151
|
Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology 2020; 225:151929. [PMID: 32115260 DOI: 10.1016/j.imbio.2020.151929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is an environmental sensor and ligand-activated transcription factor that is critically involved in the regulation of inflammatory responses and the induction of tolerance by modulating immune cells. As dendritic cells (DCs) express high AhR levels, they are efficient to induce immunomodulatory effects after being exposed to AhR-activating compounds derived from the environment or diet. To gain new insights into the molecular targets following AhR-activation in human monocyte-derived (mo)DCs, we investigated whether the natural AhR ligand quercetin or the synthetic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates the function of human moDCs regarding their capability to prime naïve T cells or to migrate. As only quercetin, but not TCDD, impaired T cell activation and migration of LPS-matured DCs (LPS-DCs), we analyzed the mode of action of quercetin on moDCs in more detail. Here, we found a specific down-regulation of the immunomodulatory molecule CD83 through the direct binding of the activated AhR to the CD83 promoter. Furthermore, treatment of LPS-DCs with quercetin resulted in a reduced production of the pro-inflammatory cytokine IL-12p70 and in an increased expression of the immunoregulatory molecules disabled adaptor protein (Dab) 2, immunoglobulin-like transcript (ILT)-3, ILT4, ILT5 as well as ectonucleotidases CD39 and CD73, thereby inducing a tolerogenic phenotype in quercetin-treated maturing DCs. Overall, these data demonstrate that quercetin represents a potent immunomodulatory agent to alter human DC phenotype and function, shifting the immune balance from inflammation to resolution.
Collapse
|
152
|
Zhang JZ, Ding Y, Xiang F, Yu SR, Zhang DZ, Guan MM, Kang XJ. Effectiveness and safety of different doses of pioglitazone in psoriasis: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 2020; 133:444-451. [PMID: 31977550 PMCID: PMC7046258 DOI: 10.1097/cm9.0000000000000642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pioglitazone may be beneficial in the treatment of psoriasis. However, based on the effectiveness and safety considerations, it has not been widely used. To fully evaluate the strength of evidence supporting psoriasis treatment with pioglitazone, we conducted a meta-analysis of existing published studies. METHODS PubMed, Ovid, Cochrane Library, Google Scholar, and Web of Science databases were systematically searched before February 2019. Randomized controlled trials (RCTs) of pioglitazone administration compared with placebo, administered to patients with psoriasis for at least 10 weeks, and published in English were included. Quality of the included RCTs was identified by the modified Jadad scale. The quality of evidence for each outcome was evaluated using the GRADEpro Guideline Development Tool online software. Primary outcomes were proportion of patients showing psoriasis area and severity index (PASI) score improvement (>75%) and the mean percent change in PASI score from baseline to the end of treatment. Dichotomous data were analyzed using odds ratios (ORs) corresponding to the 95% confidence interval (CI), whereas continuous variables, expressed as mean and standard deviation, were analyzed using the mean differences (MD) with the 95% CI. RESULTS Six RCTs were analyzed. Meta-analysis showed that pioglitazone reduced the PASI scores in patients with psoriasis compared with the control group when administered at 30 mg per day (P < 0.001, MD = -3.82, 95% CI = -5.70, -1.93) and at 15 mg per day (P = 0.04, MD = -3.53, 95% CI = -6.86, -0.20). The PASI-75 of the pioglitazone group was significantly higher than that of the control group at 30 mg per day (P < 0.001, OR = 8.30, 95% CI = 3.99, 17.27) and at 15 mg per day (P = 0.03, OR = 2.96, 95% CI = 1.08, 8.06). No statistically significant differences in total adverse events were observed between the groups. There were no significant differences in common adverse reactions such as weight gain and elevated liver enzymes between the two pioglitazone groups. CONCLUSIONS Use of pioglitazone in the current treatment of psoriasis is beneficial. The therapeutic effect of the daily 30 mg dose may be greater than that of the 15 mg dose per day with no significant change in the frequency of adverse reactions.
Collapse
Affiliation(s)
- Jing-Zhan Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| | | | | | | | | | | | | |
Collapse
|
153
|
Zhu Z, Chen J, Lin Y, Zhang C, Li W, Qiao H, Fu M, Dang E, Wang G. Aryl Hydrocarbon Receptor in Cutaneous Vascular Endothelial Cells Restricts Psoriasis Development by Negatively Regulating Neutrophil Recruitment. J Invest Dermatol 2019; 140:1233-1243.e9. [PMID: 31899186 DOI: 10.1016/j.jid.2019.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Vascular endothelial cells (VECs) that line the interiors of blood vessels participate in physiological and inflammatory processes. All skin cell types express the aryl hydrocarbon receptor (AhR), which is involved in the pathogenesis of psoriasis. However, the role of the cutaneous VEC AhR in the pathogenesis of psoriasis remains elusive. In the present study, we found that AhR protein expression and activation were downregulated in psoriatic VECs. Furthermore, cutaneous VEC-specific AhR-knockout (AhRcVECs-KO) mice were established. Using imiquimod and IL-23-induced psoriasis models, we found that skin inflammation was exacerbated with excessive neutrophil recruitment in AhRcVECs-KO mice. Furthermore, neutrophil neutralization alleviates exacerbated inflammation in imiquimod-treated AhRcVECs-KO mice. In addition, cutaneous VECs in AhRcVECs-KO mice exhibited increased dilation and activation compared with those in control mice. Finally, AhR-deficient microvascular endothelial cells stimulated by proinflammatory cytokines showed increased ICAM-1 expression in vivo and in vitro, which may have facilitated neutrophil recruitment. In summary, our study demonstrates that AhR in dermal VECs restricts psoriasis development by negatively regulating neutrophil recruitment, thereby providing insight into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Current affiliation: Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
154
|
Larsen SB, Cowley CJ, Fuchs E. Epithelial cells: liaisons of immunity. Curr Opin Immunol 2019; 62:45-53. [PMID: 31874430 DOI: 10.1016/j.coi.2019.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 01/12/2023]
Abstract
The surface and lining tissues of our body are exposed to the external environment, and as such these epithelial tissues must form structural barriers able to defend against microbes, environmental toxins, and mechanical stress. Their cells are equipped to detect a diverse array of surface perturbations, and then launch signaling relays to the immune system. The aim of these liaisons is to coordinate the requisite immune cell response needed to preserve and/or restore barrier integrity and defend the host. It has been recently appreciated that epithelial cells learn from these experiences. Following inflammatory exposure, long-lived stem cells within the tissue retain an epigenetic memory that endows them with heightened responsiveness to subsequent encounters with stress. Here, we review the recent literature on how epithelial cells sense signals from microbes, allergens, and injury at the tissue surface, and transmit this information to immune cells, while embedding a memory of the experience within their chromatin.
