Weibull distribution function was well fitted with the experimental data to analyze release kinetics. The release mechanism parameter was greater than 1.0, which indicates a controlled release with initial induction time. The activation energy for ethyl hexanoate (6 kJ/mol) was lower than d-limonene (41 kJ/mol) at 80% RH, which indicates higher affinition of ethyl hexanoate to migrate from the lipid bilayer membrane towards the water phase.
Collapse
Affiliation(s)
- Afroza Sultana
- Department of Applied Biological Science, Kagawa University, Kagawa, Japan
- Department of Applied Bioresource Science, Ehime University, Ehime, Japan
- Department of Food Processing and Engineering, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Hidefumi Yoshii
- Department of Applied Biological Science, Kagawa University, Kagawa, Japan
- Department of Applied Bioresource Science, Ehime University, Ehime, Japan
| |
Collapse
|