151
|
Pebsworth PA, Hillier S, Wendler R, Glahn R, Ta CAK, Arnason JT, Young SL. Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2911-2927. [PMID: 31278584 DOI: 10.1007/s10653-019-00366-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015-October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.
Collapse
Affiliation(s)
- Paula A Pebsworth
- Department of Anthropology, The University of Texas, San Antonio, USA.
- National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore, India.
| | - Stephen Hillier
- James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, UK
- Department of Soil and Environment, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Renate Wendler
- James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, UK
| | - Ray Glahn
- Robert Holley Center for Agriculture and Health, Ithaca, NY, USA
| | | | - John T Arnason
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Sera L Young
- Department of Anthropology and Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
152
|
Hofmann M, Heine T, Schulz V, Hofmann S, Tischler D. Draft genomes and initial characteriaztion of siderophore producing pseudomonads isolated from mine dump and mine drainage. ACTA ACUST UNITED AC 2019; 25:e00403. [PMID: 31867228 PMCID: PMC6906695 DOI: 10.1016/j.btre.2019.e00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
High and stable siderophore production. Identification of siderophore biosynthesis gene clusters. Beech wood hydrolysate as alternative carbon source.
Siderophores are of high interest for biotechnological, pharmaceutical, agricultural and industrial applications. Although they are synthesized by various organisms, the yield is usually low which hindrances their suitability for broad range uses. Thus, it is necessary to identify novel producers and to increase the understanding of the biosynthesis pathways. Herein we report the isolation of two novel Pseudomonas strains and the identification of the gene clusters for the biosynthesis of pseudomonine as well as pyochelin and pyoverdine.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Thomas Heine
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Vivian Schulz
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Sarah Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany.,Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
153
|
Kobayashi T, Ozu A, Kobayashi S, An G, Jeon JS, Nishizawa NK. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. PLANT MOLECULAR BIOLOGY 2019; 101:471-486. [PMID: 31552586 PMCID: PMC6814640 DOI: 10.1007/s11103-019-00917-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/07/2019] [Indexed: 05/03/2023]
Abstract
Subgroup IVc basic helix-loop-helix transcription factors OsbHLH058 and OsbHLH059 positively regulate major iron deficiency responses in rice in a similar but distinct manner, putatively under partial control by OsHRZs. Under low iron availability, plants transcriptionally induce the expression of genes involved in iron uptake and translocation. OsHRZ1 and OsHRZ2 ubiquitin ligases negatively regulate this iron deficiency response in rice. The basic helix-loop-helix (bHLH) transcription factor OsbHLH060 interacts with OsHRZ1, and positively regulates iron deficiency-inducible genes. However, the functions of three other subgroup IVc bHLH transcription factors in rice, OsbHLH057, OsbHLH058, and OsbHLH059, have not yet been characterized. In the present study, we investigated the functions of OsbHLH058 and OsbHLH059 related to iron deficiency response. OsbHLH058 expression was repressed under iron deficiency, whereas the expression of OsbHLH057 and OsbHLH060 was moderately induced. Yeast two-hybrid analysis indicated that OsbHLH058 interacts with OsHRZ1 and OsHRZ2 more strongly than OsbHLH060, whereas OsbHLH059 showed no interaction. An in vitro ubiquitination assay detected no OsbHLH058 and OsbHLH060 ubiquitination by OsHRZ1 and OsHRZ2. Transgenic rice lines overexpressing OsbHLH058 showed tolerance for iron deficiency and higher iron concentration in seeds. These lines also showed enhanced expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron-sufficient conditions. Conversely, OsbHLH058 knockdown lines showed susceptibility to iron deficiency and reduced expression of many iron deficiency-inducible genes. OsbHLH059 knockdown lines were also susceptible to iron deficiency, and formed characteristic brownish regions in iron-deficient new leaves. OsbHLH059 knockdown lines also showed reduced expression of many iron deficiency-inducible genes. These results indicate that OsbHLH058 and OsbHLH059 positively regulate major iron deficiency responses in a similar but distinct manner, and that this function may be partially controlled by OsHRZs.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Asami Ozu
