151
|
Gossypol Acetic Acid Prevents Oxidative Stress-Induced Retinal Pigment Epithelial Necrosis by Regulating the FoxO3/Sestrin2 Pathway. Mol Cell Biol 2015; 35:1952-63. [PMID: 25802279 DOI: 10.1128/mcb.00178-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/15/2015] [Indexed: 02/04/2023] Open
Abstract
The late stage of dry age-related macular degeneration (AMD), or geographic atrophy (GA), is characterized by extensive retinal pigment epithelial (RPE) cell death, and a cure is not available currently. We have recently demonstrated that RPE cells die from necrosis in response to oxidative stress, providing a potential novel mechanism for RPE death in AMD. In this study, we screened U.S. Food and Drug Administration-approved natural compounds and identified gossypol acetic acid (GAA) as a potent inhibitor of oxidative stress-induced RPE cell death. GAA induces antioxidative response and inhibits accumulation of excessive reactive oxygen species in cells, through which it prevents the activation of intrinsic necrotic pathway in response to oxidative stress. Sestrin2 (SESN2) is found to mediate GAA function in antioxidative response and RPE survival upon oxidative stress. Moreover, Forkhead box O3 transcription factor (FoxO3) is further found to be required for GAA-mediated SESN2 expression and RPE survival. Mechanistically, GAA promotes FoxO3 nuclear translocation and binding to the SESN2 enhancer, which in turn increases its transcriptional activity. Taken together, we have identified GAA as a potent inhibitor of oxidative stress-induced RPE necrosis by regulating the FoxO3/SESN2 pathway. This study may have significant implications in the therapeutics of age-related diseases, especially GA.
Collapse
|
152
|
Sestrin2-AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity. Cell Signal 2015; 27:1533-43. [PMID: 25778901 DOI: 10.1016/j.cellsig.2015.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
Abstract
Sestrin2 (SESN2) regulates redox-homeostasis and apoptosis in response to various stresses. Although the antioxidant effects of SESN2 have been well established, the roles of SESN2 in mitochondrial function and metabolic stress have not yet been elucidated. In this study, we investigated the role of SESN2 in mitochondrial dysfunction under glucose deprivation and related signaling mechanisms. Glucose deprivation significantly upregulated SESN2 expression in hepatocyte-derived cells. Antioxidant treatments repressed SESN2 induction under glucose deprivation, this result suggested that reactive oxygen species (ROS) production was involved in SESN2 induction. Moreover, NF-E2-related factor-2 (Nrf2) phosphorylation was accompanied in induction of SESN2 by glucose deprivation. To elucidate the functional role of SESN2, we examined cells that stably overexpressed SESN2. Overexpression of SESN2 inhibited glucose deprivation-induced ROS production and cell death. In addition, under glucose deprivation, the changes in mitochondrial membrane potential, ADP/ATP ratio, and mitochondrial DNA content were significantly restored in SESN2-overexpressing cells. Moreover, siRNA knockdown of SESN2 failed to prevent mitochondrial permeability transition by glucose depletion. Mechanistic investigation showed that glucose deprivation significantly increased AMP-activated protein kinase (AMPK) activation. The recovery of mitochondrial function under glucose deprivation in SESN2-overexpressing cells was not seen in SESN2-overexpressing cells transfected with a dominant-negative AMPK; this result suggested that AMPK activation was responsible for SESN2-mediated mitochondrial protection against glucose deprivation. Treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an AMPK activator) also provided cytoprotective effects against glucose deprivation. Our findings provide evidence for the functional importance of SESN2-AMPK activation in the protection of mitochondria and cells against glucose deprivation-induced metabolic stress.
Collapse
|
153
|
Kumagai T, Kozakai Y, Ishino T, Yajima Y, Nakagawa Y, Imai H. Nrf2 up-regulates the induction of acidic sphingomyelinase by electrophiles. J Biochem 2015; 158:127-37. [PMID: 25762726 DOI: 10.1093/jb/mvv030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Acidic sphingomyelinase (ASMase) catalyses the generation of ceramide from sphingomyelin. Ceramide is a lipid mediator and is implicated in mediating and regulating various cellular processes including cell proliferation, differentiation, stress response and inflammation. We have previously reported that electrophiles including diethyl maleate (DEM), heavy metals and cigarette smoke extracts induced ASMase expression in human bladder carcinoma ECV-304 cells, but the mechanism of ASMase mRNA induction by electrophiles remains unknown. In this study, we clarified the involvement of NF-E2-related factor 2 (Nrf2) in the induction of ASMase mRNA by DEM. Promoter analysis using a series of deletion mutants of the human ASMase gene showed that ARE-like element1 located in a region between -200 and -160 bp upstream of the transcription start point is mainly a DEM-responsive element. Moreover, an electrophoretic mobility shift assay using ARE-like element1 revealed that Nrf2 is a candidate transcription factor that binds to ARE-like element1 in response to DEM. Finally, alteration of Nrf2 expression by overexpression and knockdown could regulate the induction of ASMase mRNA by DEM. This is the first evidence that supports the possibility that sphingolipid metabolism is affected via the induction of ASMase by the Nrf2 pathway.
