151
|
Xu G, Liang Y, Chen F. Continuously photocatalytic production of H 2 O 2 with high concentrations using 2-ethylanthraquinone as photocatalyst. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
152
|
Anderson DG, Florang VR, Schamp JH, Buettner GR, Doorn JA. Antioxidant-Mediated Modulation of Protein Reactivity for 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite. Chem Res Toxicol 2016; 29:1098-107. [PMID: 27268734 DOI: 10.1021/acs.chemrestox.5b00528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is an endogenously produced toxic aldehyde. It is a bifunctional electrophile implicated in the loss of dopaminergic cells concomitant with Parkinson's disease and neurodegeneration. DOPAL is known to react with proteins and amino acids such as N-acetyl lysine (NAL); oxidation of the catechol moiety to the quinone of DOPAL increases this reactivity. Here, we demonstrate the ability of the antioxidants N-acetylcysteine, glutathione, and ascorbic acid to mitigate the reactivity of DOPAL with proteins and amino acids in a dose-dependent fashion. Conversely, Trolox did not lessen the observed reactivity with proteins. Interestingly, use of tricine, a buffer and reducing agent, in these systems also decreased the reactivity of DOPAL with amines, yielding tricine-derived free radical species. Modification of amines with aldehydes typically involves Schiff base chemistry; however, the observance of free radicals suggests that an oxidative step is involved in the reaction of DOPAL with lysine. Furthermore, while Schiff base formation is usually optimal at pH 5, the reaction rate of DOPAL with NAL is negligible at pH 5 and is enhanced under basic conditions (e.g., pH 9). Conditions of high pH are also favorable for catechol auto-oxidation, known to occur for DOPAL. The antioxidant-mediated protection demonstrated here suggests that oxidative stress may impart cellular vulnerability to protein modification by DOPAL. Therefore, depleted antioxidants and increased levels of lipid peroxidation products, known to prevent the detoxifying metabolism of DOPAL, may present a survival challenge to dopaminergic cells targeted in Parkinson's disease.
Collapse
Affiliation(s)
- David G Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa , 115 South Grand Avenue, Iowa City, Iowa 52242-1112, United States
| | - Virginia R Florang
- Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa , 115 South Grand Avenue, Iowa City, Iowa 52242-1112, United States
| | - Josephine H Schamp
- Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa , 115 South Grand Avenue, Iowa City, Iowa 52242-1112, United States
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, ESR Facility, Department of Radiation Oncology, College of Medicine, University of Iowa , Iowa City, Iowa 52242-1101, United States
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa , 115 South Grand Avenue, Iowa City, Iowa 52242-1112, United States
| |
Collapse
|
153
|
Wiboonsirikul J, Watanabe Y, Omori A, Khuwijitjaru P, Adachi S. Antioxidative Properties of Stearoyl Ascorbate in a Food Matrix System. J Oleo Sci 2016; 65:487-92. [PMID: 27181253 DOI: 10.5650/jos.ess16016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stearoyl ascorbate or 6-O-stearoyl l-ascorbate is a lipophilic derivative of l-ascorbic acid and is commercially used in foods as a fat-soluble antioxidant and surfactant to overcome the disadvantages of using l-ascorbic acid. The objective of this research is to evaluate the antioxidative ability of stearoyl ascorbate, in the presence of wheat starch or gluten as a matrix, by measuring the unoxidized methyl linoleate available in the mixture of them after oxidation under accelerated conditions compared to that when using ascorbic acid. We observed that stearoyl ascorbate and ascorbic acid exhibited mutually adjacent antioxidative ability against oxidation of the methyl linoleate at a molar ratio of 0.0001 in presence of either wheat starch or gluten. In addition, the oxidation process in the mixture containing either stearoyl ascorbate or ascorbic acid was significantly slower than that in the mixture without stearoyl ascorbate or ascorbic acid. Moreover, by altering the initiation and propagation periods of the oxidation process, the mixture containing the stearoyl ascorbate and gluten as the matrix exhibited conspicuously slower oxidation than the mixture containing either the wheat starch or stearoyl ascorbate alone. However, increase in the ratio of stearoyl ascorbate to methyl linoleate to 0.001 or higher resulted in adverse effects due to acceleration of the oxidation process.
Collapse
Affiliation(s)
- Jintana Wiboonsirikul
- Department of Food Science and Technology, Faculty of Agricultural Technology, Phetchaburi Rajabhat University
| | | | | | | | | |
Collapse
|
154
|
Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8679469. [PMID: 27313834 PMCID: PMC4899610 DOI: 10.1155/2016/8679469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/29/2016] [Accepted: 03/17/2016] [Indexed: 01/08/2023]
Abstract
Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane-liposomes of pure bovine heart CL-we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature.