Collapse
Affiliation(s)
- Samantha B Larsen
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; New York University School of Medicine, Neuroscience Institute, New York, NY 10016, USA
| | - Christopher J Cowley
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
155
|
Huang J, Cai X, Ou Y, Fan L, Zhou Y, Wang Y. Protective roles of FICZ and aryl hydrocarbon receptor axis on alveolar bone loss and inflammation in experimental periodontitis. J Clin Periodontol 2019; 46:882-893. [PMID: 31286538 DOI: 10.1111/jcpe.13166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/21/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
AIM The aryl hydrocarbon receptor (AhR)-ligand axis has been shown to be involved in inflammatory diseases and bone homeostasis. However, the activation of AhR signalling pathway and the possible functions of AhR ligands in periodontitis are underexplored. This study investigated the expression of the AhR target gene cytochrome P450 subfamily B member 1 (CYP1B1) and the functions and mechanisms of the AhR ligand 6 formylindolo[3,2-b]carbazole (FICZ) in periodontitis. MATERIALS AND METHODS CYP1B1 expression was detected in human periodontitis samples, mice with ligature-induced periodontitis and lipopolysaccharide (LPS)-induced inflammation in periodontal ligament cells (PDLCs) in vitro. FICZ was administered topically or systemically. The therapeutic functions of FICZ were detected via qPCR, micro-computed tomography and immunohistochemistry. Finally, the mechanisms of AhR signalling in periodontitis were investigated by cell assays. RESULTS CYP1B1 expression was downregulated in periodontitis. FICZ rescued the alveolar bone loss and mitigated the inflammatory cytokines in periodontitis mice. In vitro, FICZ pre-treatment reduced the LPS-induced inflammation in PDLCs via the increased phosphorylation of STAT3. Additionally, FICZ prompted the mineralization of PDLCs via activation of the Wnt/β-catenin signalling pathway. CONCLUSION AhR signalling pathway is suppressed in periodontitis and the AhR ligand FICZ can prevent periodontitis.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinjie Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Le Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
156
|
Hawerkamp HC, Kislat A, Gerber PA, Pollet M, Rolfes KM, Soshilov AA, Denison MS, Momin AA, Arold ST, Datsi A, Braun SA, Oláh P, Lacouture ME, Krutmann J, Haarmann‐Stemmann T, Homey B, Meller S. Vemurafenib acts as an aryl hydrocarbon receptor antagonist: Implications for inflammatory cutaneous adverse events. Allergy 2019; 74:2437-2448. [PMID: 31269229 DOI: 10.1111/all.13972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, the BRAF inhibitor vemurafenib has been successfully established in the therapy of advanced melanoma. Despite its superior efficacy, the use of vemurafenib is limited by frequent inflammatory cutaneous adverse events that affect patients' quality of life and may lead to dose reduction or even cessation of anti-tumor therapy. To date, the molecular and cellular mechanisms of vemurafenib-induced rashes have remained largely elusive. METHODS In this study, we deployed immunohistochemistry, RT-qPCR, flow cytometry, lymphocyte activation tests, and different cell-free protein-interaction assays. RESULTS We here demonstrate that vemurafenib inhibits the downstream signaling of the canonical pathway of aryl hydrocarbon receptor (AhR) in vitro, thereby inducing the expression of proinflammatory cytokines (eg, TNF) and chemokines (eg, CCL5). In line with these results, we observed an impaired expression of AhR-regulated genes (eg, CYP1A1) and an upregulation of the corresponding proinflammatory genes in vivo. Moreover, results of lymphocyte activation tests showed the absence of drug-specific T cells in respective patients. CONCLUSION Taken together, we obtained no hint of an underlying sensitization against vemurafenib but found evidence suggesting that vemurafenib enhances proinflammatory responses by inhibition of canonical AhR signaling. Our findings contribute to our understanding of the central role of the AhR in skin inflammation and may point toward a potential role for topical AhR agonists in supportive cancer care.
Collapse
Affiliation(s)
- Heike C. Hawerkamp
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Andreas Kislat
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Peter A. Gerber
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Marius Pollet
- Leibniz‐Research Institute for Environmental Medicine Duesseldorf Germany
| | | | - Anatoly A. Soshilov
- Department of Environmental Toxicology University of California Davis CA USA
| | - Michael S. Denison
- Department of Environmental Toxicology University of California Davis CA USA
| | - Afaque A. Momin
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE) Thuwal Saudi Arabia
| | - Stefan T. Arold
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE) Thuwal Saudi Arabia
| | - Angeliki Datsi
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Stephan A. Braun
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Péter Oláh
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
- Department of Dermatology, Venereology and Oncodermatology University of Pécs Pécs Hungary
| | - Mario E. Lacouture
- Dermatology Service, Department of Medicine Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Jean Krutmann
- Leibniz‐Research Institute for Environmental Medicine Duesseldorf Germany
| | | | - Bernhard Homey
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| |
Collapse
|
157
|
Elias MS, Wright SC, Nicholson WV, Morrison KD, Prescott AR, Ten Have S, Whitfield PD, Lamond AI, Brown SJ. Functional and proteomic analysis of a full thickness filaggrin-deficient skin organoid model. Wellcome Open Res 2019; 4:134. [PMID: 31641698 PMCID: PMC6790913 DOI: 10.12688/wellcomeopenres.15405.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin (
FLG) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cells
in vitro provides the opportunity for selected genetic effects to be investigated in detail. Methods: Primary human keratinocytes and donor-matched primary fibroblasts from healthy individuals were used to create skin organoid models with and without siRNA-mediated knockdown of
FLG. Biological replicate sets of organoids were assessed using histological, functional and biochemical measurements. Results:FLG knockdown leads to subtle changes in histology and ultrastructure including a reduction in thickness of the stratum corneum and smaller, less numerous keratohyalin granules. Immature organoids showed some limited evidence of barrier impairment with
FLG knockdown, but the mature organoids showed no difference in transepidermal water loss, water content or dye penetration. There was no difference in epidermal ceramide content. Mass spectrometry proteomic analysis detected >8000 proteins per sample. Gene ontology and pathway analyses identified an increase in transcriptional and translational activity but a reduction in proteins contributing to terminal differentiation, including caspase 14, dermokine, AKT1 and TGF-beta-1. Aspects of innate and adaptive immunity were represented in both the up-regulated and down-regulated protein groups, as was the term ‘axon guidance’. Conclusions: This work provides further evidence for keratinocyte-specific mechanisms contributing to immune and neurological, as well as structural, aspects of skin barrier dysfunction. Individuals with filaggrin deficiency may derive benefit from future therapies targeting keratinocyte-immune crosstalk and neurogenic pruritus.
Collapse
Affiliation(s)
- Martina S Elias
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Sheila C Wright
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - William V Nicholson
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Kimberley D Morrison
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Phillip D Whitfield
- Lipidomics Research Facility, Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, Scotland, IV2 3JH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Sara J Brown
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK.,Department of Dermatology, Ninewells Hospital, Dundee, Scotland, DD1 9SY, UK
| |
Collapse
|
158
|
Elastin-derived peptide VGVAPG affects the proliferation of mouse cortical astrocytes with the involvement of aryl hydrocarbon receptor (Ahr), peroxisome proliferator-activated receptor gamma (Pparγ), and elastin-binding protein (EBP). Cytokine 2019; 126:154930. [PMID: 31760184 DOI: 10.1016/j.cyto.2019.154930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
During aging and ischemic and hemorrhagic stroke, elastin molecules are degraded and elastin-derived peptides are released into the brain microenvironment. Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is a repeating hexapeptide in the elastin molecule. It is well documented that the peptide sequence binds with high affinity to elastin-binding protein (EBP) located on the cell surface, thereby transducing a molecular signal into the cell. The aim of our study was to investigate whether EBP, aryl hydrocarbon receptor (Ahr), and peroxisome proliferator-activated receptor gamma (Pparγ) are involved in VGVAPG-stimulated proliferation. Primary astrocytes were maintained in DMEM/F12 medium without phenol red, supplemented with 10 or 1% charcoal/dextran-treated fetal bovine serum (FBS). The cells were exposed to increasing concentrations of VGVAPG peptide, and resazurin reduction was measured. In addition, Glb1, Pparγ, and Ahr genes were silenced. After 48 h of exposure to 10 nM and 1 µM of VGVAPG peptide, the level of estradiol (E2) and the expression of Ki67 and S100B proteins were measured. The results showed that at a wide range of concentrations, VGVAPG peptide increased the metabolism of astrocytes depending on the concentration of FBS. After silencing of Glb1, Pparγ, and Ahr genes, VGVAPG peptide did not affect the cell metabolism which suggests the involvement of all the mentioned receptors in its mechanism of action. Interestingly, in the low-FBS medium, the silencing of Glb1 gene did not result in complete inhibition of VGVAPG-stimulated proliferation. On the other hand, in the medium with 10% FBS VGVAPG increased Ki67 expression after Pparγ silencing, whereas in the medium with 1% FBS VGVAPG decreased Ki67 expression. Following the application of Ahr siRNA, VGVAPG peptide decreased the production of E2 and increased the expression of Ki67 and S100B proteins.
