151
|
Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
152
|
Gong W, Guo XL, Huang HB, Li X, Xu Y, Hu JN. Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels. Food Chem 2021; 356:129703. [PMID: 33848680 DOI: 10.1016/j.foodchem.2021.129703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Cold plasma as a green and expeditious tool was used to modify whey protein isolate (WPI) in order to improve its emulsion capability. The emulsion-based oleogels with antibacterial functions were then constructed using the modified WPI. The modified WPI treated with cold plasma under 10 s at 50 W power significantly lowered the oil-water interface tension. Meanwhile, the fluorescence intensity and the α-helix content of WPI reduced with the cold plasma treatment. It is noted that SEM results showed that the treated WPI had more regular dendritic structures. Such modified WPI was applied to construct oleogels loaded with thyme essential oil and coconut oil, which showed a porous uniform network structure and excellent antimicrobial activities against E.coli. As a proof of concept, this study demonstrated cold plasma could be as a new facile tool to modify food-sourced proteins and expected to enlarge their applications in oleogel productions.
Collapse
Affiliation(s)
- Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiao-Lu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Bo Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
153
|
Ferreira RR, Souza AG, Rosa DS. Essential oil-loaded nanocapsules and their application on PBAT biodegradable films. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
154
|
Roy S, Rhim JW. Fabrication of pectin/agar blended functional film: Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
155
|
Dammak I, Luciano CG, Pérez-Córdoba LJ, Monteiro ML, Conte-Junior CA, Sobral PJDA. Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Adv 2021; 11:28148-28168. [PMID: 35480739 PMCID: PMC9038010 DOI: 10.1039/d1ra04888k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The attention towards active films has increased due to consumer demand for high-quality foods without chemical additives. Active biopolymer-based films have shown great potential for active films by impacting food safety, acting as the carriers of various natural antioxidant and antimicrobial compounds, and decreasing environmental pollution from petrol-derived packaging materials. However, there is a wide range of challenges concerning the different characteristics of biopolymers and plasticizers, often hygroscopic/hydrophilic, compared to numerous lipophilic bioactive compounds. Therefore, recent studies have focused on applying oil-in-water emulsion-based systems to enhance the lipophilic bioactive compounds' dispersibility into the film matrix, improving their performance. It is worth emphasizing that resulting complex systems give rise to new challenges such as (i) dispersion technology of the bioactive compounds with minimum adverse effects on its bioactivities, (ii) interactions between different components of the active films, giving rise to new physicochemical properties, and (iii) the change of the diffusion properties of bioactive compounds into the active films, resulting in different release properties. These challenges are profound and critically discussed in this review, as well as the encapsulation techniques employed in preparing emulsions loaded with lipophilic bioactive compounds for the active film development. An outlook of future directions in the research, development, and application of these active films are given.
Collapse
Affiliation(s)
- Ilyes Dammak
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | | | - Maria Lúcia Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
- Food Research Center (FoRC), University of São Paulo (USP) São Paulo (SP) Brazil
| |
Collapse
|
156
|
R R, Philip E, Madhavan A, Sindhu R, Pugazhendhi A, Binod P, Sirohi R, Awasthi MK, Tarafdar A, Pandey A. Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117071. [PMID: 33866219 DOI: 10.1016/j.envpol.2021.117071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Maintaining the safety and quality of food are major concerns while developing biomaterial based food packaging. It offers a longer shelf-life as well as protection and quality control to the food based on international standards. Nano-biotechnology contributes to a far extent to make advanced packaging by developing multifunctional biomaterials for potential applications providing smarter materials to consumers. Applications of nano-biocomposites may thus help to deliver enhanced barrier, mechanical strength, antimicrobial and antioxidant properties to novel food packaging materials. Starch derived bioplastics, polylactic acid and polyhydroxybutyrate are examples of active bioplastics currently in the food packaging sector. This review discusses the various types of biomaterials that could be used to improve future smarter food packaging, as well as biomaterials' potential applications as food stabilizers, pathogen control agents, sensors, and edible packaging materials. The regulatory concerns related to the use of biomaterials in food packaging and commercially available biomaterials in different fields are also discussed. Development of novel biomaterials for different food packaging applications can therefore guarantee active food packaging in future.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, 11, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi, 712 100, China
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
157
|
Zhang W, Jiang H, Rhim JW, Cao J, Jiang W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem 2021; 367:130671. [PMID: 34343816 DOI: 10.1016/j.foodchem.2021.130671] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