Collapse
|
155
|
Qin W, Wang Y, Fang G, Wu T, Liu C, Zhou D. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation. CHEMOSPHERE 2016; 150:71-78. [PMID: 26891359 DOI: 10.1016/j.chemosphere.2016.01.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Natural organic matter (NOM) significantly affects the fate, bioavailability, and toxicity of arsenic in the environment. In the present study, we investigated the oxidation of As(III) in the presence of hydroquinone (HQ) and benzoquinone (BQ), which were selected as model quinone moieties for NOM. It was found that As(III) was oxidized to As(V) in the presence of HQ or BQ at neutral conditions, and the oxidation efficiency of As(III) increased from 33% to 92% in HQ solutions and from 0 to 80% in BQ solutions with pH increasing from 6.5 to 8.5. The oxidation mechanism was further explored with electron spin resonance (ESR) technique. The results showed that semiquinone radicals (SQ(-)) were generated from the comproportionation reaction between BQ and HQ, which mediated the formation of superoxide anion (O2(-)), hydrogen peroxide (H2O2) and hydroxyl radical (OH). Both the SQ(-), H2O2 and OH contributed to the oxidation of As(III). The increase of pH favored the formation of SQ(-), and thus promoted the generation of reactive oxygen species (ROS) as well as As(III) oxidation. Increasing concentrations of HQ and BQ from 0.1 to 1.0 mM enhanced As(III) oxidation from 65% to 94% and from 10% to 53%, respectively. The findings of this study facilitate our understanding of the fate and transformation of As(III) in organic-rich aquatic environments and highlight quinone moieties as the potential oxidants for As(III) in the remediation of arsenic contaminated sites.
Collapse
Affiliation(s)
- Wenxiu Qin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
156
|
Samhan-Arias AK, López-Sánchez C, Marques-da-Silva D, Lagoa R, Garcia-Lopez V, García-Martínez V, Gutierrez-Merino C. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Biofactors 2016; 221:2147-2162. [PMID: 25850901 DOI: 10.1002/biof.1357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/16/2017] [Accepted: 03/27/2015] [Indexed: 12/23/2022]
Abstract
Cytochrome b 5 reductase (Cb 5R) and cytochrome b 5 (Cb 5) form an enzymatic redox system that plays many roles in mammalian cells. In the last 15 years, it has been proposed that this system is involved in the recycling of ascorbate, a vital antioxidant molecule in the brain and that its deregulation can lead to the production of reactive oxygen species that play a major role in oxidative-induced neuronal death. In this work, we have performed a regional and cellular distribution study of the expression of this redox system in adult rat brain by anti-Cb 5R isoform 3 and anti-Cb 5 antibodies. We found high expression levels in cerebellar cortex, labeling heavily granule neurons and Purkinje cells, and in structures such as the fastigial, interposed and dentate cerebellar nuclei. A large part of Cb 5R isoform 3 in the cerebellum cortex was regionalized in close proximity to the lipid raft-like nanodomains, labeled with cholera toxin B, as we have shown by fluorescence resonance energy transfer imaging. In addition, vestibular, reticular and motor nuclei located at the brain stem level and pyramidal neurons of somatomotor areas of the brain cortex and of the hippocampus have been also found to display high expression levels of these proteins. All these results point out the enrichment of Cb 5R isoform 3/Cb 5 system in neuronal cells and structures of the cerebellum and brain stem whose functional impairment can account for neurological deficits reported in type II congenital methemoglobinemia, as well as in brain areas highly prone to undergo oxidative stress-induced neurodegeneration.
Collapse
Affiliation(s)
- A K Samhan-Arias
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - C López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Extremadura, 06006, Badajoz, Spain
| | - D Marques-da-Silva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
| | - R Lagoa
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Extremadura, 06006, Badajoz, Spain
- ESTG-Polytechnic Institute of Leiria, Leiria, Portugal
| | | | - V García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Extremadura, 06006, Badajoz, Spain
| | - C Gutierrez-Merino
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain.
| |
Collapse
|
157
|
Pietras R, Sarewicz M, Osyczka A. Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications. J R Soc Interface 2016; 13:20160133. [PMID: 27194483 PMCID: PMC4892266 DOI: 10.1098/rsif.2016.0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Qo site of cytochrome bc1 (mitochondrial complex III, cytochrome b6f in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Qo site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of SQ with oxygen associated with superoxide generation activity of the Qo site.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
158
|
Joshi R. Free Radical Scavenging Reactions of Tetrahydroxyquinone: A Pulse Radiolysis Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201600030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravi Joshi
- Radiation & Photochemistry Division; Bhabha Atomic Research Center; Trombay Mumbai 400085 INDIA
| |
Collapse
|
159
|
8-Halo-substituted naphtho[2,3-b]thiophene-4,9-diones as redox-active inhibitors of keratinocyte hyperproliferation with reduced membrane-damaging properties. Eur J Med Chem 2016; 110:280-90. [DOI: 10.1016/j.ejmech.2016.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/23/2022]
|
160
|
Yuan X, Davis JA, Nico PS. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1731-1740. [PMID: 26789138 DOI: 10.1021/acs.est.5b03939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.
Collapse
Affiliation(s)
- Xiu Yuan
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - James A Davis
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Peter S Nico
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
161
|
Wangpradit O, Rahaman A, Mariappan SVS, Buettner GR, Robertson LW, Luthe G. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2138-2147. [PMID: 26396011 PMCID: PMC4767158 DOI: 10.1007/s11356-015-5007-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023]
Abstract
Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ(●-)) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance ((1)H NMR) and liquid chromatography-mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ(●-) by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ(●-). This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol(-1) energy gain. The insertion of SQ(●-) into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ(●-) and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ(●-). Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids, proteins, and radical scavengers like GSH.