Collapse
|
159
|
Tsai CH, Lee Y, Li CH, Cheng YW, Kang JJ. Down-regulation of aryl hydrocarbon receptor intensifies carcinogen-induced retinal lesion via SOCS3-STAT3 signaling. Cell Biol Toxicol 2019; 36:223-242. [DOI: 10.1007/s10565-019-09499-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
160
|
Aryl-Hydrocarbon-Rezeptor als Zielstruktur für neue Medikamente bei Psoriasis und atopischer Dermatitis. Hautarzt 2019; 70:942-947. [DOI: 10.1007/s00105-019-04503-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
161
|
Antagonizing Effects of Clematis apiifolia DC. Extract against Benzo[a]pyrene-Induced Damage to Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2386163. [PMID: 31885779 PMCID: PMC6925742 DOI: 10.1155/2019/2386163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Background. Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon present in the atmosphere, has cytotoxic and carcinogenic effects. There have been no reports to demonstrate involvement of Clematis apiifolia DC. extract (CAE) in B[a]P-induced effects. This study was conducted to investigate the effect of CAE on B[a]P-induced effects and to elucidate its mechanism of action in HaCaT human keratinocytes. CAE inhibited aryl hydrocarbon receptor (AhR) signaling by decreasing both XRE reporter activity and expression of cytochrome P450 1A1 (CYP1A1) induced by B[a]P treatment in HaCaT cells. We also found that B[a]P-induced nuclear translocation of AhR and production of reactive oxygen species (ROS) and proinflammatory cytokines were attenuated by CAE treatment. CAE treatment suppressed B[a]P-induced phosphorylation of Src (Tyr416). In addition, dasatinib, a Src inhibitor, also inhibited B[a]P-induced nuclear translocation of AhR, similar to CAE treatment. In addition, CAE activated antioxidant response element (ARE) signaling by increasing ARE luciferase reporter activity and expression of ARE-dependent genes such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), and heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 by CAE was demonstrated by Western blot analysis and immunocytochemistry. The effects of CAE on ARE signaling were attenuated by knockdown of the Nrf2 gene. Inhibition of AhR signaling and activation of antioxidant activity by CAE operated in a reciprocally independent manner as evidenced by AhR and Nrf2 siRNA experiments. These findings indicate that CAE exerts protective effects against B[a]P by inhibiting AhR signaling and activating Nrf2-mediated signaling, suggesting its potential in protection from harmful B[a]P-containing pollutants.
Collapse
|
162
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
163
|
Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci 2019; 20:ijms20215424. [PMID: 31683543 PMCID: PMC6862295 DOI: 10.3390/ijms20215424] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR)/AHR-nuclear translocator (ARNT) system is a sensitive sensor for small molecular, xenobiotic chemicals of exogenous and endogenous origin, including dioxins, phytochemicals, microbial bioproducts, and tryptophan photoproducts. AHR/ARNT are abundantly expressed in the skin. Once activated, the AHR/ARNT axis strengthens skin barrier functions and accelerates epidermal terminal differentiation by upregulating filaggrin expression. In addition, AHR activation induces oxidative stress. However, some AHR ligands simultaneously activate the nuclear factor-erythroid 2-related factor-2 (NRF2) transcription factor, which is a master switch of antioxidative enzymes that neutralizes oxidative stress. The immunoregulatory system governing T-helper 17/22 (Th17/22) and T regulatory cells (Treg) is also regulated by the AHR system. Notably, AHR agonists, such as tapinarof, are currently used as therapeutic agents in psoriasis and atopic dermatitis. In this review, we summarize recent topics on AHR related to atopic dermatitis and psoriasis.
Collapse
|
164
|
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol In Vitro 2019; 62:104664. [PMID: 31669394 DOI: 10.1016/j.tiv.2019.104664] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Cigarette smoke stands among the most toxic environmental pollutants and is composed of thousands of chemicals including polycyclic aromatic hydrocarbons (PAHs). Despite restrict cigarette smoking ban in indoor or some outdoor locations, the risk of non-smokers to be exposed to environmental cigarette smoke is not yet eliminated. Beside the well-known effects of cigarette smoke to the respiratory and cardiovascular systems, a growing literature has shown during the last 3 decades its noxious effects also on cutaneous tissues. Being the largest organ as well as the interface between the outer environment and the body, human skin acts as a natural shield which is continuously exposed to harmful exogenous agents. Thus, a prolonged and/or repetitive exposure to significant levels of toxic smoke pollutants may have detrimental effects on the cutaneous tissue by disrupting the epidermal barrier function and by exacerbating inflammatory skin disorders (i.e. psoriasis, atopic dermatitis). With the development of very complex skin tissue models and sophisticated cigarette smoke exposure systems it has become important to better understand the toxicity pathways induced by smoke pollutants in more realistic laboratory conditions to find solutions for counteracting their effects. This review provides an update on the skin models currently available to study cigarette smoke exposure and the known pathways involved in cutaneous toxicity. In addition, the article will briefly cover the inflammatory skin pathologies potentially induced and/or exacerbated by cigarette smoke exposure.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marc Eeman
- Home & Personal Care, Dow Silicones Belgium, Seneffe, Belgium
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, North Carolina State University, Kannapolis, United States; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
165
|
Chen L, Shen Z. Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol 2019; 17:64-75. [PMID: 31595056 DOI: 10.1038/s41423-019-0291-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/25/2019] [Indexed: 11/09/2022] Open
Abstract
The skin is the largest organ of the body. The establishment of immunological memory in the skin is a crucial component of the adaptive immune response. Once naive T cells are activated by antigen-presenting cells, a small fraction of them differentiate into precursor memory T cells. These precursor cells ultimately develop into several subsets of memory T cells, including central memory T (TCM) cells, effector memory T (TEM) cells, and tissue resident memory T (TRM) cells. TRM cells have a unique transcriptional profile, and their most striking characteristics are their long-term survival (longevity) and low migration in peripheral tissues, including the skin. Under physiological conditions, TRM cells that reside in the skin can respond rapidly to pathogenic challenges. However, there is emerging evidence to support the vital role of TRM cells in the recurrence of chronic inflammatory skin disorders, including psoriasis, vitiligo, and fixed drug eruption, under pathological or uncontrolled conditions. Clarifying and characterizing the mechanisms that are involved in skin TRM cells will help provide promising strategies for reducing the frequency and magnitude of skin inflammation recurrence. Here, we discuss recent insights into the generation, homing, retention, and survival of TRM cells and share our perspectives on the biological characteristics of TRM cells in the recurrence of inflammatory skin disorders.
Collapse
Affiliation(s)
- Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
166
|
Elias MS, Wright SC, Nicholson WV, Morrison KD, Prescott AR, Ten Have S, Whitfield PD, Lamond AI, Brown SJ. Proteomic analysis of a filaggrin-deficient skin organoid model shows evidence of increased transcriptional-translational activity, keratinocyte-immune crosstalk and disordered axon guidance. Wellcome Open Res 2019; 4:134. [DOI: 10.12688/wellcomeopenres.15405.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Background:Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cellsin vitroprovides the opportunity for selected genetic effects to be investigated in detail.Methods:Primary human keratinocytes and donor-matched primary fibroblasts from healthy individuals were used to create skin organoid models with and without siRNA-mediated knockdown ofFLG. Biological replicate sets of organoids were assessed using histological, functional and biochemical measurements.Results:FLGknockdown leads to subtle changes in histology and ultrastructure including a reduction in thickness of the stratum corneum and smaller, less numerous keratohyalin granules. Immature organoids showed evidence of barrier impairment withFLGknockdown, but the mature organoids showed no difference in transepidermal water loss, water content or dye penetration. There was no difference in epidermal ceramide content. Mass spectrometry proteomic analysis detected >8000 proteins per sample. Gene ontology and pathway analyses identified an increase in transcriptional and translational activity but a reduction in proteins contributing to terminal differentiation, including caspase 14, dermokine, AKT1 and TGF-beta-1. Aspects of innate and adaptive immunity were represented in both the up-regulated and down-regulated protein groups, as was the term ‘axon guidance’. Conclusions:This work provides further evidence for keratinocyte-specific mechanisms contributing to immune and neurological, as well as structural, aspects of skin barrier dysfunction. Individuals with filaggrin deficiency may derive benefit from future therapies targeting keratinocyte-immune crosstalk and neurogenic pruritus.
Collapse
|
167
|
The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Sci Rep 2019; 9:10878. [PMID: 31350436 PMCID: PMC6659674 DOI: 10.1038/s41598-019-47350-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
As a first host barrier, the skin is constantly exposed to environmental insults that perturb its integrity. Tight regulation of skin homeostasis is largely controlled by the aryl hydrocarbon receptor (AhR). Here, we demonstrate that Henna and its major pigment, the naphthoquinone Lawsone activate AhR, both in vitro and in vivo. In human keratinocytes and epidermis equivalents, Lawsone exposure enhances the production of late epidermal proteins, impacts keratinocyte differentiation and proliferation, and regulates skin inflammation. To determine the potential use of Lawsone for therapeutic application, we harnessed human, murine and zebrafish models. In skin regeneration models, Lawsone interferes with physiological tissue regeneration and inhibits wound healing. Conversely, in a human acute dermatitis model, topical application of a Lawsone-containing cream ameliorates skin irritation. Altogether, our study reveals how a widely used natural plant pigment is sensed by the host receptor AhR, and how the physiopathological context determines beneficial and detrimental outcomes.