Due to environmental issues caused by plastic packaging and growing consumer demand for fresh and safe food, there is a growing interest in antibacterial active food packaging films/coatings containing plant essential oils (EO). For the effective use of EO-incorporated active films/coatings, EO must be effectively integrated encapsulated in active films/coatings, and the integrated encapsulated EO must be released from active films/coatings slowly during storage to exhibit antibacterial effects more durable. Recently, several promising strategies have been proposed to improve the sustained release and retention enhancement of EO in active films/coatings, including particle encapsulation, nanoemulsion, Pickering emulsions, multilayer system, and electrospinning technology. This article reviewed the latest technologies of sustained release and retention enhancement strategies for encapsulating EO in active films/coatings. The advantages and disadvantages of these sustained release and retention enhancement strategies and their practical applications in food preservation are also introduced.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
158
|
Ahari H, Soufiani SP. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front Microbiol 2021; 12:657233. [PMID: 34305829 PMCID: PMC8299788 DOI: 10.3389/fmicb.2021.657233] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
The demand for more healthy foods with longer shelf life has been growing. Food packaging as one of the main aspects of food industries plays a vital role in meeting this demand. Integration of nanotechnology with food packaging systems (FPSs) revealed promising promotion in foods’ shelf life by introducing novel FPSs. In this paper, common classification, functionalities, employed nanotechnologies, and the used biomaterials are discussed. According to our survey, FPSs are classified as active food packaging (AFP) and smart food packaging (SFP) systems. The functionality of both systems was manipulated by employing nanotechnologies, such as metal nanoparticles and nanoemulsions, and appropriate biomaterials like synthetic polymers and biomass-derived biomaterials. “Degradability and antibacterial” and “Indicating and scavenging” are the well-known functions for AFP and SFP, respectively. The main purpose is to make a multifunctional FPS to increase foods’ shelf life and produce environmentally friendly and smart packaging without any hazard to human life.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz P Soufiani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
159
|
Niro CM, Medeiros JA, Freitas JA, Azeredo HM. Advantages and challenges of Pickering emulsions applied to bio-based films: a mini-review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3535-3540. [PMID: 33345306 DOI: 10.1002/jsfa.11029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The strategy of adding hydrophobic compounds to bio-based films (usually based on hydrophilic matrices), forming films containing emulsions, is a technique that has been used to improve some physical properties (such as reducing water solubility and water vapor permeability) and / or to impart properties, such as antioxidant and antimicrobial effects by carrying hydrophobic active components that would otherwise be insoluble in hydrophilic matrices. Although Pickering emulsions have been reported as presenting greater stability when compared with surfactant-stabilized emulsions, little is known about the drying stability of Pickering emulsions (which is important for film applications). Anyway, several studies have indicated that Pickering emulsions are interesting systems to improve the water vapor barrier properties of bio-based films and coatings, and to act as carriers of active hydrophobic components. On the other hand, the tensile properties of those films are usually impaired by the presence of Pickering emulsions. The objective of this review is to present recent developments and future perspectives in bio-based films loaded with Pickering emulsions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carolina M Niro
- Postgraduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Jackson A Medeiros
- Postgraduate Program in Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, Brazil
| | - John Am Freitas
- Postgraduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Henriette Mc Azeredo
- Embrapa Agroindústria Tropical, Empresa Brasileira de Pesquisa Agropecuária, R Dra Sara Mesquita, 2270, Fortaleza, Brasil, 60511110, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, R XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
160
|
Pourmollaei F, Sarvari Nouri S, Jafarpour A, Mokhtarpour A. The Preservative Effects of Marjoram (Origanum majorana L.) And Zataria (Zataria multiflora) Essential Oils on Common Carp (Cyprinus carpio) Surimi Quality during Frozen Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1937423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fatemeh Pourmollaei
- Department of Fishery Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Sahand Sarvari Nouri
- Department of Fishery Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Jafarpour
- Research Group for Bioactives – Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, Denmark
| | - Amir Mokhtarpour
- Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran
| |
Collapse
|
161
|
Mathematical modeling of cinnamon (Cinnamomum verum) bark oil release from agar/PVA biocomposite film for antimicrobial food packaging: The effects of temperature and relative humidity. Food Chem 2021; 363:130306. [PMID: 34134074 DOI: 10.1016/j.foodchem.2021.130306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Antimicrobial biocomposite films were prepared using agar (AG) and polyvinyl alcohol (PVA) as polymer matrix materials and cinnamon bark oil (CBO) as antimicrobial agent. AG and PVA were blended with different mixing ratios. The addition of AG improved the overall water resistance properties of the composite films. To evaluate the effects of temperature and relative humidity (RH) on the release kinetics of CBO from films, CBO release kinetics were analyzed under the 9 combinations of temperature and RH. Then, mathematical modeling of obtained data was conducted using Peleg, Ritger-Peppas, and Peppas-Sahlin models to investigate the release mechanisms of CBO. Consequently, the CBO release rate proportionally increased with the temperature and RH, with the RH being the main factor affecting the release behavior of CBO. In vitro antimicrobial activity tests against gram-positive and gram-negative bacteria showed that the developed composite films have high applicability as an antimicrobial food packaging material.