Collapse
Affiliation(s)
- Orarat Wangpradit
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Sirindhorn College of Public Health, BanSuan, Muang, Chonburi, 2000, Thailand
| | - Asif Rahaman
- Department of Chemistry, City College of New York, Convent Avenue at 138th St., New York, NY, 10031, USA
| | - S V Santhana Mariappan
- Central High-Field NMR Research Facility, Department of Chemistry, The University of Iowa, Iowa, IA, 52242, USA
| | - Garry R Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa, IA, 52242, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
| | - Gregor Luthe
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA.
- School of Life Science, Engineering & Design, Saxion University of Applied Sciences, Enschede, Netherlands.
- Luthe-Pharma, Fabrikstrasse 3, 48599, Gronau.
| |
Collapse
|
162
|
Sauvain JJ, Rossi MJ. Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:996-1004. [PMID: 26683500 DOI: 10.1021/acs.est.5b04958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The catalytic nature of particulate matter is often advocated to explain its ability to generate reactive oxygen species, but quantitative data are lacking. We have performed molecular characterization of three different carbonaceous nanoparticles (NP) by 1. identifying and quantifying their surface functional groups based on probe gas-particle titration; 2. studying the kinetics of dissolved oxygen consumption in the presence of suspended NP's and dithiothreitol (DTT). We show that these NP's can reversibly change their oxidation state between oxidized and reduced functional groups present on the NP surface. By comparing the amount of O2 consumed and the number of strongly reducing sites on the NP, its average turnover ranged from 35 to 600 depending on the type of NP. The observed quadratic rate law for O2 disappearance points to a Langmuir-Hinshelwood surface-based reaction mechanism possibly involving semiquinone radical. In the proposed model, the strongly reducing surface site is assumed to be a polycyclic aromatic hydroquinone whose oxidation to the corresponding conjugated quinone is rate-limiting in the catalytic chain reaction. The presence and strength of the reducing surface functional groups are important for explaining the catalytic activity of NP in the presence of oxygen and a reducing agent like DTT.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Institute for Work and Health (IST), University of Lausanne and Geneva , Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
| | - Michel J Rossi
- Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry (LAC) , CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
163
|
Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA. Biological signaling by small inorganic molecules. Coord Chem Rev 2016; 306:708-723. [PMID: 26688591 PMCID: PMC4680994 DOI: 10.1016/j.ccr.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small redox active molecules such as reactive nitrogen and oxygen species and hydrogen sulfide have emerged as important biological mediators that are involved in various physiological and pathophysiological processes. Advancement in understanding of cellular mechanisms that tightly regulate both generation and reactivity of these molecules is central to improved management of various disease states including cancer and cardiovascular dysfunction. Imbalance in the production of redox active molecules can lead to damage of critical cellular components such as cell membranes, proteins and DNA and thus may trigger the onset of disease. These small inorganic molecules react independently as well as in a concerted manner to mediate physiological responses. This review provides a general overview of the redox biology of these key molecules, their diverse chemistry relevant to physiological processes and their interrelated nature in cellular signaling.
Collapse
Affiliation(s)
- Debashree Basudhar
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Lisa A. Ridnour
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Robert Cheng
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julie Heinecke
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
164
|
Rabovsky AB, Buettner GR, Fink B. In vivo imaging of free radicals produced by multivitamin-mineral supplements. BMC Nutr 2015; 1. [PMID: 26705481 PMCID: PMC4687973 DOI: 10.1186/s40795-015-0025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Redox active minerals in dietary supplements can catalyze unwanted
and potentially harmful oxidations. Methods To determine if this occurs in vivo we employed electron paramagnetic
(EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine
(CPH) as a reporter for one-electron oxidations, e.g. free
radical-mediated oxidations; the one-electron oxidation product of CPH,
3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP•), is
a nitroxide free radical that is relatively persistent in vivo and
detectable by EPR. As model systems, we used research formulations of
vitamin mineral supplements (RVM) that are typical of commercial
products. Results In in vitro experiments, upon suspension of RVM in aqueous solution,
we observed: (1) the uptake of oxygen in the solution, consistent with
oxidation of the components in the RVM; (2) the ascorbate free radical, a
real-time indicator of ongoing oxidations; and (3) when amino
acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible
oligofructose) served as the matrix in the RVM, the rate of oxidation was
significantly slowed. In a murine model, EPR imaging showed that the
ingestion of RVM along with CPH results in the one-electron oxidation of CPH
by RVM in the digestive system. The resulting CP•
distributes throughout the body. Inclusion of AAOS in the RVM formulation
diminished the oxidation of CPH to CP• in vivo. Conclusions These data demonstrate that typical formulations of
multivitamin/multimineral dietary supplements can initiate the oxidation of
bystander substances and that AAOS-complexes of essential redox active
metals, e.g. copper and iron, have reduced ability to
catalyze free radical formation and associated detrimental oxidations when a
part of a multivitamin/multimineral formulation.