Collapse
Affiliation(s)
- Takeshi Kumagai
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yosuke Kozakai
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomohiro Ishino
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuichi Yajima
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuhito Nakagawa
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
154
|
Kim MG, Yang JH, Kim KM, Jang CH, Jung JY, Cho IJ, Shin SM, Ki SH. Regulation of Toll-like Receptor-Mediated Sestrin2 Induction by AP-1, Nrf2, and the Ubiquitin-Proteasome System in Macrophages. Toxicol Sci 2015; 144:425-35. [DOI: 10.1093/toxsci/kfv012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
155
|
Yang JH, Kim KM, Kim MG, Seo KH, Han JY, Ka SO, Park BH, Shin SM, Ku SK, Cho IJ, Ki SH. Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic Biol Med 2015; 78:156-67. [PMID: 25463278 DOI: 10.1016/j.freeradbiomed.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/01/2014] [Accepted: 11/03/2014] [Indexed: 01/04/2023]
Abstract
Sestrins (Sesns) are conserved antioxidant proteins that accumulate in cells in response to various stresses. However, the regulatory roles of Sesn2 in the immune system and in inflammatory responses remain obscure. In the present study, we investigated whether Sesn2 regulates Toll like receptor (TLR)-mediated inflammatory signaling and sought to identify the molecular mechanism responsible. In cells expressing Sesn2, it was found that Sesn2 almost completely inhibited lipopolysaccharide (LPS)-induced NO release and iNOS expression. A gene knockdown experiment confirmed the role of Sesn2 in LPS-activated RAW264.7 cells. Consistently, proinflammatory cytokine (e.g., TNF-α, IL-6, and IL-1β) release and expression were inhibited in Sesn2-expressing cells. Furthermore, Sesn2 prevented LPS-elicited cell death and ROS production via inhibition of NADPH oxidase. NF-κB and AP-1 are redox-sensitive transcription factors that regulate the expressions of diverse inflammatory genes. Surprisingly, Sesn2 specifically inhibited AP-1 luciferase activity and its DNA binding, but not those of NF-κB. AP-1 inhibition by Sesn2 was found to be due to a lack of JNK, p38, and c-Jun phosphorylation. Next, we investigated whether Sesn2 protects galactosamine (Gal)/LPS-induced liver injury in mice infected with a recombinant adenovirus Sesn2 (Ad-Sesn2). Ad-Sesn2 present less severe hepatic injury as supported by decreases in the ALT, AST, and hepatocyte degeneration. Moreover, Ad-Sesn2 attenuated Gal/LPS-induced proinflammatory gene expression in mice. The study shows that Sesn2 inhibits TLR-induced proinflammatory signaling and protects cells by inhibiting JNK- or p38-mediated c-Jun phosphorylation.
Collapse
Affiliation(s)
- Ji Hye Yang
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Mi Gwang Kim
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Kyu Hwa Seo
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Jae Yoon Han
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sang Mi Shin
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Sae Kwang Ku
- MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Republic of Korea
| | - Il Je Cho
- MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea.
| |
Collapse
|
156
|
Nrf2, the master redox switch: The Achilles' heel of ovarian cancer? Biochim Biophys Acta Rev Cancer 2014; 1846:494-509. [DOI: 10.1016/j.bbcan.2014.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/21/2022]
|
157
|
Jiang Y, Fan X, Wang Y, Chen P, Zeng H, Tan H, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration. Toxicol Sci 2014; 143:107-15. [PMID: 25319358 DOI: 10.1093/toxsci/kfu216] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra sphenanthera is a traditional hepato-protective Chinese medicine and Schisandrol B (SolB) is one of its major active constituents. In this study, the protective effect of SolB against APAP-induced acute hepatotoxicity in mice and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated a protective effect of SolB against APAP-induced liver injury. SolB pretreatment significantly attenuated the increases in alanine aminotransferase and aspartate aminotransferase activity, and prevented elevated hepatic malondialdehyde formation and the depletion of mitochondrial glutathione (GSH) in a dose-dependent manner. SolB also dramatically altered APAP metabolic activation by inhibiting the activities of CYP2E1 and CYP3A11, which was evidenced by significant inhibition of the formation of the oxidized APAP metabolite NAPQI-GSH. A molecular docking model also predicted that SolB had potential to interact with the CYP2E1 and CYP3A4 active sites. In addition, SolB abrogated APAP-induced activation of p53 and p21, and increased expression of liver regeneration and antiapoptotic-related proteins such as cyclin D1 (CCND1), PCNA, and BCL-2. This study demonstrated that SolB exhibited a significant protective effect toward APAP-induced liver injury, potentially through inhibition of CYP-mediated APAP bioactivation and regulation of the p53, p21, CCND1, PCNA, and BCL-2 to promote liver regeneration.