Collapse
|
162
|
Antioxidant properties of watermelon (Citrullus lanatus) rind pectin films containing kiwifruit (Actinidia chinensis) peel extract and their application as chicken thigh packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100636] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
163
|
Azizi S, Rezazadeh-Bari M, Almasi H, Amiri S. Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: Effect of encapsulation method and transglutaminase. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
164
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
165
|
Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
166
|
Bi F, Qin Y, Chen D, Kan J, Liu J. Development of active packaging films based on chitosan and nano-encapsulated luteolin. Int J Biol Macromol 2021; 182:545-553. [PMID: 33857507 DOI: 10.1016/j.ijbiomac.2021.04.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Luteolin is a flavone with potent antioxidant and antimicrobial activities. In this study, luteolin was encapsulated in oil-in-water nanoemulsions that were emulsified by glycerol monooleate and Tween 20. Results showed 68 mg luteolin-loaded nanoemulsions had the highest stability (zeta potential of -39.8 mV) and encapsulation efficiency (89.52%). Then, active packaging films were developed by incorporating free or nano-encapsulated luteolin into chitosan-based matrix. The microstructure, physical and functional properties of CS film containing free luteolin (CS-LL) or nano-encapsulated luteolin (CS-LLNEs) were compared. Different from CS film, CS-LL and CS-LLNEs films had compact inner microstructure and strengthened intermolecular interactions. Moreover, CS-LLNEs film was more homogenous and compact than CS-LL film. As a result, CS-LLNEs film presented higher water vapor and oxygen barrier abilities and mechanical properties in comparison with CS-LL film. In addition, CS-LLNEs film showed slower release rate of luteolin in 95% ethanol (fatty food stimulant) as compared with CS-LL film. The controlled release of luteolin from film matrix could guarantee CS-LLNEs film to exert antioxidant activity up to 10 days. Our results suggest CS-LLNEs film can be developed as an emerging active packaging material that has potential applications in food industry.
Collapse
Affiliation(s)
- Fengyu Bi
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yan Qin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
167
|
Ni ZJ, Wang X, Shen Y, Thakur K, Han J, Zhang JG, Hu F, Wei ZJ. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
168
|
Shen Y, Ni ZJ, Thakur K, Zhang JG, Hu F, Wei ZJ. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int J Biol Macromol 2021; 181:528-539. [PMID: 33794240 DOI: 10.1016/j.ijbiomac.2021.03.133] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
The clove essential oil (CEO) loaded nano and pickering emulsions prepared with Tween 80 and whey protein isolate/inulin mixture, respectively were incorporated into pullulan-gelatin film base fluid at three levels (0.2%, 0.4%, and 0.6%). The droplet sizes of NE and PE loaded with CEO were 15.93 nm and 266.9 nm, respectively. The PDI of CEOs with stable NE and PE were 0.262 and 0.259, respectively. Our results showed the improved compatibility between pullulan-gelatin and essential oil-loaded nanocarriers. The active film composed of PE carrier had the structural characteristics of high density, low water content, and low permeability, thus exhibiting excellent mechanical properties, water barrier properties, and appreciable antioxidant activities. Compared with NE, it was found that the CEO-loaded PE showed slow-release profile in the film sample. The prepared active film containing PE possessed a great potential to be used as effective and natural alternatives for active food packaging.
Collapse
Affiliation(s)
- Yi Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
169
|
Souza AG, Ferreira RR, Paula LC, Mitra SK, Rosa DS. Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2020.100615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
170
|
Vasile C, Baican M. Progresses in Food Packaging, Food Quality, and Safety-Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021; 26:1263. [PMID: 33652755 PMCID: PMC7956554 DOI: 10.3390/molecules26051263] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time-temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.