Collapse
Affiliation(s)
- Alexander B Rabovsky
- Research & Development, Melaleuca Inc, 4609 West 65th South, Idaho Falls, ID 83402, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA, USA
| | - Bruno Fink
- Noxygen Science Transfer & Diagnostics GmbH, Elzach, Germany
| |
Collapse
|
165
|
Jiang C, Garg S, Waite TD. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14076-14084. [PMID: 26579728 DOI: 10.1021/acs.est.5b03189] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactions of 1,4-hydroquinone with soluble iron species over a pH range of 3-5 in the air-saturated and partially deoxygenated solution are examined here. Our results show that 1,4-hydroquinone reduces Fe(III) in acidic conditions, generating semiquinone radicals (Q(•-)) that can oxidize Fe(II) back to Fe(III). The oxidation rate of Fe(II) by Q(•-)increases with increase in pH due to the speciation change of Q(•-) with its deprotonated form (Q(•-)) oxidizing Fe(II) more rapidly than the protonated form (HQ(•)). Although the oxygenation of Fe(II) is negligible at pH < 5, O2 still plays an important role in iron redox transformation by rapidly oxidizing Q(•-) to form benzoquinone (Q). A kinetic model is developed to describe the transformation of quinone and iron under all experimental conditions. The results obtained here are compared with those obtained in our previous studies of iron-Suwannee River fulvic acid (SRFA) interactions in acidic solutions and support the hypothesis that hydroquinone moieties can reduce Fe(III) in natural waters. However, the semiquinone radicals generated in pure hydroquinone solution are rapidly oxidized by dioxygen, while the semiquinone radicals generated in SRFA solution are resistant to oxidation by dioxygen, with the result that steady-state semiquinone concentrations in SRFA solutions are 2-3 orders of magnitude greater than in solutions of 1,4-hydroquinone. As a result, semiquinone moieties in SRFA play a much more important role in iron redox transformations than is the case in solutions of simple quinones such as 1,4-hydroquinone. This difference in the steady-state concentration of semiquinone species has a dramatic effect on the cycling of iron between the +II and +III oxidation states, with iron turnover frequencies in solutions containing SRFA being 10-20 times higher than those observed in solutions of 1,4-hydroquinone.
Collapse
Affiliation(s)
- Chao Jiang
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|
166
|
Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity. Mar Drugs 2015; 13:7020-39. [PMID: 26610529 PMCID: PMC4663564 DOI: 10.3390/md13117020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/22/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022] Open
Abstract
Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.
Collapse
|
167
|
Affiliation(s)
- Anima Bose
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar; Institute of Physics Campus, P.O. Sainik School; Bhubaneswar, Odisha 751
005, India
| | - Prasenjit Mal
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar; Institute of Physics Campus, P.O. Sainik School; Bhubaneswar, Odisha 751
005, India
| |
Collapse
|
168
|
Hemachandra LPMP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM, Murphy SK, Hempel N. Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma. Cancer Res 2015; 75:4973-84. [PMID: 26359457 DOI: 10.1158/0008-5472.can-14-3799] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
Abstract
Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O2 (•-)) to hydrogen peroxide (H2O2) and oxygen (O2), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O2 (•-), to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H2O2-mediated migration. While this higher steady-state H2O2 drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H2O2 threshold to enable more rapid killing by exogenous sources of H2O2. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype.
Collapse
Affiliation(s)
- L P Madhubhani P Hemachandra
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Dong-Hui Shin
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York. Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Usawadee Dier
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, State University of New York, Stony Brook, New York
| | - Sarah A Engelberth
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Larissa M Uusitalo
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Nadine Hempel
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York. Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
169
|
Doskey CM, van ‘t Erve TJ, Wagner BA, Buettner GR. Moles of a Substance per Cell Is a Highly Informative Dosing Metric in Cell Culture. PLoS One 2015; 10:e0132572. [PMID: 26172833 PMCID: PMC4501792 DOI: 10.1371/journal.pone.0132572] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/16/2015] [Indexed: 01/24/2023] Open
Abstract
Background The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. Methods Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. Results When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). Conclusions Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments.
Collapse
Affiliation(s)
- Claire M. Doskey
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Thomas J. van ‘t Erve
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
- * E-mail:
| |
Collapse
|
170
|
Sadowska-Bartosz I, Stefaniuk I, Galiniak S, Bartosz G. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical? Redox Biol 2015. [PMID: 26202868 PMCID: PMC4522591 DOI: 10.1016/j.redox.2015.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,2′-azobis-2-methyl-propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation. Ascorbic acid (AA) induced glycation of bovine serum albumin (BSA) in vitro. Antioxidants, including polyphenols, inhibited glycation. Nitroxides, known to oxidize AA, did not protect from glycation. BSA glycation was accelerated by AAPH and superoxide dismutase. Good correlation was found between the level of ascorbyl radical and extent of glycation. We postulate that ascorbyl radical is able to induce protein glycation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland.