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Subaru Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
154
|
Clemens S. Metal ligands in micronutrient acquisition and homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2902-2912. [PMID: 31350913 DOI: 10.1111/pce.13627] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/09/2023]
Abstract
Acquisition and homeostasis of micronutrients such as iron (Fe) and zinc (Zn) pose specific challenges. Poor solubility and high reactivity require controlled synthesis and supply of ligands to complex these metals extracellularly and intracellularly. Cytosolic labile pools represent only a minute fraction of the total cellular content. Several low-molecular-weight ligands are known in plants, including sulfur ligands (cysteine and peptides), nitrogen/oxygen ligands (S-adenosyl-l-methionine-derived molecules and histidine), and oxygen ligands (phenolics and organic acids). Some ligands are secreted into the extracellular space and influence the phytoavailability of metal ions. A second principal function is the intracellular buffering of micronutrients as well as the facilitation of long-distance transport in xylem and phloem. Furthermore, low-molecular-weight ligands are involved in the storage of metals, predominantly in vacuoles. A detailed molecular understanding is hampered by technical limitations, in particular the difficulty to detect and quantify cellular metal-ligand complexes. More, but still too little, is known about ligand synthesis and the transport across membranes, either with or without a complexed metal. Metal ligands have an immediate impact on human well-being. Engineering metal ligand synthesis and distribution in crops has tremendous potential to improve the nutritional quality of food and to tackle major human health risks.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology and Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
155
|
Kroh GE, Pilon M. Connecting the negatives and positives of plant iron homeostasis. THE NEW PHYTOLOGIST 2019; 223:1052-1055. [PMID: 31188472 DOI: 10.1111/nph.15933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Gretchen E Kroh
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
156
|
Kobayashi T. Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1440-1446. [PMID: 30796837 DOI: 10.1093/pcp/pcz038] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 05/06/2023]
Abstract
Under iron-deficient conditions, plants induce the expression of a set of genes involved in iron uptake and translocation. This response to iron deficiency is regulated by transcriptional networks mediated by transcription factors (TFs) and protein-level modification of key factors by ubiquitin ligases. Several of the basic helix-loop-helix TFs and the HRZ/BTS ubiquitin ligases are conserved across graminaceous and non-graminaceous plants. Other regulators are specific, such as IDEF1 and IDEF2 in graminaceous plants and FIT/FER and MYB10/72 in non-graminaceous plants. IMA/FEP peptides positively regulate the iron-deficiency responses in a wide range of plants by unknown mechanisms. Direct binding of iron or other metals to some key regulators, including HRZ/BTS and IDEF1, may be responsible for intracellular iron-sensing and -signaling events. In addition, key TFs such as FIT and IDEF1 interact with various proteins involved in signaling pathways of plant hormones, oxidative stress and metal abundance. Thus, FIT and IDEF1 might function as hubs for the integration of environmental signals to modulate the responses to iron deficiency. In addition to local iron signaling, root iron responses are modulated by shoot-derived long-distance signaling potentially mediated by phloem-mobile substances such as iron, iron chelates and IMA/FEP peptides.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|
157
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
158
|