Collapse
Affiliation(s)
- Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 70487 Iasi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, 16 University Street, 700115 Iaşi, Romania;
| |
Collapse
|
171
|
Chen W, Ma S, Wang Q, McClements DJ, Liu X, Ngai T, Liu F. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit Rev Food Sci Nutr 2021; 62:5029-5055. [PMID: 33554629 DOI: 10.1080/10408398.2021.1881435] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Collapse
Affiliation(s)
- Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
172
|
Liu J, Wang T, Huang B, Zhuang Y, Hu Y, Fei P. Pectin modified with phenolic acids: Evaluation of their emulsification properties, antioxidation activities, and antibacterial activities. Int J Biol Macromol 2021; 174:485-493. [PMID: 33548307 DOI: 10.1016/j.ijbiomac.2021.01.190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 01/06/2023]
Abstract
Three phenolic acids including p-hydroxybenzoic acid (PHBA), 3,4-dihydroxybenzoic acid, (DHBA), and gallic acid (GA) were grafted onto native pectin (Na-Pe) through enzymatic method. Ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and 1H NMR analyses were used to explore the reaction mechanism. Results indicated that the p-hydroxyl of the phenolic acids reacted with the methoxycarbonyl of pectin through transesterification, and a covalent connection was formed. The phenolic acid contents of PHBA modified pectin (Ph-Pe), DHBA modified pectin (Dh-Pe), and GA modified pectin (Ga-Pe) were 20.18%, 18.87%, and 20.32%, respectively. After acylation with phenolic acids, the 1,1-diphenyl-2-picryl hydrazine clearance of pectin changed from 7.68% (Na-Pe) to 6.88% (Ph-Pe), 40.80% (Dh-Pe), and 90.30% (Ga-Pe), whereas its inhibition ratio of pectin increased from 3.11% (Na-Pe) to 35.02% (Ph-Pe), 66.36% (Dh-Pe), and 77.89% (Ga-Pe). Moreover, compared with Na-Pe, modified pectins exhibited better emulsification properties and stronger antibacterial activities against both Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Jingna Liu
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Tielong Wang
- Chinese Academy of Inspection and Quarantine, PR China
| | - Bingqin Huang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Yuanhong Zhuang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Yonghua Hu
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Peng Fei
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, PR China.
| |
Collapse
|
173
|
Bouyahya A, Chamkhi I, Benali T, Guaouguaou FE, Balahbib A, El Omari N, Taha D, Belmehdi O, Ghokhan Z, El Menyiy N. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113318. [PMID: 32882360 DOI: 10.1016/j.jep.2020.113318] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/22/2020] [Accepted: 08/22/2020] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L., is an aromatic and medicinal plant distributed in different parts of Mediterranean countries. This species is widely used in traditional medicine for the treatment of many diseases such as allergies, hypertension, respiratory infections, diabetes, stomach pain, and intestinal antispasmodic. AIM OF THE REVIEW This work reports previous studies on O. majorana concerning its taxonomy, botanical description, geographical distribution, traditional use, bioactive compounds, toxicology, and biological effects. MATERIALS AND METHODS Different scientific data bases such as Web of Science, Scopus, Wiley Online, SciFinder, Google Scholar, PubMed, ScienceDirect, and SpringerLink were consulted to collect data about O. majorana. The presented data emphasis bioactive compounds, traditional uses, toxicological investigations, and biological activities of O. majorana. RESULTS The findings of this work marked an important correlation between the traditional use of O. majorana as an anti-allergic, antihypertensive, anti-diabetic agent, and its biological effects. Indeed, pharmacological investigations showed that essential oils and extracts from O. majorana exhibit different biological properties, particularly; antibacterial, antifungal, antioxidant, antiparasitic, antidiabetic, anticancer, nephrotoxicity protective, anti-inflammatory, analgesic and anti-pyretic, hepatoprotective, and antimutagenic effects. Toxicological evaluation confirmed the safety and innocuity of this species and supported its medicinal uses. Several bioactive compounds belonging to different chemical family such as terpenoids, flavonoids, and phenolic acids were also identified in O. majorana. CONCLUSIONS The results suggest that the pharmacological properties of O. majorana confirm its traditional uses. Indeed, O. majorana essential oils showed remarkable antimicrobial, antioxidant, anticancer, anti-inflammatory, antimutagenic, nephroprotective, and hepatoprotective activities. However, further investigations regarding the evaluation of molecular mechanisms of identified compounds against human cancer cell lines, inflammatory process, and microbial infections are needed to validate pharmacodynamic targets. The toxicological investigation of O. Majorana confirmed its safety and therefore encouraged pharmacokinetic evaluation tests to validate its bioavailability.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Imane Chamkhi
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, SidiMohamed Ben Abdellah University of Fez, B.P.: 1223, Taza-Gare, Taza, Morocco.
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Omar Belmehdi
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Zengin Ghokhan
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Naoual El Menyiy
- Laboratory of Physiology, Pharmacology & Environmental Health, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco.