| | - Ireneusz Stefaniuk
- Teaching and Research Center of Microelectronics and Nanotechnology, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Poland
| | - Sabina Galiniak
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
171
|
Du J, Wagner BA, Buettner GR, Cullen JJ. Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med 2015; 84:289-295. [PMID: 25857216 PMCID: PMC4739508 DOI: 10.1016/j.freeradbiomed.2015.03.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022]
Abstract
Pharmacological ascorbate has been shown to induce toxicity in a wide range of cancer cell lines. Pharmacological ascorbate in animal models has shown promise for use in cancer treatment. At pharmacological concentrations the oxidation of ascorbate produces a high flux of H2O2 via the formation of ascorbate radical (Asc(•-)). The rate of oxidation of ascorbate is principally a function of the level of catalytically active metals. Iron in cell culture media contributes significantly to the rate of H2O2 generation. We hypothesized that increasing intracellular iron would enhance ascorbate-induced cytotoxicity and that iron chelators could modulate the catalytic efficiency with respect to ascorbate oxidation. Treatment of cells with the iron-chelators deferoxamine (DFO) or dipyridyl (DPD) in the presence of 2mM ascorbate decreased the flux of H2O2 generated by pharmacological ascorbate and reversed ascorbate-induced toxicity. Conversely, increasing the level of intracellular iron by preincubating cells with Fe-hydroxyquinoline (HQ) increased ascorbate toxicity and decreased clonogenic survival. These findings indicate that redox metal metals, e.g., Fe(3+)/Fe(2+), have an important role in ascorbate-induced cytotoxicity. Approaches that increase catalytic iron could potentially enhance the cytotoxicity of pharmacological ascorbate in vivo.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA; Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
172
|
Maróti Á, Wraight CA, Maróti P. Protonated rhodosemiquinone at the Q(B) binding site of the M265IT mutant reaction center of photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry 2015; 54:2095-103. [PMID: 25760888 DOI: 10.1021/bi501553t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The second electron transfer from primary ubiquinone Q(A) to secondary ubiquinone Q(B) in the reaction center (RC) from Rhodobacter sphaeroides involves a protonated Q(B)(-) intermediate state whose low pK(a) makes direct observation impossible. Here, we replaced the native ubiquinone with low-potential rhodoquinone at the Q(B) binding site of the M265IT mutant RC. Because the in situ midpoint redox potential of Q(A) of this mutant was lowered approximately the same extent (≈100 mV) as that of Q(B) upon exchange of ubiquinone with low-potential rhodoquinone, the inter-quinone (Q(A) → Q(B)) electron transfer became energetically favorable. After subsequent saturating flash excitations, a period of two damped oscillations of the protonated rhodosemiquinone was observed. The Q(B)H(•) was identified by (1) the characteristic band at 420 nm of the absorption spectrum after the second flash and (2) weaker damping of the oscillation at 420 nm (due to the neutral form) than at 460 nm (attributed to the anionic form). The appearance of the neutral semiquinone was restricted to the acidic pH range, indicating a functional pK(a) of <5.5, slightly higher than that of the native ubisemiquinone (pK(a) < 4.5) at pH 7. The analysis of the pH and temperature dependencies of the rates of the second electron transfer supports the concept of the pH-dependent pK(a) of the semiquinone at the Q(B) binding site. The local electrostatic potential is severely modified by the strongly interacting neighboring acidic cluster, and the pK(a) of the semiquinone is in the middle of the pH range of the complex titration. The kinetic and thermodynamic data are discussed according to the proton-activated electron transfer mechanism combined with the pH-dependent functional pK(a) of the semiquinone at the Q(B) site of the RC.
Collapse
Affiliation(s)
| | - Colin A Wraight
- §Center for Biophysics and Computational Biology and Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3838, United States
| | | |
Collapse
|
173
|
Li X, Liu T, Wang K, Waite TD. Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1392-1399. [PMID: 25569116 DOI: 10.1021/es503511m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is increasing interest in extracellular electron transfer (EET) from organisms to receptors, particularly in anaerobic biofilms at mineral surfaces. Less attention has been given to EET by planktonic organisms in oxic environments where extracellular electron generation and transport might be expected to be of limited consequence. In this study, the EET activity of the photosynthetic marine raphidophyte, Chattonella marina, was examined using a mediatorless photosynthetic microbial fuel cell with results showing positive light response. Electron output by organisms present in cell suspension was substantially higher than those present in biofilms at the electrode surface. Indeed, current generation under light illumination of the C. marina suspension continued even when contact between the organisms and the electrodes was prevented by dialysis membrane, suggesting that soluble electron carriers secreted by C. marina were facilitating the EET process. Cyclic voltammetry measurements of the cell-free exudate showed redox peaks in the range of 0.1-0.5 V (vs Ag/AgCl), confirming that redox active species were present in the cell suspension. Facilitation of electron transfer from the planktonic organism to the anode by endogenous redox-active exudates appears to be critical to current generation. The ability of these exudates to remain in their reduced state in the presence of oxygen is possibly a function of the spin-restricted nature of oxygen-mediated exudate oxidation. Quantification of the EET processes operating in this planktonic system assists in understanding the means and extent to which C. marina induces redox transformations in the external medium with these transformations presumably of benefit to the survival of this organism, potentially including facilitation of iron uptake and induction of toxicity to other organisms.
Collapse
Affiliation(s)
- Xiaomin Li
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales, Australia 2052
| | | | | | | |
Collapse
|
174
|
Shrestha JP, Subedi YP, Chen L, Chang CWT. A mode of action study of cationic anthraquinone analogs: a new class of highly potent anticancer agents. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00314h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, we reported the synthesis and structure–activity relationship (SAR) study of a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium salts, which had very potent anti-proliferative activities (low μM to nM GI50) against a broad range of cancer cells.