Collapse
|
168
|
Konjar Š, Veldhoen M. Dynamic Metabolic State of Tissue Resident CD8 T Cells. Front Immunol 2019; 10:1683. [PMID: 31379871 PMCID: PMC6650586 DOI: 10.3389/fimmu.2019.01683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the past years, there have been significant advances in the understanding of how environmental conditions alone or in conjunction with pathogen invasion affect the metabolism of T cells, thereby influencing their activation, differentiation, and longevity. Detailed insights of the interlinked processes of activation and metabolism can contribute to major advances in immunotherapies. Naive and memory T cells circulate the body. In a quiescent state with low metabolic demands, they predominantly use oxidative phosphorylation for their energy needs. Recognition of cognate antigen combined with costimulatory signals results in a proliferative burst and effector molecule production, requiring rapid release of energy, achieved via dynamically reprogramming metabolic pathways. After activation, most T cells succumb to activation induced cell death, but few differentiate into memory T cells. Of note, some memory T cells permanently occupy tissues without circulating. These, tissue resident T cells are predominantly CD8 T cells, maintained in a metabolic state distinct from naïve and circulating memory CD8 T cells with elements similar to effector CD8 T cells but without undergoing proliferative burst or secreting immune mediators. They continually interact with tissue cells as part of an immune surveillance network, are well-adapted to the tissues they have made their home and where they may encounter different metabolic environments. In this review, we will discuss recent insights in metabolic characteristics of CD8 T cell biology, with emphasis on tissue resident CD8 T cells at the epithelial barriers.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
169
|
Zhang C, Creech KL, Zuercher WJ, Willson TM. Gram-scale synthesis of FICZ, a photoreactive endogenous ligand of the aryl hydrocarbon receptor. Sci Rep 2019; 9:9982. [PMID: 31292477 PMCID: PMC6620467 DOI: 10.1038/s41598-019-46374-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Development of an efficient and scalable synthesis of 6-formylindolo[3,2-b]carbazole (FICZ), a naturally-occurring aryl hydrocarbon receptor (AhR) ligand, allowed its biological and physical properties to be studied. FICZ was shown to be the most potent among a series of 6-substituted indolo[3,2-b]carbazoles for activation of AhR in cells. Photostability studies of FICZ revealed a non-enzymatic mechanism for its conversion to a biologically active quinone. These results further support the hypothesis that FICZ is a light-dependent hormone that links sun exposure to regulation of biological pathways in peripheral tissues.
Collapse
Affiliation(s)
- Cunyu Zhang
- Platform Technology Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Katrina L Creech
- Platform Technology Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
170
|
Kim HY, Yoo TH, Cho JY, Kim HC, Lee WW. Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages. FASEB J 2019; 33:10844-10858. [PMID: 31284759 DOI: 10.1096/fj.201900730r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoxyl sulfate (IS) is a uremic toxin associated with increased prevalence of cardiovascular diseases (CVDs) in patients with chronic kidney disease. Despite the crucial role of uremia-related immune dysfunction, a majority of studies attempting to elucidate its pathogenic role in CVD have focused on IS-mediated endothelial dysfunction. Thus, we investigated the underlying molecular mechanisms involved in IS-induced production of TNF-α, a major cardiotoxic cytokine, by human macrophages. We found that crosstalk between the aryl hydrocarbon receptor (AhR), NF-κB, and the suppressor of cytokine signaling (SOCS)2 is important for TNF-α production in IS-stimulated human macrophages. IS-activated AhR rapidly associates with the p65 NF-κB subunit, resulting in mutual inhibition of AhR and NF-κB and inhibition of TNF-α production at an early time point. Later, this repression of TNF-α production is alleviated when SOCS2, a negative modulator of NF-κB, is directly induced by IS-activated AhR. In addition, once free of inhibition, activated AhR induces TNF-α expression by interacting with AhR binding sites in the TNF-α gene. Lastly, we confirmed decreased AhR and increased SOCS2 expression in monocytes of patients with end-stage renal disease, indicating the activation of AhR. Taken together, our results suggest that IS-induced TNF-α production in macrophages is regulated through a complicated mechanism involving interaction of AhR, NF-κB, and SOCS2.-Kim, H. Y., Yoo, T.-H., Cho, J.-Y., Kim, H. C., Lee, W.-W. Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Microbiology and Immunology.,Cancer Research Institute
| | | | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine-Hospital, Seoul, South Korea
| | - Hyeon Chang Kim
- Cardiovascular and Metabolic Diseases Etiology Research Center.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology.,Cancer Research Institute.,Department of Biomedical Sciences.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
171
|
Mescher M, Tigges J, Rolfes KM, Shen AL, Yee JS, Vogeley C, Krutmann J, Bradfield CA, Lang D, Haarmann-Stemmann T. The Toll-like receptor agonist imiquimod is metabolized by aryl hydrocarbon receptor-regulated cytochrome P450 enzymes in human keratinocytes and mouse liver. Arch Toxicol 2019; 93:1917-1926. [PMID: 31111189 PMCID: PMC11088943 DOI: 10.1007/s00204-019-02488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
The Toll-like receptor 7 agonist imiquimod (IMQ) is an approved drug for the topical treatment of various skin diseases that, in addition, is currently tested in multiple clinical trials for the immunotherapy of various types of cancers. As all of these trials include application of IMQ to the skin and evidence exists that exposure to environmental pollutants, i.e., tobacco smoke, affects its therapeutic efficacy, the current study aims to elucidate the cutaneous metabolism of the drug. Treatment of human keratinocytes with 2.5 µM benzo[a]pyrene (BaP), a tobacco smoke constituent and aryl hydrocarbon receptor (AHR) agonist, for 24 h induced cytochrome P450 (CYP) 1A enzyme activity. The addition of IMQ 30 min prior measurement resulted in a dose-dependent inhibition of CYP1A activity, indicating that IMQ is either a substrate or inhibitor of CYP1A isoforms. Incubation of 21 recombinant human CYP enzymes with 0.5 µM IMQ and subsequent LC-MS analyses, in fact, identified CYP1A1 and CYP1A2 as being predominantly responsible for IMQ metabolism. Accordingly, treatment of keratinocytes with BaP accelerated IMQ clearance and the associated formation of monohydroxylated IMQ metabolites. A co-incubation with 5 µM 7-hydroxyflavone, a potent inhibitor of human CYP1A isoforms, abolished basal as well as BaP-induced IMQ metabolism. Further studies with hepatic microsomes from CD-1 as well as solvent- and β-naphthoflavone-treated CYP1A1/CYP1A2 double knock-out and respective control mice confirmed the critical contribution of CYP1A isoforms to IMQ metabolism. Hence, an exposure to life style-related, dietary, and environmental AHR ligands may affect the pharmacokinetics and, thus, treatment efficacy of IMQ.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Anna L Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jeremiah S Yee
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christian Vogeley
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Dieter Lang
- Bayer AG, Pharmaceuticals, DMPK Drug Metabolism, 42096, Wuppertal, Germany
| | | |
Collapse
|
172
|
Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol 2019; 19:688-701. [PMID: 31213673 DOI: 10.1038/s41577-019-0185-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Ultraviolet (UV) radiation is a ubiquitous component of the environment that has important effects on a wide range of cell functions. Short-wavelength UVB radiation induces sunburn and is a potent immunomodulator, yet longer-wavelength, lower-energy UVA radiation also has effects on mammalian immunity. This Review discusses current knowledge regarding the mechanisms by which UV radiation can modify innate and adaptive immune responses and how this immunomodulatory capacity can be both beneficial in the case of inflammatory and autoimmune diseases, and detrimental in the case of skin cancer and the response to several infectious agents.
Collapse
Affiliation(s)
- Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA. .,Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, USA.