| |
Collapse
|
174
|
Amjadi S, Almasi H, Ghadertaj A, Mehryar L. Whey protein isolate‐based films incorporated with nanoemulsions of orange peel (
Citrus sinensis
) essential oil: Preparation and characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sajed Amjadi
- Department of Food Science and Technology Faculty of Agriculture Urmia University Urmia Iran
| | - Hadi Almasi
- Department of Food Science and Technology Faculty of Agriculture Urmia University Urmia Iran
| | - Ali Ghadertaj
- Healthcare Center of Oshnaviyeh Urmia University of Medical Sciences Urmia Iran
| | - Laleh Mehryar
- Department of Food Science and Technology Faculty of Agriculture Urmia University Urmia Iran
| |
Collapse
|
175
|
Ozogul F, Elabed N, Ceylan Z, Ocak E, Ozogul Y. Nano-technological approaches for plant and marine-based polysaccharides for nano-encapsulations and their applications in food industry. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:187-236. [PMID: 34311900 DOI: 10.1016/bs.afnr.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Novel food preservation methods, along with preservatives have been employed to prevent food products from spoilage. There is an increasing demand to substitute synthetic preservatives with natural bioactive compounds since they are safe and environmentally friendly. Bioactive compounds with functional and therapeutic properties are found in foods and have also beneficial physiological and immunological health effects. However, there are some issues associated with bioactive compounds, such as low stability, solubility, and permeability. Encapsulation techniques, especially nano-encapsulation, are a promising technique to overcome these restrictions. A range of the plants' constituents can be converted into bio-nanomaterials. Major plant constituents are polysaccharides which have good biocompatibility properties and therapeutic activities, such as antioxidant, antiviral, anti-inflammatory, anti-allergic, and anti-tumor. Among plant and marine-based polysaccharides, cellulose, starch, alginates, chitosan, and carrageenans have been used as carrier materials to preserve core material. Moreover, many studies indicated that favorable sources such as plant and marine based polysaccharides are emerging. This chapter will cover plant and marine-based polysaccharides for nano-encapsulation and their application in the food industry.
Collapse
Affiliation(s)
- Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, Van, Turkey
| | - Elvan Ocak
- Faculty of Engineering, Department of Food Engineering, Yuzuncu Yil University, Van, Turkey
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
176
|
Escobar A, Pérez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
177
|
Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization. Int J Biol Macromol 2020; 164:2558-2568. [DOI: 10.1016/j.ijbiomac.2020.08.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
|
178
|
Fattahi R, Ghanbarzadeh B, Dehghannya J, Hosseini M, Falcone PM. The effect of Macro and Nano-emulsions of cinnamon essential oil on the properties of edible active films. Food Sci Nutr 2020; 8:6568-6579. [PMID: 33312541 PMCID: PMC7723223 DOI: 10.1002/fsn3.1946] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
The effect of Nano-emulsion (NE) and Macro-emulsion (ME) of cinnamon essential oil (CEO) on the properties of carboxymethyl cellulose (CMC)-based films was investigated. MEs (diameters of 242-362 nm) and NEs (diameters of 59-80 nm) of CEO were produced through Ultra-Turrax and Ultrasonication, respectively. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) images showed different morphologies in the films containing ME and NE, also a denser and more uniform microstructure was observed in the NE films in comparison with the ME ones. The higher stability of NE in the CMC matrix, increased the thickness of the resulted films. The water vapor permeability (WVP) was increased from 2.59 × 10-9 g/ms Pa in the control film to 4.43 × 10-9 g/m s Pa in the ME film, and decreased to 1.80 × 10-9 g/ms Pa in the NE film. Adding CEO led to more flexible films with enhanced strain at break (SAB) from 53.56% in the control film to 80% and 94.77% in the ME and NE films, respectively. The antifungal indices against A. niger and M. racemous were 14.16% and 20.82% in the ME films, and were improved to 18.81% and 25% in the NE ones.
Collapse
Affiliation(s)
- Reza Fattahi
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Babak Ghanbarzadeh
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
- Department of Food EngineeringFaculty of EngineeringNear East UniversityMersinTurkey
| | - Jalal Dehghannya
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Mohammadyar Hosseini
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of Ilam
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental SciencesUniversity Polytechnical of MarcheAnconaItaly
| |
Collapse
|
179
|
Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020; 9:E1628. [PMID: 33171881 PMCID: PMC7695158 DOI: 10.3390/foods9111628] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
Innovation in food packaging is mainly represented by the development of active and intelligent packing technologies, which offer to deliver safer and high-quality food products. Active packaging refers to the incorporation of active component into the package with the aim of maintaining or extending the product quality and shelf-life. The intelligent systems are able to monitor the condition of packaged food in order to provide information about the quality of the product during transportation and storage. These packaging technologies can also work synergistically to yield a multipurpose food packaging system. This review is a critical and up-dated analysis of the results reported in the literature about this fascinating and growing field of research. Several aspects are considered and organized going from the definitions and the regulations, to the specific functions and the technological aspects regarding the manufacturing technologies, in order to have a complete overlook on the overall topic.