Collapse
Affiliation(s)
- Jaya P. Shrestha
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| | | | - Liaohai Chen
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| | | |
Collapse
|
175
|
Silveira-Dorta G, Monzón DM, Crisóstomo FP, Martín T, Martín VS, Carrillo R. Oxidation with air by ascorbate-driven quinone redox cycling. Chem Commun (Camb) 2015; 51:7027-30. [DOI: 10.1039/c5cc01519g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ascorbate and catalytic amounts of menadione transform atmospheric oxygen into hydrogen peroxide which is able to carry out oxidation.
Collapse
Affiliation(s)
- Gastón Silveira-Dorta
- Departamento de Química Orgánica
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO)
- Centro de Investigaciones Biomédicas de Canarias (CIBICAN)
- Universidad de La Laguna
- 38200 – La Laguna
| | - Diego M. Monzón
- Departamento de Química Orgánica
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO)
- Centro de Investigaciones Biomédicas de Canarias (CIBICAN)
- Universidad de La Laguna
- 38200 – La Laguna
| | - Fernando P. Crisóstomo
- Departamento de Química Orgánica
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO)
- Centro de Investigaciones Biomédicas de Canarias (CIBICAN)
- Universidad de La Laguna
- 38200 – La Laguna
| | - Tomás Martín
- Instituto de Productos Naturales y Agrobiología
- CSIC Avda
- 38206 La Laguna
- Spain
| | - Víctor S. Martín
- Departamento de Química Orgánica
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO)
- Centro de Investigaciones Biomédicas de Canarias (CIBICAN)
- Universidad de La Laguna
- 38200 – La Laguna
| | - Romen Carrillo
- Departamento de Química Orgánica
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO)
- Centro de Investigaciones Biomédicas de Canarias (CIBICAN)
- Universidad de La Laguna
- 38200 – La Laguna
| |
Collapse
|
176
|
Heppner D, Kjaergaard CH, Solomon EI. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. J Am Chem Soc 2014; 136:17788-801. [PMID: 25490729 PMCID: PMC4291763 DOI: 10.1021/ja509150j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 12/20/2022]
Abstract
The multicopper oxidases (MCOs) are the family of enzymes that catalyze the 4-electron reduction of O2 to H2O coupled to the four 1-electron oxidations of substrate. In the catalytic cycle electrons are transferred intramolecularly over ∼13 Å from a Type 1 (T1) Cu site that accepts electrons from substrate to a trinuclear Cu cluster (TNC) where O2 is reduced to H2O at rapid rates consistent with turnover (560 s(-1)). The oxygen reduction mechanism for the MCOs is well-characterized, whereas the rereduction is less understood. Our initial study of Rhus vernicifera Laccase (Heppner et al. J. Am. Chem. Soc. 2013, 135, 12212) experimentally established that the native intermediate (NI), the species formed upon O-O bond cleavage, is reduced with an IET rate >700 s(-1) and is the catalytically relevant fully oxidized form of the enzyme, rather than the resting state. In this report, we present kinetic and spectroscopic results coupled to DFT calculations that evaluate the mechanism of the 3 e(-)/3 H(+) reduction of NI, where all three catalytically relevant intramolecular electron transfer (IET) steps are rapid and involve three different structural changes. These three rapid IET processes reflect the sophisticated mechanistic control of the TNC to enable rapid turnover. All three IET processes are fast due to the associated protonation of the bridging oxo and hydroxo ligands, generated by O-O cleavage, to form water products that are extruded from the TNC upon full reduction, thereby defining a unifying mechanism for oxygen reduction and rapid IET by the TNC in the catalytic cycle of the MCOs.
Collapse
Affiliation(s)
- David
E. Heppner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Christian H. Kjaergaard
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| |
Collapse
|
177
|
Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 2014; 25:29-37. [PMID: 25532893 DOI: 10.1016/j.cub.2014.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/15/2014] [Accepted: 11/06/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. RESULTS Here, we report that these "toxins" can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in coculture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome, including the thioredoxin, glutathione, and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. CONCLUSIONS This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi.
Collapse
|
178
|
Er S, Suh C, Marshak MP, Aspuru-Guzik A. Computational design of molecules for an all-quinone redox flow battery. Chem Sci 2014; 6:885-893. [PMID: 29560173 PMCID: PMC5811157 DOI: 10.1039/c4sc03030c] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 01/21/2023] Open
Abstract
Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.
Collapse
Affiliation(s)
- Süleyman Er
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , MA 02138 , USA . .,Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands
| | - Changwon Suh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , MA 02138 , USA .
| | - Michael P Marshak
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , MA 02138 , USA .
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , MA 02138 , USA .