Beasley JT, Hart JJ, Tako E, Glahn RP, Johnson AAT. Investigation of Nicotianamine and 2' Deoxymugineic Acid as Enhancers of Iron Bioavailability in Caco-2 Cells. Nutrients 2019; 11:E1502. [PMID: 31262064 PMCID: PMC6683067 DOI: 10.3390/nu11071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotianamine (NA) is a low-molecular weight metal chelator in plants with high affinity for ferrous iron (Fe2+) and other divalent metal cations. In graminaceous plant species, NA serves as the biosynthetic precursor to 2' deoxymugineic acid (DMA), a root-secreted mugineic acid family phytosiderophore that chelates ferric iron (Fe3+) in the rhizosphere for subsequent uptake by the plant. Previous studies have flagged NA and/or DMA as enhancers of Fe bioavailability in cereal grain although the extent of this promotion has not been quantified. In this study, we utilized the Caco-2 cell system to compare NA and DMA to two known enhancers of Fe bioavailability-epicatechin (Epi) and ascorbic acid (AsA)-and found that both NA and DMA are stronger enhancers of Fe bioavailability than Epi, and NA is a stronger enhancer of Fe bioavailability than AsA. Furthermore, NA reversed Fe uptake inhibition by Myricetin (Myr) more than Epi, highlighting NA as an important target for biofortification strategies aimed at improving Fe bioavailability in staple plant foods.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| | - Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | |
Collapse
|
159
|
Górska A, Paczosa‐Bator B, Piech R. Highly Sensitive AdSV Method for Fe(III) Determination in Presence of Solochrome Violet RS on Renewable Amalgam Film Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Górska
- Faculty of Materials Science and CeramicsAGH University of Science and Technology 30-059 Kraków al. Mickiewicza 30 Poland
| | - Beata Paczosa‐Bator
- Faculty of Materials Science and CeramicsAGH University of Science and Technology 30-059 Kraków al. Mickiewicza 30 Poland
| | - Robert Piech
- Faculty of Materials Science and CeramicsAGH University of Science and Technology 30-059 Kraków al. Mickiewicza 30 Poland
| |
Collapse
|
160
|
Harigae H, Hino K, Toyokuni S. Iron as Soul of Life on Earth Revisited: From Chemical Reaction, Ferroptosis to Therapeutics. Free Radic Biol Med 2019; 133:1-2. [PMID: 30736912 DOI: 10.1016/j.freeradbiomed.2019.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan.
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
161
|
Nozoye T, von Wirén N, Sato Y, Higashiyama T, Nakanishi H, Nishizawa NK. Characterization of the Nicotianamine Exporter ENA1 in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:502. [PMID: 31114596 PMCID: PMC6503003 DOI: 10.3389/fpls.2019.00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 05/23/2023]
Abstract
Under iron (Fe) deficiency, graminaceous plants produce and secrete Fe-chelating phytosiderophores of the mugineic acid (MA) family into the rhizosphere to solubilize and mediate uptake of sparingly soluble Fe in the soil. MAs and their biosynthetic intermediate, nicotianamine (NA), are also important for the translocation of divalent metals such as Fe and zinc (Zn) throughout the plant body. In this study, the physiological role of the efflux transporter EFFLUX TRANSPORTER OF NA (ENA1), which exports NA out of cells, was analyzed in rice. Promoter-GUS analysis showed that ENA1 was mainly expressed in roots, and strongly upregulated under Fe-deficient conditions. In epidermal onion cells and rice roots, green fluorescent protein-tagged ENA1 localized mainly to the plasma membrane, while a part of the fluorescence was observed in vesicular structures in the cytoplasm. In the younger stage after germination, ENA1-overexpressing rice plants exhibited truncated roots with many root hairs compared to wild-type plants, while these phenotype were not observed in high Zn-containing medium. In Arabidopsis, which use a different strategy for Fe uptake from rice, ENA1 overexpression did not show any apparent phenotypes. Oligo DNA microarray analysis in rice showed that ENA1 knockout affects the response to stress, especially in root plastids. These results suggest that ENA1 might be recycling between the plasma membrane and cellular compartments by vesicular transport, playing an important role in the transport of NA, which is important for the physiological response to Fe deficiency.
Collapse
Affiliation(s)
- Tomoko Nozoye
- Center for Liberal Arts, Meiji Gakuin University, Tokyo, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Tomoko Nozoye,
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko K. Nishizawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| |
Collapse
|