Collapse
Affiliation(s)
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), Polytechnique School, University of Genoa, Via Opera Pia 15, 16145 Genova, Italy; (E.D.); (R.C.); (P.P.)
| | | |
Collapse
|
180
|
Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
181
|
Mellinas AC, Jiménez A, Garrigós MC. Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods 2020; 9:E1572. [PMID: 33138245 PMCID: PMC7692356 DOI: 10.3390/foods9111572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
In this work, pectin-based active films with a cocoa bean shell extract, obtained after waste valorisation of residues coming from the chocolate production process, and zinc oxide/zinc nanoparticles (ZnO/Zn-NPs) at different concentrations, were obtained by casting. The effect of the active additive incorporation on the thermal, barrier, structural, morphological and optical properties was investigated. Moreover, the photocatalytic properties of the obtained films based on the decomposition of methylene blue (MB) in aqueous solution at room temperature were also studied. A significant increase in thermal and oxidative stability was obtained with the incorporation of 3 wt% of ZnO/Zn-NPs compared to the control film. The addition of 5 wt% cocoa bean shell extract to pectin significantly affected the oxygen barrier properties due to a plasticizing effect. In contrast, the addition of ZnO/Zn-NPs at 1 wt% to pectin caused a decrease in oxygen transmission rate per film thickness (OTR.e) values of approximately 50% compared to the control film, resulting in an enhanced protection against oxidation for food preservation. The optical properties were highly influenced by the incorporation of the natural extract but this effect was mitigated when nanoparticles were also incorporated into pectin-based films. The addition of the extract and nanoparticles resulted in a clear improvement (by 98%) in UV barrier properties, which could be important for packaged food sensitive to UV radiation. Finally, the photocatalytic activity of the developed films containing nanoparticles was demonstrated, showing photodegradation efficiency values of nearly 90% after 60 min at 3 wt% of ZnO/Zn-NPs loading. In conclusion, the obtained pectin-based bionanocomposites with cocoa bean shell waste extract and zinc oxide/zinc nanoparticles showed great potential to be used as active packaging for food preservation.
Collapse
Affiliation(s)
| | | | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.C.M.); (A.J.)
| |
Collapse
|
182
|
Nogueira GF, de Oliveira RA, Velasco JI, Fakhouri FM. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers (Basel) 2020; 12:E2518. [PMID: 33126759 PMCID: PMC7692086 DOI: 10.3390/polym12112518] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Plastic, usually derived from non-renewable sources, is among the most used materials in food packaging. Despite its barrier properties, plastic packaging has a recycling rate below the ideal and its accumulation in the environment leads to environmental issues. One of the solutions approached to minimize this impact is the development of food packaging materials made from polymers from renewable sources that, in addition to being biodegradable, can also be edible. Different biopolymers from agricultural renewable sources such as gelatin, whey protein, starch, chitosan, alginate and pectin, among other, have been analyzed for the development of biodegradable films. Moreover, these films can serve as vehicles for transporting bioactive compounds, extending their applicability as bioactive, edible, compostable and biodegradable films. Biopolymer films incorporated with plant-derived bioactive compounds have become an interesting area of research. The interaction between environment-friendly biopolymers and bioactive compounds improves functionality. In addition to interfering with thermal, mechanical and barrier properties of films, depending on the properties of the bioactive compounds, new characteristics are attributed to films, such as antimicrobial and antioxidant properties, color and innovative flavors. This review compiles information on agro-based biopolymers and plant-derived bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds from plant-derived into films and their influence on the functional properties of biopolymer films. Some limitations to be overcome for future advances are also briefly summarized. This review will benefit future prospects for exploring innovative methods of incorporating plant-derived bioactive compounds into films made from agricultural polymers.
Collapse
Affiliation(s)
| | | | - José Ignacio Velasco
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil
| |
Collapse
|
183
|
Park J, Nam J, Yun H, Jin HJ, Kwak HW. Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydr Polym 2020; 254:117317. [PMID: 33357880 DOI: 10.1016/j.carbpol.2020.117317] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/04/2023]
Abstract
Fish-derived gelatin (FG), a raw material for edible films, has recently been spotlighted as an alternative source of mammalian gelatin. However, its low stability under moisture conditions and weak mechanical properties limit its application. In this study, a water-stable and mechanically robust FG film was prepared using alginate dialdehyde (ADA) as an eco-friendly crosslinking agent. The crosslinking process of FG with ADA was easily recognized by the change in the color of the FG/ADA composite film, and the browning index of the FG/ADA film could be correlated well with the actual crosslinking degree. The mechanical strength and Young's modulus of the FG/ADA composite film increased significantly with an increase in the content of the ADA crosslinker. In the case of FG/ADA10, the tensile strength and Young's modulus increased by 400 and 600 %, respectively, compared to those of FG. Remarkably, the FG-ADA crosslinking process greatly decreased the vulnerability of FG in moisture environments. Consequently, the FG/ADA10 film remained stable for 30 days under wet environment. In addition, the FG-ADA crosslinking process could enhance the antioxidative capacity of the FG/ADA edible film. According to this study, FG/ADA composite films fabricated in an effective manner using polymers derived from aquatic species like gelatin from fish and ADA from algae could have practical applications in the edible film-based packaging industry.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jeongmin Nam
- Program in Eco-Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Haesung Yun
- Corporate R&D, LG Chem., Ltd. Research Park, 104-1 Moonji-dong, Yuseong-gu, Daejeon 305-380, South Korea
| | - Hyoung-Joon Jin
- Program in Eco-Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
184
|
Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers (Basel) 2020; 12:polym12102403. [PMID: 33086533 PMCID: PMC7603116 DOI: 10.3390/polym12102403] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film’s biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.