| |
Collapse
|
179
|
|
180
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
181
|
Ramos-Pérez C, Lorenzo-Castrillejo I, Quevedo O, García-Luis J, Matos-Perdomo E, Medina-Coello C, Estévez-Braun A, Machín F. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Biochem Pharmacol 2014; 92:206-19. [DOI: 10.1016/j.bcp.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/15/2023]
|
182
|
Xu D, Hu L, Su C, Xia X, Zhang P, Fu J, Wang W, Xu D, Du H, Hu Q, Song E, Song Y. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin. Toxicol Appl Pharmacol 2014; 280:305-13. [DOI: 10.1016/j.taap.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
|
183
|
Elajaili HB, Biller JR, Eaton SS, Eaton GR. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 247:81-87. [PMID: 25261741 PMCID: PMC4224960 DOI: 10.1016/j.jmr.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/28/2014] [Indexed: 05/31/2023]
Abstract
The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH(-). The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
184
|
Jiang H, Lai Y, Hu K, Wei Q, Liu Y. Human CYP2E1-dependent and human sulfotransferase 1A1-modulated induction of micronuclei by benzene and its hydroxylated metabolites in Chinese hamster V79-derived cells. Mutat Res 2014; 770:37-44. [PMID: 25771868 DOI: 10.1016/j.mrfmmm.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 01/29/2023]
Abstract
Benzene is a ubiquitous environmental pollutant and a confirmed human carcinogen, which requires metabolic activation, primarily by CYP2E1, for most of its biological actions. Chromosome damages in benzene-exposed workers and rodents have been observed, and in their urine sulfo- and glucuronide-conjugates of phenol and hydroquinone were present. Yet, direct evidence for human CYP2E1-activated mutagenicity of benzene and the exact significance of phase II metabolism for inactivating benzene metabolites are still missing. In the present study, benzene and its oxidized metabolites (phenol, hydroquinone, catechol, 1,2,4-trihydroxybenzene and 1,4-benzoquinone) were investigated for induction of micronuclei in a V79-derived cell line genetically engineered for expression of both human CYP2E1 and human sulfotransferase (SULT) 1A1 (indicated by active micronuclei induction by 1-hydroxymethylpyrene). The results demonstrated concentration-dependent induction of micronuclei by benzene and phenol, though with lower potency or efficacy than the other metabolites. Inhibition of CYP2E1 by 1-aminobenzotriazole did not change the effect of benzoquinone, but completely abolished that of benzene and phenol, and attenuated that of the other compounds. Moreover, inhibition of SULT1A1 by pentachlorophenol potentiated the effects of benzene, hydroquinone, catechol and trihydroxybenzene. Ascorbic acid, a reducing and free radical-scavenging agent, significantly lowered the effects of hydroquinone, catechol, trihydroxybenzene as well as N-nitrosodimethylamine (a known CYP2E1-dependent promutagen), with that of benzoquinone unaffected. These results suggest that in addition to activating benzene and phenol, human CYP2E1 may further convert hydroquinone, catechol and trihydroxybenzene to more genotoxic metabolites, and sulfo-conjugation of the multi-hydroxylated metabolites of benzene by human SULT1A1 may represent an important detoxifying pathway.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Yanmei Lai
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Qinzhi Wei
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
185
|
Joshi R, Gangabhagirathi R. Formation of semiquinone radical anion and free radical scavenging reactions of plumbagin: a pulse radiolysis study. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Prachayasittikul V, Pingaew R, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur J Med Chem 2014; 84:247-63. [DOI: 10.1016/j.ejmech.2014.07.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 07/05/2014] [Indexed: 11/24/2022]
|
187
|
Pham AN, Waite TD. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics. J Inorg Biochem 2014; 137:74-84. [DOI: 10.1016/j.jinorgbio.2014.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 11/30/2022]
|
188
|
Sanchez-Cruz P, Santos A, Diaz S, Alegría AE. Metal-independent reduction of hydrogen peroxide by semiquinones. Chem Res Toxicol 2014; 27:1380-6. [PMID: 25046766 PMCID: PMC4137985 DOI: 10.1021/tx500089x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The quinones 1,4-naphthoquinone (NQ),
tetramethyl-1,4-benzoquinone
(DQ), 2-methyl-1,4-naphthoquinone (MNQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone
(UBQ-0), 2,6-dimethylbenzoquinone (DMBQ), 2,6-dimethoxybenzoquinone
(DMOBQ), and 9,10-phenanthraquinone (PHQ) enhance the rate of H2O2 reduction by ascorbate, under anaerobic conditions,
as detected from the amount of methane produced after hydroxyl radical
reaction with dimethyl sulfoxide. The amount of methane produced increases
with an increase in the quinone one-electron reduction potential.
The most active quinone in this series, PHQ, is only 14% less active
than the classic Fenton reagent cation, Fe2+, at the same
concentration. Since PHQ is a common toxin present in diesel combustion
smoke, the possibility that PHQ-mediated catalysis of hydroxyl radical
formation is similar to that of Fe2+ adds another important
pathway to the modes in which PHQ can execute its toxicity. Because
quinones are known to enhance the antitumor activity of ascorbate
and because ascorbate enhances the formation of H2O2 in tissues, the quinone-mediated reduction of H2O2 should be relevant to this type of antitumor activity,
especially under hypoxic conditions.