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
173
|
A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor. J Allergy Clin Immunol 2019; 143:2108-2119.e12. [DOI: 10.1016/j.jaci.2018.11.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/13/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
|
174
|
New and emerging therapies for paediatric atopic dermatitis. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:343-353. [DOI: 10.1016/s2352-4642(19)30030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
|
175
|
Ouyang W, O'Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity 2019; 50:871-891. [PMID: 30995504 DOI: 10.1016/j.immuni.2019.03.020] [Citation(s) in RCA: 699] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Cytokines are among the most important effector and messenger molecules in the immune system. They profoundly participate in immune responses during infection and inflammation, protecting against or contributing to diseases such as allergy, autoimmunity, and cancer. Manipulating cytokine pathways, therefore, is one of the most effective strategies to treat various diseases. IL-10 family cytokines exert essential functions to maintain tissue homeostasis during infection and inflammation through restriction of excessive inflammatory responses, upregulation of innate immunity, and promotion of tissue repairing mechanisms. Their important functions in diseases are supported by data from many preclinical models, human genetic studies, and clinical interventions. Despite significant efforts, however, there is still no clinically approved therapy through manipulating IL-10 family cytokines. Here, we summarize the recent progress in understanding the biology of this family of cytokines, suggesting more specific strategies to maneuver these cytokines for the effective treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Inflammation and Oncology Research, Amgen, South San Francisco, CA 94080, USA.
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
176
|
Lang D, Radtke M, Bairlein M. Highly Variable Expression of CYP1A1 in Human Liver and Impact on Pharmacokinetics of Riociguat and Granisetron in Humans. Chem Res Toxicol 2019; 32:1115-1122. [DOI: 10.1021/acs.chemrestox.8b00413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dieter Lang
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Martin Radtke
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| |
Collapse
|
177
|
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI, Iliev ID, Skalski JH, Brown J, Landers C, Borneman J, Braun J, Targan SR, McGovern DPB, Underhill DM. Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019; 25:377-388.e6. [PMID: 30850233 DOI: 10.1016/j.chom.2019.01.007] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by alterations in the intestinal microbiota and altered immune responses to gut microbiota. Evidence is accumulating that IBD is influenced by not only commensal bacteria but also commensal fungi. We characterized fungi directly associated with the intestinal mucosa in healthy people and Crohn's disease patients and identified fungi specifically abundant in patients. One of these, the common skin resident fungus Malassezia restricta, is also linked to the presence of an IBD-associated polymorphism in the gene for CARD9, a signaling adaptor important for anti-fungal defense. M. restricta elicits innate inflammatory responses largely through CARD9 and is recognized by Crohn's disease patient anti-fungal antibodies. This yeast elicits strong inflammatory cytokine production from innate cells harboring the IBD-linked polymorphism in CARD9 and exacerbates colitis via CARD9 in mouse models of disease. Collectively, these results suggest that targeting specific commensal fungi may be a therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Jose J Limon
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dalin Li
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrea J Wolf
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vince Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Gargus
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Nguyen
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Purnima Sharma
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Viviana I Maymi
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iliyan D Iliev
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph H Skalski
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jordan Brown
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Carol Landers
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephan R Targan
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
178
|
Mohammadi-Bardbori A, Omidi M, Arabnezhad MR. Impact of CH223191-Induced Mitochondrial Dysfunction on Its Aryl Hydrocarbon Receptor Agonistic and Antagonistic Activities. Chem Res Toxicol 2019; 32:691-697. [DOI: 10.1021/acs.chemrestox.8b00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
179
|
Neavin DR, Liu D, Ray B, Weinshilboum RM. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci 2018; 19:ijms19123851. [PMID: 30513921 PMCID: PMC6321643 DOI: 10.3390/ijms19123851] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.
Collapse
Affiliation(s)
- Drew R Neavin
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Balmiki Ray
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
180
|
Jeong H, Shin JY, Kim MJ, Na J, Ju BG. Activation of Aryl Hydrocarbon Receptor Negatively Regulates Thymic Stromal Lymphopoietin Gene Expression via Protein Kinase Cδ-p300-NF-κB Pathway in Keratinocytes under Inflammatory Conditions. J Invest Dermatol 2018; 139:1098-1109. [PMID: 30503244 DOI: 10.1016/j.jid.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Epithelial-derived thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in several types of dermatitis. Recently, the anti-inflammatory effects of aryl hydrocarbon receptor (AhR) have been reported in inflamed skin. In this study, keratinocytes were stimulated with tumor necrosis factor-α or flagellin in combination with AhR ligands or antagonist. TSLP gene expression and recruitment of transcriptional regulator to TSLP gene promoter were determined. The effects of AhR activation were also studied in DNFB-induced dermatitis model. We found that AhR activation suppressed upregulation of TSLP expression in keratinocytes treated with tumor necrosis factor-α or flagellin. In addition, AhR activation induced protein kinase Cδ-mediated phosphorylation of p300 at serine 89, leading to decreased acetylation and DNA binding activity of NF-κB p65 to the TSLP gene promoter. We also found that AhR activation alleviates dermatitis induced by DNFB treatment. Protein kinase Cδ depletion by small interfering RNA abolished the beneficial effect of AhR activation on dermatitis. Our study suggests that AhR activation may help to reduce inflammation in the dermatitis via downregulation of TSLP expression.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Youn Shin
- Department of Life Science, Sogang University, Seoul, Korea
| | - Min-Jung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jungtae Na
- Department of Life Science, Sogang University, Seoul, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul, Korea.
| |
Collapse
|
181
|
Morelli M, Scarponi C, Mercurio L, Facchiano F, Pallotta S, Madonna S, Girolomoni G, Albanesi C. Selective Immunomodulation of Inflammatory Pathways in Keratinocytes by the Janus Kinase (JAK) Inhibitor Tofacitinib: Implications for the Employment of JAK-Targeting Drugs in Psoriasis. J Immunol Res 2018; 2018:7897263. [PMID: 30581877 PMCID: PMC6276416 DOI: 10.1155/2018/7897263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023] Open
Abstract
IFN-γ and IL-22 are deeply involved in the pathogenesis of psoriasis, as they boost the expression of inflammatory genes and alter proliferative and differentiative programs in keratinocytes. The JAK1/JAK2/STAT1 and JAK1/TYK2/STAT3 pathways triggered by IFN-γ and IL-22, respectively, are aberrantly activated in psoriasis, as highlighted by the peculiar STAT1 and STAT3 signatures in psoriatic skin lesions. To limit the detrimental consequences of IFN-γ and IL-22 excessive stimulation, psoriatic keratinocytes activate suppressor of cytokine signaling (SOCS)1 and SOCS3, which in turn dampen molecular signaling by inhibiting JAK1 and JAK2. Thus, JAK targeting appears to be a reasonable strategy to treat psoriasis. Tofacitinib is an inhibitor of JAK proteins, which, similarly to SOCS, impedes JAK phosphorylation. In this study, we evaluated the immunomodulatory effects of tofacitinib on epidermal keratinocytes in in vitro and in vivo models of psoriasis. We demonstrated the selectivity of tofacitinib inhibitory action on IFN-γ and IL-22, but not on TNF-γ or IL-17 proinflammatory signaling, with suppressed expression of IFN-γ-dependent inflammatory genes, and restoration of normal proliferative and differentiative programs altered by IL-22 in psoriatic keratinocyte cultures. Tofacitinib also potently reduced the psoriasiform phenotype in the imiquimod-induced murine model of psoriasis. Finally, we found that tofacitinib mimics SOCS1 or SOCS3 activities, as it impaired the same molecular pathways in IFN-γ or IL-22-activated keratinocytes.