Collapse
|
185
|
Rezvani F, Abbasi H, Nourani M. Effects of protein–polysaccharide interactions on the physical and textural characteristics of low‐fat whipped cream. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Farhang Rezvani
- Department of Food Science and Technology Faculty of Agriculture, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
- Young Researchers and Elite Club, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| | - Hajar Abbasi
- Department of Food Science and Technology Faculty of Agriculture, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| | - Moloud Nourani
- Department of Food Science and Technology Faculty of Agriculture, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| |
Collapse
|
186
|
Sun H, Li S, Chen S, Wang C, Liu D, Li X. Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. Int J Biol Macromol 2020; 159:696-703. [DOI: 10.1016/j.ijbiomac.2020.05.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
|
187
|
Norcino L, Mendes J, Natarelli C, Manrich A, Oliveira J, Mattoso L. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105862] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
188
|
Development and Characterization of Citrus Junos Pomace Pectin Films Incorporated With Rambutan (Nephelium Lappaceum) Peel Extract. COATINGS 2020. [DOI: 10.3390/coatings10080714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New packaging materials using biopolymers have been studied to substitute synthetic packaging materials that lead to environmental pollution. In this study, a new biodegradable packaging material was developed using the pectin extracted from Citrus junos pomace, which is considered a food processing byproduct. Rambutan peel extract (RPE), at different concentrations (0.25%, 0.5%, and 1.0%), was added as an active material, and the functional properties of the C. junos pectin (CJP) films were evaluated. The incorporation of RPE enhanced the extensibility of the CJP films and their light-blocking ability by decreasing light transmittance. As the concentration of RPE increased, antioxidant activities of the CJP films increased, along with an increase in total phenolic content. Subsequently, the CJP prepared in this study can be used as a low-cost active biodegradable film material, and RPE can be added as a natural antioxidant for the CJP films to confer antioxidant activity.
Collapse
|
189
|
Chen L, Ao F, Ge X, Shen W. Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications. Molecules 2020; 25:E3202. [PMID: 32674301 PMCID: PMC7397194 DOI: 10.3390/molecules25143202] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/14/2023] Open
Abstract
In recent years, Pickering emulsions have emerged as a new method and have attracted much attention in the fields of food sciences. Unlike conventional emulsions, Pickering emulsions are stabilized by solid particles, which can irreversibly adsorb on the oil-water interface to form a dense film to prevent the aggregation of droplets. The research and development of food-grade solid particles are increasingly favored by scientific researchers. Compared with conventional emulsions, Pickering emulsions have many advantages, such as fewer using amounts of emulsifiers, biocompatibility and higher safety, which may offer feasibility to have broad application prospects in a wide range of fields. In this article, we review the preparation methods, stabilization mechanism, degradation of Pickering emulsions. We also summarize its applications in food sciences in recent years and discuss its future prospects and challenges in this work.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Fen Ao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710000, China;
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Wen Shen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710000, China;
| |
Collapse
|
190
|
Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
191
|
Almasi H, Jahanbakhsh Oskouie M, Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr 2020; 61:2601-2621. [PMID: 32588646 DOI: 10.1080/10408398.2020.1783199] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Active packaging (AP) is a new class of innovative food packaging, containing bioactive compounds, is able to maintain the quality of food and extend its shelf life by releasing active agent during storage. The main challenge in designing the AP system is slowing the release rate of active compounds for its prolonged activity. Controlled-release active packaging (CRP) is an innovative technology that provides control in the release of active compounds during storage. Various approaches have been proposed to design CRP. The purpose of this review was to gather and present the strategies utilized for release controlling of active compounds from food AP systems. The chemical modification of polymers, the preparation of multilayer films and the use of cross-linking agents are some methods tried in the last decades. Other approaches use molecular complexes and irradiation treatments. Micro- or nano-encapsulation of active compounds and using nano-structured materials in the AP film matrix are the newest techniques used for the preparation of CRP systems. The action mechanism for each technique was described and an effort was made to highlight representative published papers about each release controlling approach. This review will benefit future prospects of exploring other innovative release controlling methods in food CRP.