Collapse
Affiliation(s)
- Yiming Jiang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiaomei Fan
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ying Wang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pan Chen
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hang Zeng
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huasen Tan
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frank J Gonzalez
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Min Huang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huichang Bi
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
158
|
Seo K, Seo S, Han JY, Ki SH, Shin SM. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicol Appl Pharmacol 2014; 280:314-22. [DOI: 10.1016/j.taap.2014.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/03/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023]
|
159
|
Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F. Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 2014; 87:99-112. [PMID: 24998607 DOI: 10.1016/j.phrs.2014.06.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S), which recently emerged as a potent regulator of tissues and organs, is broadly produced in mammalian cells but whether it can regulate bone cell function is still elusive. The main objective of this study was to establish the role of H2S in the regulation of human osteoclast differentiation and function. Sodium hydrosulfide (NaHS), a common H2S-donor, was administered in vitro to CD11b+ human monocytes, the pool of circulating osteoclasts precursors which are critically involved in osteoclast development and function in bone. NaHS dose-dependently decreased human osteoclast differentiation at concentrations which did not induce toxicity. The inhibition of human osteoclast differentiation was associated with a down-regulation in RANKL-dependent intracellular ROS levels in human pre-osteoclasts cells. Furthermore, NaHS up-regulated NRF2 protein expression, its nuclear translocation, and the transcription of the two key downstream antioxidant genes Peroxiredoxin-1 and NAD(P)H dehydrogenase quinone 1, suggesting that NRF2 activation may inhibit human osteoclast differentiation by activating a sustained antioxidant response in osteoclast progenitors; furthermore, NRF2 activators Sulforaphane and Tert-butylhydroquinone inhibited in vitro human osteoclast differentiation. Moreover, silencing NRF2 in human pre-osteoclasts totally abolished NaHS-mediated inhibition of osteoclastogenesis, suggesting that NRF2 is essential to the inhibitory function of NaHS in osteoclast development. Finally, we found that NaHS also downregulated the RANKL/OPG mRNA ratio in human mesenchymal stem cells, the key osteoclast-supporting cells. Our results suggest that NaHS shows a potential therapeutical role in erosive diseases of bone by regulating both direct and indirect mechanisms controlling the differentiation of circulating osteoclasts precursors.
Collapse
Affiliation(s)
- Laura Gambari
- S.C. Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gina Lisignoli
- S.C. Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Luca Cattini
- S.C. Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Cristina Manferdini
- S.C. Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Andrea Facchini
- S.C. Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Italy
| | - Francesco Grassi
- Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
160
|
Yi L, Li F, Yong Y, Jianting D, Liting Z, Xuansheng H, Fei L, Jiewen L. Upregulation of sestrin-2 expression protects against endothelial toxicity of angiotensin II. Cell Biol Toxicol 2014; 30:147-56. [PMID: 24838122 PMCID: PMC4040185 DOI: 10.1007/s10565-014-9276-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 01/14/2023]
Abstract
Sestrin-2 (SESN2) is involved in the cellular response to different stress conditions. However, the function of SESN2 in the cardiovascular system remains unknown. In the present study, we tested whether SESN2 has a beneficial effect on vascular endothelial damage induced by angiotensin II (AngII). Firstly, we found that AngII induces expression of SESN2 in human umbilical vein endothelial cells (HUVECs) in a time-dependent and dose-dependent manner. We also found that knockdown of SESN2 using small RNA interference promotes cellular toxicity of AngII, as well as a reduction in cell viability, exacerbation of oxidative stress, and stimulation of apoptosis. In addition, our results show that the c-Jun NH (2)-terminal kinase (JNK)/c-Jun pathway is activated by AngII. Inhibiting the activity of the JNK pathway abolishes the increase in SESN2 induced by AngII. Importantly, overexpression of c-Jun promotes luciferase activity of the SESN2 promoter. These findings suggest that the inductive effect of SESN2 is mediated by the JNK/c-Jun pathway. Our results indicate that the induction of SESN2 acts as a compensatory response to AngII for survival, implying that stimulating expression of SESN2 might be an effective pharmacological target for the treatment of AngII-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Lao Yi
- Department of Cardiology, Zhong Shan Hospital at Sun Yat-Sen University, No. 2 Sun Wendong Road, Zhongshan City, Guangdong Province, 528403, China
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol 2014; 253:63-71. [DOI: 10.1016/j.expneurol.2013.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Accepted: 12/11/2013] [Indexed: 11/20/2022]
|
162
|
Kim GT, Lee SH, Kim JI, Kim YM. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med 2014; 33:863-9. [PMID: 24535669 PMCID: PMC3976123 DOI: 10.3892/ijmm.2014.1658] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/12/2014] [Indexed: 01/07/2023] Open
Abstract
The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.