Collapse
Affiliation(s)
- Martina Morelli
- Section of Dermatology, Department of Medicine, University of Verona, Verona 37126, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology and V Division of Dermatology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome 00167, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology and V Division of Dermatology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome 00167, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome 00161, Italy
| | - Sabatino Pallotta
- Laboratory of Experimental Immunology and V Division of Dermatology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome 00167, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology and V Division of Dermatology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome 00167, Italy
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, Verona 37126, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology and V Division of Dermatology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome 00167, Italy
| |
Collapse
|
182
|
Addi T, Poitevin S, McKay N, El Mecherfi KE, Kheroua O, Jourde-Chiche N, de Macedo A, Gondouin B, Cerini C, Brunet P, Dignat-George F, Burtey S, Dou L. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Arch Toxicol 2018; 93:121-136. [PMID: 30324315 DOI: 10.1007/s00204-018-2328-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is associated with high risk of thrombosis. Indole-3 acetic acid (IAA), an indolic uremic toxin, induces the expression of tissue factor (TF) in human umbilical vein endothelial cells (HUVEC) via the transcription factor aryl hydrocarbon receptor (AhR). This study aimed to understand the signaling pathways involved in AhR-mediated TF induction by IAA. We incubated human endothelial cells with IAA at 50 µM, the maximal concentration found in patients with CKD. IAA induced TF expression in different types of human endothelial cells: umbilical vein (HUVEC), aortic (HAoEC), and cardiac-derived microvascular (HMVEC-C). Using AhR inhibition and chromatin immunoprecipitation experiments, we showed that TF induction by IAA in HUVEC was controlled by AhR and that AhR did not bind to the TF promoter. The analysis of TF promoter activity using luciferase reporter plasmids showed that the NF-κB site was essential in TF induction by IAA. In addition, TF induction by IAA was drastically decreased by an inhibitor of the NF-κB pathway. IAA induced the nuclear translocation of NF-κB p50 subunit, which was decreased by AhR and p38MAPK inhibition. Finally, in a cohort of 92 CKD patients on hemodialysis, circulating TF was independently related to serum IAA in multivariate analysis. In conclusion, TF up-regulation by IAA in human endothelial cells involves a non-genomic AhR/p38 MAPK/NF-κB pathway. The understanding of signal transduction pathways related to AhR thrombotic/inflammatory pathway is of interest to find therapeutic targets to reduce TF expression and thrombotic risk in patients with CKD.
Collapse
Affiliation(s)
- Tawfik Addi
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Stéphane Poitevin
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Nathalie McKay
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Kamel Eddine El Mecherfi
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
- Université Mohamed Boudiaf USTO, Dpt génétique Moléculaire Appliquée (GMA), Oran, Algeria
| | - Omar Kheroua
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Noémie Jourde-Chiche
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Alix de Macedo
- Service de Pédiatrie-Néonatologie, Hôpital Fondation Saint Joseph, Marseille, France
| | | | - Claire Cerini
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Philippe Brunet
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Françoise Dignat-George
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Stéphane Burtey
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Laetitia Dou
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
183
|
Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C. Atopic dermatitis: the skin barrier and beyond. Br J Dermatol 2018; 180:464-474. [PMID: 29969827 DOI: 10.1111/bjd.16934] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Atopic dermatitis is the most common chronic inflammatory skin disorder, affecting up to 20% of children and 10% of adults in industrialized countries. This highly debilitating condition poses a considerable burden to both the individual and society at large. The pathophysiology of atopic dermatitis is complex, encompassing both genetic and environmental risk factors. METHODS This is a narrative review based on a systematic literature search. CONCLUSIONS Dysregulation of innate and adaptive immunity plays a key role; however, recent epidemiological, genetic and molecular research has focused interest on skin barrier dysfunction as a common precursor and pathological feature. Current understanding of the aetiology of atopic dermatitis highlights disruption of the epidermal barrier leading to increased permeability of the epidermis, pathological inflammation in the skin, and percutaneous sensitization to allergens. Thus, most novel treatment strategies seek to target specific aspects of the skin barrier or cutaneous inflammation. Several studies have also shown promise in preventing atopic dermatitis, such as the early use of emollients in high-risk infants. This may have broader implications in terms of halting the progression to atopic comorbidities including food allergy, hay fever and asthma.
Collapse
Affiliation(s)
- T Tsakok
- St John's Institute of Dermatology, King's College London, London, U.K
| | - R Woolf
- St John's Institute of Dermatology, King's College London, London, U.K
| | - C H Smith
- St John's Institute of Dermatology, King's College London, London, U.K
| | - S Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - C Flohr
- St John's Institute of Dermatology, King's College London, London, U.K
| |
Collapse
|
184
|
Balato A, Cacciapuoti S, Di Caprio R, Marasca C, Masarà A, Raimondo A, Fabbrocini G. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch Immunol Ther Exp (Warsz) 2018; 67:1-18. [PMID: 30302512 DOI: 10.1007/s00005-018-0528-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
This review focuses on recent evidences about human microbiome composition and functions, exploring the potential implication of its impairment in some diffuse and invalidating inflammatory skin diseases, such as atopic dermatitis, psoriasis, hidradenitis suppurativa and acne. We analysed current scientific literature, focusing on the current evidences about gut and skin microbiome composition and the complex dialogue between microbes and the host. Finally, we examined the consequences of this dialogue for health and skin diseases. This review highlights how human microbes interact with different anatomic niches modifying the state of immune activation, skin barrier status, microbe-host and microbe-microbe interactions. It also shows as most of the factors affecting gut and skin microorganisms' activity have demonstrated to be effective also in modulating chronic inflammatory skin diseases. More and more evidences demonstrate that human microbiome plays a key role in human health and diseases. It is to be expected that these new insights will translate into diagnostic, therapeutic and preventive measures in the context of personalized/precision medicine.
Collapse
Affiliation(s)
- Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, NA, Italy
| | - Sara Cacciapuoti
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy.
| | - Roberta Di Caprio
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Claudio Marasca
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Anna Masarà
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Annunziata Raimondo
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| |
Collapse
|
185
|
Huang L, Gao R, Yu N, Zhu Y, Ding Y, Qin H. Dysbiosis of gut microbiota was closely associated with psoriasis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:807-815. [PMID: 30264198 DOI: 10.1007/s11427-018-9376-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
Psoriasis is an autoimmune disease and gut microbiota participate in the establishment of intestinal immunity. This study was performed to identify the fecal microbial composition of psoriasis patients, and investigated the influence of subgroup (type and severity) on the fecal microbial composition, and to define the key microbiota in the pathogenesis of psoriasis. Fecal samples from 35 psoriasis patients and 27 healthy controls were sequenced by 16S rRNA and then analyzed by informatics methods. We found that the microbiota of the psoriasis group differed from that of the heathy group. The relative abundances of Firmicutes and Bacteroidetes were inverted at the phylum level, and 16 kinds of phylotype at the genus level were found with significant difference. No microbial diversity and composition alteration were observed among the four types of psoriasis. The microbiota of psoriasis patients in the severe state differs from those of psoriasis patients with more mild conditions and also the healthy controls. The veillonella in fecal microbiota showed a positive relationship with h-CRP in blood. This research proved that psoriasis patients have a significant disturbed microbiota profiles. Further study of psoriasis based on microbiota may provide novel insights into the pathogenesis of psoriasis and more evidence for the prevention and treatment of psoriasis.
Collapse
Affiliation(s)
- Linsheng Huang
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China.,Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Ning Yu
- Department of Dermatology, Shanghai Dermatology Hospital, Shanghai, 200043, China
| | - Yefei Zhu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Dermatology Hospital, Shanghai, 200043, China.
| | - Huanlong Qin
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China. .,Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
| |
Collapse
|
186
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
187
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
188
|
Rademacher F, Simanski M, Hesse B, Dombrowsky G, Vent N, Gläser R, Harder J. Staphylococcus epidermidis Activates Aryl Hydrocarbon Receptor Signaling in Human Keratinocytes: Implications for Cutaneous Defense. J Innate Immun 2018; 11:125-135. [PMID: 30176668 DOI: 10.1159/000492162] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/14/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial challenge of keratinocytes with the abundant skin commensal Staphylococcus epidermidis induces distinct innate immune responses, but the underlying molecular mechanisms are still emerging. We report that the aryl hydrocarbon receptor (AhR) was activated in human primary keratinocytes infected with S. epidermidis, leading to induction of the AhR-responsive gene cytochrome P450 1A1 (CYP1A1). In addition, functional AhR was required for S. epidermidis-mediated induction of IL-1β expression in keratinocytes. AhR-dependent gene induction of IL-1β and CYP1A1 was mediated by factor(s) < 2 kDa secreted by S. epidermidis. Blockade of the AhR in a 3D organotypic skin equivalent infected with S. epidermidis attenuated the S. epidermidis-induced CYP1A1 and IL-1β expression. Moreover, S. epidermidis also induced expression of IL-1α and of the antimicrobial peptide human β-defensin-3 in an AhR-dependent manner in a 3D skin equivalent. An increased outgrowth of S. epidermidis on the surface of skin explants treated with a specific AhR inhibitor further indicate a pivotal role of the AhR in mediating an epidermal defense response. Taken together, our data expand the role of the AhR in innate immunity and support a previously unappreciated contribution for the AhR in cutaneous defense.