Collapse
Affiliation(s)
- Pedro Sanchez-Cruz
- Department of Chemistry, University of Puerto Rico , Humacao 00791, Puerto Rico
| | | | | | | |
Collapse
|
189
|
Bannwitz S, Krane D, Vortherms S, Kalin T, Lindenschmidt C, Zahedi Golpayegani N, Tentrop J, Prinz H, Müller K. Synthesis and Structure–Activity Relationships of Lapacho Analogues. 2. Modification of the Basic Naphtho[2,3-b]furan-4,9-dione, Redox Activation, and Suppression of Human Keratinocyte Hyperproliferation by 8-Hydroxynaphtho[2,3-b]thiophene-4,9-diones. J Med Chem 2014; 57:6226-39. [DOI: 10.1021/jm500754d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sven Bannwitz
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Dirk Krane
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Silke Vortherms
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Tobias Kalin
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Cathrin Lindenschmidt
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Nader Zahedi Golpayegani
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Jan Tentrop
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Helge Prinz
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| | - Klaus Müller
- Institute of Pharmaceutical
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Corrensstrasse 48, D-48149 Münster, Germany
| |
Collapse
|
190
|
Ito S, Ojika M, Yamashita T, Wakamatsu K. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Pigment Cell Melanoma Res 2014; 27:744-53. [DOI: 10.1111/pcmr.12275] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/30/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Shosuke Ito
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Aichi Japan
| | - Makoto Ojika
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya Japan
| | - Toshiharu Yamashita
- Department of Dermatology; Sapporo Medical University School of Medicine; Sapporo Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Aichi Japan
| |
Collapse
|
191
|
Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys 2014; 67:477-83. [PMID: 22161621 DOI: 10.1007/s12013-011-9320-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Systems biology is now recognized as a needed approach to understand the dynamics of inter- and intra-cellular processes. Redox processes are at the foundation of nearly all aspects of biology. Free radicals, related oxidants, and antioxidants are central to the basic functioning of cells and tissues. They set the cellular redox environment and, therefore, are the key to regulation of biochemical pathways and networks, thereby influencing organism health. To understand how short-lived, quasi-stable species, such as superoxide, hydrogen peroxide, and nitric oxide, connect to the metabolome, proteome, lipidome, and genome we need absolute quantitative information on all redox active compounds as well as thermodynamic and kinetic information on their reactions, i.e., knowledge of the complete redoxome. Central to the state of the redoxome are the interactive details of the superoxide/peroxide formation and removal systems. Quantitative information is essential to establish the dynamic mathematical models needed to reveal the temporal evolution of biochemical pathways and networks. This new field of Quantitative Redox Biology will allow researchers to identify new targets for intervention to advance our efforts to achieve optimal human health.
Collapse
|
192
|
Yuan X, Miller CJ, Pham AN, Waite TD. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone. Free Radic Biol Med 2014; 71:291-302. [PMID: 24681336 DOI: 10.1016/j.freeradbiomed.2014.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/19/2014] [Accepted: 03/15/2014] [Indexed: 11/23/2022]
Abstract
Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions.
Collapse
Affiliation(s)
- Xiu Yuan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - A Ninh Pham
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
193
|
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. MASS SPECTROMETRY REVIEWS 2014; 33:183-218. [PMID: 24272816 DOI: 10.1002/mas.21392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Samuni A, Goldstein S. Redox Properties of Benzoquinone Ansamycins in Aqueous Solutions. Isr J Chem 2014. [DOI: 10.1002/ijch.201300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
195
|
1,2,3-Triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: Potent antitumor activity, electrochemical aspects, and bioisosteric replacement of C-ring-modified lapachones. Bioorg Med Chem 2014; 22:1608-19. [DOI: 10.1016/j.bmc.2014.01.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
|
196
|
Evaluation of N-acetyl-cysteine against tetrachlorobenzoquinone-induced genotoxicity and oxidative stress in HepG2 cells. Food Chem Toxicol 2014; 64:291-7. [DOI: 10.1016/j.fct.2013.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 11/21/2022]
|
197
|
A metal-free organic-inorganic aqueous flow battery. Nature 2014; 505:195-8. [PMID: 24402280 DOI: 10.1038/nature12909] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/25/2013] [Indexed: 11/08/2022]
Abstract
As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.
Collapse
|
198
|
Liochev SI. Free radicals: how do we stand them? Anaerobic and aerobic free radical (chain) reactions involved in the use of fluorogenic probes and in biological systems. Med Princ Pract 2014; 23:195-203. [PMID: 24356000 PMCID: PMC5586870 DOI: 10.1159/000357120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/07/2013] [Indexed: 01/21/2023] Open
Abstract
Biologically significant conclusions have been based on the use of fluorogenic and luminogenic probes for the detection of reactive species. The basic mechanisms of the processes involved have not been satisfactorily elucidated. In the present work, the mechanism of the enzyme and photosensitized oxidation of NAD(P)H by resorufin is analyzed and appears to involve both aerobic and anaerobic free radical chain reactions. There are two major fallouts of this analysis. Many of the conclusions about the participation of radicals based on the use of probes such as resorufin and Amplex red need reevaluation. It is also concluded that anaerobic free radical reactions may be biologically significant, and the possible existence of enzymatic systems to eliminate certain free radicals is discussed.
Collapse
|
199
|
Kim YR, Kim RS, Kang SK, Choi MG, Kim HY, Cho D, Lee JY, Chang SK, Chung TD. Modulation of Quinone PCET Reaction by Ca2+ Ion Captured by Calix[4]quinone in Water. J Am Chem Soc 2013; 135:18957-67. [DOI: 10.1021/ja410406e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang-Rae Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - R. Soyoung Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Sun Kil Kang
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Myung Gil Choi
- Department
of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Hong Yeong Kim
- Department
of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Daeheum Cho
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Suk-Kyu Chang
- Department
of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Taek Dong Chung
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
200
|
Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacol Res 2013; 77:47-56. [DOI: 10.1016/j.phrs.2013.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/30/2022]
|