Collapse
Affiliation(s)
- Guen Tae Kim
- Department of Biological Sciences, College of Life Science and Nanotechnology, Hannam University, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Se Hee Lee
- Department of Biological Sciences, College of Life Science and Nanotechnology, Hannam University, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Jong Il Kim
- Department of Biological Sciences, College of Life Science and Nanotechnology, Hannam University, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Young Min Kim
- Department of Biological Sciences, College of Life Science and Nanotechnology, Hannam University, Yuseong-gu, Daejeon 305-811, Republic of Korea
| |
Collapse
|
163
|
Yang JH, Shin BY, Han JY, Kim MG, Wi JE, Kim YW, Cho IJ, Kim SC, Shin SM, Ki SH. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol Appl Pharmacol 2014; 274:293-301. [DOI: 10.1016/j.taap.2013.10.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 11/26/2022]
|
164
|
Abstract
The Sestrins constitute a family of evolutionarily conserved stress-inducible proteins that suppress oxidative stress and regulate AMP-dependent protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling. By virtue of these activities, the Sestrins serve as important regulators of metabolic homeostasis. Accordingly, inactivation of Sestrin genes in invertebrates resulted in diverse metabolic pathologies, including oxidative damage, fat accumulation, mitochondrial dysfunction, and muscle degeneration, that resemble accelerated tissue aging. Likewise, Sestrin deficiencies in mice led to accelerated diabetic progression upon obesity. Further investigation of Sestrin function and regulation should provide new insights into age-associated metabolic diseases, such as diabetes, myopathies, and cancer.
Collapse
|
165
|
O-methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation. Food Chem Toxicol 2013; 59:362-72. [DOI: 10.1016/j.fct.2013.05.049] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/09/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022]
|
166
|
Heidler J, Fysikopoulos A, Wempe F, Seimetz M, Bangsow T, Tomasovic A, Veit F, Scheibe S, Pichl A, Weisel F, Lloyd KCK, Jaksch P, Klepetko W, Weissmann N, von Melchner H. Sestrin-2, a repressor of PDGFRβ signalling, promotes cigarette-smoke-induced pulmonary emphysema in mice and is upregulated in individuals with COPD. Dis Model Mech 2013; 6:1378-87. [PMID: 24046361 PMCID: PMC3820261 DOI: 10.1242/dmm.013482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD is caused by chronic exposure to cigarette smoke and/or other environmental pollutants that are believed to induce reactive oxygen species (ROS) that gradually disrupt signalling pathways responsible for maintaining lung integrity. Here we identify the antioxidant protein sestrin-2 (SESN2) as a repressor of PDGFRβ signalling, and PDGFRβ signalling as an upstream regulator of alveolar maintenance programmes. In mice, the mutational inactivation of Sesn2 prevents the development of cigarette-smoke-induced pulmonary emphysema by upregulating PDGFRβ expression via a selective accumulation of intracellular superoxide anions (O2−). We also show that SESN2 is overexpressed and PDGFRβ downregulated in the emphysematous lungs of individuals with COPD and to a lesser extent in human lungs of habitual smokers without COPD, implicating a negative SESN2-PDGFRβ interrelationship in the pathogenesis of COPD. Taken together, our results imply that SESN2 could serve as both a biomarker and as a drug target in the clinical management of COPD.
Collapse
Affiliation(s)
- Juliana Heidler
- Department of Molecular Haematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Bhullar KS, Rupasinghe HPV. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:891748. [PMID: 23840922 PMCID: PMC3690243 DOI: 10.1155/2013/891748] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders.
Collapse
Affiliation(s)
- Khushwant S. Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| |
Collapse
|
168
|
Jin SH, Yang JH, Shin BY, Seo K, Shin SM, Cho IJ, Ki SH. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicol Appl Pharmacol 2013; 271:95-105. [PMID: 23651738 DOI: 10.1016/j.taap.2013.04.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/06/2013] [Accepted: 04/25/2013] [Indexed: 01/04/2023]
Abstract
Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα-RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis.
Collapse
Affiliation(s)
- So Hee Jin
- College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | | | | | | | | | | | | |
Collapse
|