Collapse
|
189
|
Lin Y, Lee B. Does Lindioil (indirubin) treatment affect the composition of Malassezia
species on psoriatic skin? Br J Dermatol 2018; 179:801. [DOI: 10.1111/bjd.16810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y.K. Lin
- Department of Traditional Chinese Medicine; Chang Gung Memorial Hospital; Keelung Taiwan
| | - B.H. Lee
- Department of Traditional Chinese Medicine; Chang Gung Memorial Hospital; Keelung Taiwan
| |
Collapse
|
190
|
Esser C, Haarmann-Stemmann T, Hochrath K, Schikowski T, Krutmann J. AHR and the issue of immunotoxicity. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
191
|
Merk H. Aryl hydrocarbon receptor signalling in the skin and adverse vemurafenib effects. J Eur Acad Dermatol Venereol 2018; 32:1233-1234. [DOI: 10.1111/jdv.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H.F. Merk
- Universitäts-Hautklinik; RWTH Aachen University; Aachen Germany
| |
Collapse
|
192
|
Bock KW. From TCDD-mediated toxicity to searches of physiologic AHR functions. Biochem Pharmacol 2018; 155:419-424. [PMID: 30055148 DOI: 10.1016/j.bcp.2018.07.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
TCDD-mediated toxicity of human individuals together with animal studies led to identification of the aryl hydrocarbon receptor (AHR). It was characterized as multifunctional ligand-activated transcription factor and environmental sensor. Comparison of human toxic responses and animal models provide hints to physiologic AHR functions including chemical and microbial defense, homeostasis of stem/progenitor cells and modulation of the immune system in barrier organs such as skin and the gastrointestinal tract. Extrapolation from animals to humans is difficult due to marked species differences and dependence of AHR function on the cellular context. Nevertheless, therapeutic possibilities of AHR agonists and antagonists are in development. The AHR remains challenging and fascinating.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
193
|
Clinical and genetic differences between pustular psoriasis subtypes. J Allergy Clin Immunol 2018; 143:1021-1026. [PMID: 30036598 PMCID: PMC6403101 DOI: 10.1016/j.jaci.2018.06.038] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 01/02/2023]
Abstract
Background The term pustular psoriasis indicates a group of severe skin disorders characterized by eruptions of neutrophil-filled pustules. The disease, which often manifests with concurrent psoriasis vulgaris, can have an acute systemic (generalized pustular psoriasis [GPP]) or chronic localized (palmoplantar pustulosis [PPP] and acrodermatitis continua of Hallopeau [ACH]) presentation. Although mutations have been uncovered in IL36RN and AP1S3, the rarity of the disease has hindered the study of genotype-phenotype correlations. Objective We sought to characterize the clinical and genetic features of pustular psoriasis through the analysis of an extended patient cohort. Methods We ascertained a data set of unprecedented size, including 863 unrelated patients (251 with GPP, 560 with PPP, 28 with ACH, and 24 with multiple diagnoses). We undertook mutation screening in 473 cases. Results Psoriasis vulgaris concurrence was lowest in PPP (15.8% vs 54.4% in GPP and 46.2% in ACH, P < .0005 for both), whereas the mean age of onset was earliest in GPP (31.0 vs 43.7 years in PPP and 51.8 years in ACH, P < .0001 for both). The percentage of female patients was greater in PPP (77.0%) than in GPP (62.5%; P = 5.8 × 10−5). The same applied to the prevalence of smokers (79.8% vs 28.3%, P < 10−15). Although AP1S3 alleles had similar frequency (0.03-0.05) across disease subtypes, IL36RN mutations were less common in patients with PPP (0.03) than in those with GPP (0.19) and ACH (0.16; P = 1.9 × 10−14 and .002, respectively). Importantly, IL36RN disease alleles had a dose-dependent effect on age of onset in all forms of pustular psoriasis (P = .003). Conclusions The analysis of an unparalleled resource revealed key clinical and genetic differences between patients with PPP and those with GPP.
Collapse
|
194
|
Furue M, Uchi H, Mitoma C, Hashimoto-Hachiya A, Tanaka Y, Ito T, Tsuji G. Implications of tryptophan photoproduct FICZ in oxidative stress and terminal differentiation of keratinocytes. GIORN ITAL DERMAT V 2018; 154:37-41. [PMID: 30035475 DOI: 10.23736/s0392-0488.18.06132-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ultraviolet B (UVB) irradiation activates aryl hydrocarbon receptor (AHR), generates reactive oxygen species (ROS) and mediates photocarcinogenesis and photoaging. 6-Formylindolo[3,2-b]carbazole (FICZ) is a tryptophan photoproduct generated by UVB exposure. FICZ exhibits similar biological effects to UVB, including AHR ligation and ROS production. FICZ also acts as a potent photosensitizer for UVA and the production of ROS is synergistically augmented in the simultaneous presence of FICZ and UVA. In contrast, FICZ upregulates the expression of terminal differentiation molecules such as filaggrin and loricrin via AHR. In parallel with this, the administration of FICZ inhibits skin inflammation in a murine psoriasis and dermatitis model. In this article, we summarize the harmful and beneficial aspects of FICZ in skin pathology.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan - .,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan - .,Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan -
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikage Mitoma
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Yuka Tanaka
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
195
|
McAleer JP, Fan J, Roar B, Primerano DA, Denvir J. Cytokine Regulation in Human CD4 T Cells by the Aryl Hydrocarbon Receptor and Gq-Coupled Receptors. Sci Rep 2018; 8:10954. [PMID: 30026493 PMCID: PMC6053392 DOI: 10.1038/s41598-018-29262-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Th17 cells contribute to host defense on mucosal surfaces but also provoke autoimmune diseases when directed against self-antigens. Identifying therapeutic targets that regulate Th17 cell differentiation and/or cytokine production has considerable value. Here, we study the aryl hydrocarbon receptor (AhR)-dependent transcriptome in human CD4 T cells treated with Th17-inducing cytokines. We show that the AhR reciprocally regulates IL-17 and IL-22 production in human CD4 T cells. Global gene expression analysis revealed that AhR ligation decreased IL21 expression, correlating with delayed upregulation of RORC during culture with Th17-inducing cytokines. Several of the AhR-dependent genes have known roles in cellular assembly, organization, development, growth and proliferation. We further show that expression of GPR15, GPR55 and GPR68 positively correlates with IL-22 production in the presence of the AhR agonist FICZ. Activation of GPR68 with the lorazepam derivative ogerin resulted in suppression of IL-22 and IL-10 secretion by T cells, with no effect on IL-17. Under neutral Th0 conditions, ogerin and the Gq/11 receptor inhibitor YM254890 blunted IL-22 induction by FICZ. These data reveal the AhR-dependent transcriptome in human CD4 T cells and suggest the mechanism through which the AhR regulates T cell function may be partially dependent on Gq-coupled receptors including GPR68.
Collapse
Affiliation(s)
- Jeremy P McAleer
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, WV, 25755, USA.
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Bryanna Roar
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, WV, 25755, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
196
|
Merleev AA, Marusina AI, Ma C, Elder JT, Tsoi LC, Raychaudhuri SP, Weidinger S, Wang EA, Adamopoulos IE, Luxardi G, Gudjonsson JE, Shimoda M, Maverakis E. Meta-analysis of RNA sequencing datasets reveals an association between TRAJ23, psoriasis, and IL-17A. JCI Insight 2018; 3:120682. [PMID: 29997305 DOI: 10.1172/jci.insight.120682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Numerous studies of relatively few patients have linked T cell receptor (TCR) genes to psoriasis but have yielded dramatically conflicting results. To resolve these discrepancies, we have chosen to mine RNA-Seq datasets for patterns of TCR gene segment usage in psoriasis. A meta-analysis of 3 existing and 1 unpublished datasets revealed a statistically significant link between the relative expression of TRAJ23 and psoriasis and the psoriasis-associated cytokine IL-17A. TRGV5, a TCR-γ segment, was also associated with psoriasis but correlated instead with IL-36A, other IL-36 family members, and IL-17C (not IL-17A). In contrast, TRAJ39 was strongly associated with healthy skin. T cell diversity measurements and analysis of CDR3 sequences were also conducted, revealing no psoriasis-associated public CDR3 sequences. Finally, in comparison with the expression of TCR-αβ genes, the expression of TCR-γδ genes was relatively low but mildly elevated in psoriatic skin. These results have implications for the development of targeted therapies for psoriasis and other autoimmune diseases. Also, the techniques employed in this study have applications in other fields, such as cancer immunology and infectious disease.