Collapse
Affiliation(s)
- Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Ayda Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
192
|
Zhao Q, Zaaboul F, Liu Y, Li J. Recent advances on protein‐based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Compr Rev Food Sci Food Saf 2020; 19:1934-1968. [DOI: 10.1111/1541-4337.12570] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Qiaoli Zhao
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Farah Zaaboul
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Yuanfa Liu
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Jinwei Li
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| |
Collapse
|
193
|
Amjadi S, Almasi H, Ghorbani M, Ramazani S. Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100504] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
194
|
Li X, Yang X, Deng H, Guo Y, Xue J. Gelatin films incorporated with thymol nanoemulsions: Physical properties and antimicrobial activities. Int J Biol Macromol 2020; 150:161-168. [DOI: 10.1016/j.ijbiomac.2020.02.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/28/2023]
|
195
|
Amjadi S, Nazari M, Alizadeh SA, Hamishehkar H. Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci 2020; 167:108161. [PMID: 32380358 DOI: 10.1016/j.meatsci.2020.108161] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The objective of this study was to fabricate betanin nanoliposomes incorporated gelatin/chitosan nanofiber/ZnO nanoparticles bionanocomposite film (G/CH NF/ZnO NPs/B NLPs) and investigate its effects on the preservation of fresh beef. The scanning electron microscopy image of nanocomposite film displayed a good inter-connective porous morphology. Fourier transform infrared and X-ray diffraction analysis confirmed the formation of new hydrogen bonds and enhanced crystallinity through the addition of CH NF, ZnO NPs, and B NLPs. The G/CH NF/ZnO NPs/B NLPs film exhibited satisfactory mechanical properties and high surface hydrophobicity (water contact angle = 92.49 ± 3.71°). The incorporation of ZnO NPs and B NLPs in the nanocomposite film provided high antibacterial activity and DPPH inhibition activity (53.02 ± 3.26%). The growth of inoculated bacteria, lipid oxidation, and the changes in the pH and color quality of the beef samples were controlled by packaging with the fabricated film. In conclusion, the G/CH NF/ZnO NPs/B NLPs nanocomposite has a high potential for meat preservation.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| | - Maryam Nazari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Ali Alizadeh
- Department of microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
196
|
Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv Colloid Interface Sci 2020; 278:102140. [PMID: 32171115 DOI: 10.1016/j.cis.2020.102140] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing the demands of consumers for organic and safer foods has led to applying new technologies for food preservation. Active packaging (AP) containing natural antimicrobial agents is a good candidate for promoting the shelf life of food products. The efficiency of AP has been enhanced through nanoencapsulation methods, in which antimicrobial-loaded nanocarriers could provide a controlled release of antimicrobial active packaging for keeping the quality of foods during storage. The main objective of this review is to introduce common methods for designing novel encapsulation delivery systems offering controlled release of antimicrobials in the AP systems. The common nanocarriers for enveloping antimicrobial agents are described and the current state of art in the application of nanoencapsulated antimicrobials in development of antimicrobial APs have been summarized and tabulated. Incorporation of a carrier loaded with natural antimicrobial agents is the most effective method for developing AP in the food packaging sector which has become possible by using nanoencapsulated antimicrobials in films or coating structures, instead of using their free form. Nanoencapsulation approaches provide many advantages including protection against environmental stresses, release control, and improving the solubility and absorption of natural antimicrobials in AP, which are the main achievements overcoming the barriers for using natural antimicrobials in food packaging.
Collapse
|
197
|
Picot-Allain MCN, Ramasawmy B, Emmambux MN. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
198
|
Becerril R, Nerín C, Silva F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020; 25:E1134. [PMID: 32138320 PMCID: PMC7179124 DOI: 10.3390/molecules25051134] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobially active packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintaining their quality and sensorial properties. In the last years, a great effort has been made to develop more efficient, long-lasting and eco-friendly antimicrobial materials by improving the performance of the incorporated antimicrobial substances. With this purpose, more effective antimicrobial compounds of natural origin such as bacteriocins, bacteriophages and essential oils have been preferred over synthetic ones and new encapsulation strategies such as emulsions, core-shell nanofibres, cyclodextrins and liposomes among others, have been applied in order to protect these antimicrobials from degradation or volatilization while trying to enable a more controlled release and sustained antimicrobial action. On that account, this article provides an overview of the types of antimicrobials agents used and the most recent trends on the strategies used to encapsulate the antimicrobial agents for their stable inclusion in the packaging materials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their application in food products is presented.
Collapse
Affiliation(s)
- Raquel Becerril
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Cristina Nerín
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Filomena Silva
- ARAID–Agencia Aragonesa para la Investigación y el Desarollo, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018 Zaragoza, Spain
- Faculty of Veterinary Medicine, University of Zaragoza, Calle de Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
199
|
Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108978] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
200
|
Encapsulated Cumin Seed Essential Oil-Loaded Active Papers: Characterization and Evaluation of the Effect on Quality Attributes of Beef Hamburger. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02418-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|