Collapse
Affiliation(s)
- Alexander A Merleev
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Alina I Marusina
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Chelsea Ma
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Siba P Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy & Clinical immunology, UCD School of Medicine, Sacramento, California, USA.,VA Medical Center Sacramento, Division of Rheumatology & Immunology, Sacramento, California, USA
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Elizabeth A Wang
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy & Clinical immunology, UCD School of Medicine, Sacramento, California, USA
| | - Guillaume Luxardi
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | | | - Michiko Shimoda
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA.,Department of Medical Microbiology and Immunology, School of Medicine, UCD, California, USA
| |
Collapse
|
197
|
Mahil SK, Catapano M, Di Meglio P, Dand N, Ahlfors H, Carr IM, Smith CH, Trembath RC, Peakman M, Wright J, Ciccarelli FD, Barker JN, Capon F. An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target. Sci Transl Med 2018; 9:9/411/eaan2514. [PMID: 29021166 DOI: 10.1126/scitranslmed.aan2514] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/16/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-36α, IL-36β, and IL-36γ are innate mediators of acute epithelial inflammation. We sought to demonstrate that these cytokines are also required for the pathogenesis of plaque psoriasis, a common and chronic skin disorder, caused by abnormal T helper 17 (TH17) cell activation. To investigate this possibility, we first defined the genes that are induced by IL-36 cytokines in primary human keratinocytes. This enabled us to demonstrate a significant IL-36 signature among the transcripts that are up-regulated in plaque psoriasis and the susceptibility loci associated with the disease in genome-wide studies. Next, we investigated the impact of in vivo and ex vivo IL-36 receptor blockade using a neutralizing antibody or a recombinant antagonist. Both inhibitors had marked anti-inflammatory effects on psoriatic skin, demonstrated by statistically significant reductions in IL-17 expression, keratinocyte activation, and leukocyte infiltration. Finally, we explored the potential safety profile associated with IL-36 blockade by phenotyping 12 individuals carrying knockout mutations of the IL-36 receptor gene. We found that normal immune function was broadly preserved in these individuals, suggesting that IL-36 signaling inhibition would not substantially compromise host defenses. These observations, which integrate the results of transcriptomics and model system analysis, pave the way for early-stage clinical trials of IL-36 antagonists.
Collapse
Affiliation(s)
- Satveer K Mahil
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK
| | - Marika Catapano
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK.,Cancer Systems Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Paola Di Meglio
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK.,AhRimmunity Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Nick Dand
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK
| | - Helena Ahlfors
- UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ian M Carr
- School of Medicine, University of Leeds, Leeds, LS9 7TF, UK
| | - Catherine H Smith
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - John Wright
- Bradford Royal Infirmary, Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Jonathan N Barker
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK
| | - Francesca Capon
- Division of Genetics and Molecular Medicine, King's College London, London SE1 9RT, UK.
| |
Collapse
|
198
|
In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. Toxicol In Vitro 2018; 52:178-188. [PMID: 29908305 DOI: 10.1016/j.tiv.2018.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
The mediator of dioxin toxicity, aryl hydrocarbon receptor (AHR), has also important physiological functions. Selective AHR modulators (SAHRMs) share some effects of dioxins, except for their marked toxicity. We recently characterised toxicologically two novel SAHRMs, prodrugs IMA-08401 and IMA-07101 in rats, demonstrating that they are far less deleterious than the most toxic AHR-agonist, TCDD. Here, we analysed the in vitro toxicity and in silico AHR binding of the respective active, deacetylated metabolites, IMA-06201 (N-ethyl-N-phenyl-5-chloro-1,2-dihydro-4-hydroxy-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-06504 (N-(4-trifluoromethylphenyl)-1,2-dihydro-4-hydroxy-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). In H4IIE rat hepatoma cells, IMA-06201 and IMA-06504 induced CYP1A1 with comparable potencies and efficacies to those of TCDD. They had little effect on cell viability as assessed by LDH leakage and MTT reduction assays, and were not mutagenic in the Ames test, but IMA-06504 elicited a maximally 2.7-fold increase in micronuclei. Molecular docking simulations showed that similar to TCDD, they occupy the central region of AHR ligand binding cavity. Hence, while showing low to negligible in vitro toxicity, these novel SAHRMs bind to the AHR qualitatively in a similar fashion to TCDD, and appear comparably powerful AHR agonists. Combined with our earlier results demonstrating that they seem considerably less toxic in vivo than TCDD, these compounds are thus highly interesting new SAHRMs.
Collapse
|
199
|
Kiyomatsu-Oda M, Uchi H, Morino-Koga S, Furue M. Protective role of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous ligand for arylhydrocarbon receptor, in chronic mite-induced dermatitis. J Dermatol Sci 2018; 90:284-294. [PMID: 29500077 DOI: 10.1016/j.jdermsci.2018.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Chronic eczema such as atopic dermatitis imposes significant socio-econo-psychologic burdens on the affected individuals. In addition to conventional topical treatments, phototherapy is recommended for patients with extensive lesions. Although immunosuppression is believed to explain its primary effectiveness, the underlying mechanisms of phototherapy remain unsolved. Ultraviolet irradiation generates various tryptophan photoproducts including 6-formylindolo[3,2-b]-carbazole (FICZ). FICZ is known to be a potent endogenous agonist for aryl hydrocarbon receptor (AHR); however, the biological role of FICZ in chronic eczema is unknown. OBJECTIVE To investigate the effect of FICZ on chronic eczema such as atopic dermatitis. METHODS We stimulated HaCaT cells and normal human epidermal keratinocytes (NHEKs) with or without FICZ and then performed quantitative reverse transcriptase polymerase chain reaction, immunofluorescence, and siRNA treatment. We used the atopic dermatitis-like NC/Nga murine model and treated the mice for 2 weeks with either Vaseline® as a control, FICZ ointment, or betamethasone 17-valerate ointment. The dermatitis score, transepidermal water loss, histology, and expression of skin barrier genes and proteins were evaluated. RESULTS FICZ significantly upregulated the gene expression of filaggrin in both HaCaT cells and NHEKs in an AHR-dependent manner, but did not affect the gene expression of other barrier-related proteins. In addition, FICZ improved the atopic dermatitis-like skin inflammation, clinical scores, and transepidermal water loss in NC/Nga mice compared with those of control mice. On histology, FICZ significantly reduced the epidermal and dermal thickness as well as the number of mast cells. Topical FICZ also significantly reduced the gene expression of Il22. CONCLUSION These findings highlight the beneficial role of FICZ-AHR and provide a new strategic basis for developing new drugs for chronic eczema.
Collapse
Affiliation(s)
- Mari Kiyomatsu-Oda
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Saori Morino-Koga
- Department of Cell Division, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
200
|
Aryl hydrocarbon receptor (AhR) a possible target for the treatment of skin disease. Med Hypotheses 2018; 116:96-100. [PMID: 29857917 DOI: 10.1016/j.mehy.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/21/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor expressed in all skin cells type. It responds to exogenous and endogenous chemicals by inducing/repressing the expression of several genes with toxic or protective effects in a wide range of species and tissues. In healthy skin, AhR signalling contributes to keratinocytes differentiation, skin barrier function, skin pigmentation, and mediates oxidative stress. In the last years, some studies have shown that AhR seems to be involved in the pathogenesis of some skin diseases, even if the currently available data are contradictory. Indeed, while the blocking the AhR signalling activity could prevent or treat skin cancer, the AhR activation seems to be advantageous for the treatment of inflammatory skin diseases. Therefore, for its multifaceted role in skin diseases, AhR seems to be an attractive therapeutic target. Indeed, recently some molecules have been identified for the prevention of skin cancer and the treatment of inflammatory skin diseases.
Collapse
|