151
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
152
|
Kim J, Ro SK, Kim JB, Jung SH, Chung CH, Lee JW, Choo SJ. Remnant aortic remodelling in younger patients after acute type I aortic dissection surgery. Eur J Cardiothorac Surg 2018; 52:150-155. [PMID: 28398536 DOI: 10.1093/ejcts/ezx057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To study the influence of age on remnant aortic remodelling after acute DeBakey type I aortic dissection (AD) surgery. METHODS Between January 1999 and December 2013, 118 acute type I AD patients (26 aged <50 years, Group A; 92 aged ≥ 50 years, Group B) with either ascending or ascending hemiarch replacement in whom preoperative and >1-month postoperative chest computed tomography (CT) were available were included. RESULTS At median CT follow-up of 35.1 (interquartile range, 14.1-65.2) months, the aortic dimensions in Group A increased significantly from the baseline values at the root, arch and descending thoracic aorta levels at 40.8 ± 5.3 mm to 43.1 ± 6.5 mm ( P = 0.010), 36.8 ± 7.1 mm to 40.7 ± 8.8 mm ( P = 0.043) and 36.7 ± 6.8 mm to 42.8 ± 11.4 mm ( P = 0.009), respectively. In Group B, only the descending thoracic aorta had increased significantly from the baseline at 37.8 ± 4.8 mm to 40.7 ± 9.4 mm ( P = 0.002). Linear regression analysis showed a significant correlation between younger age and aortic size increase, especially at the aortic sinus level. No significant between-group differences in mortality and reoperation rates were seen during the follow-up of 45.0 ± 33.6 months vs 44.1 ± 31.7 months, respectively. CONCLUSIONS A significantly greater tendency for the remnant aorta to undergo more rapid and generalized adverse remodelling was seen in younger patients after acute type I AD surgery.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Sun Kyun Ro
- Department of Thoracic and Cardiovascular Surgery, Hanyang University Guri Hospital, College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Bum Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Sung-Ho Jung
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Cheol Hyun Chung
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jae Won Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Suk Jung Choo
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| |
Collapse
|
153
|
Seo GH, Kim YM, Kang E, Kim GH, Seo EJ, Lee BH, Choi JH, Yoo HW. The phenotypic heterogeneity of patients with Marfan-related disorders and their variant spectrums. Medicine (Baltimore) 2018; 97:e10767. [PMID: 29768367 PMCID: PMC5976283 DOI: 10.1097/md.0000000000010767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are the connective tissue disorders characterized by aortic root aneurysm and/or dissection and various additional features. We evaluated the correlation of these mutations with the phenotypes and determined the clinical applicability of the revised Ghent criteria.The mutation spectrum and phenotypic heterogeneities of the 83 and 5 Korean patients with suspected MFS and LDS were investigated as a retrospective manner. In patients with suspected MFS patients, genetic testing was conducted in half of 44 patients who met the revised Ghent criteria clinically and half of 39 patients who did not meet these criteria.Fibrillin1 gene (FBN1) variants were detected in all the 22 patients (100%) who met the revised Ghent criteria and in 14 patients (77.8%) who did not meet the revised Ghent criteria (P = .0205). Patients with mutations in exons 24-32 were diagnosed at a younger age than those with mutations in other exons. Ectopia lentis was more common in patients with missense mutations than in patients with other mutations. Aortic diameter was greater in patients with missense mutations in cysteine residues than in patients with missense mutations in noncysteine residues. Five LDS patients had either TGFBR1 or TGFBR2 variants, of which 1 patient identified TGFBR1 variant uncertain significance.The revised Ghent criteria had very high clinical applicability for detecting FBN1 variants in patients with MFS and might help in selecting patients with suspected MFS for genetic testing.
Collapse
Affiliation(s)
- Go Hun Seo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Yoon-Myung Kim
- Department of Pediatrics, Jeju National University School of Medicine, Jeju
| | - Eungu Kang
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
154
|
Carino D, Agostinelli A, Molardi A, Benassi F, Gherli T, Nicolini F. The role of genetic testing in the prevention of acute aortic dissection. Eur J Prev Cardiol 2018; 25:15-23. [DOI: 10.1177/2047487318756433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although much has been learned about disease of the thoracic aorta, most diagnosis of thoracic aortic aneurysm (TAA) is still incidental. The importance of the genetic aspects in thoracic aortic disease is overwhelming, and today different mutations which cause TAA or alter its natural history have been discovered. Technological advance has made available testing which detects genetic mutations linked to TAA. This article analyses the genetic aspects of TAA and describes the possible role of genetic tests in the clinical setting in preventing devastating complications of TAA.
Collapse
Affiliation(s)
- Davide Carino
- Cardiac Surgery Department, Parma General Hospital, University of Parma, Italy
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, USA
| | - Andrea Agostinelli
- Cardiac Surgery Department, Parma General Hospital, University of Parma, Italy
| | - Alberto Molardi
- Cardiac Surgery Department, Parma General Hospital, University of Parma, Italy
| | - Filippo Benassi
- Cardiac Surgery Department, Parma General Hospital, University of Parma, Italy
| | - Tiziano Gherli
- Cardiac Surgery Department, Parma General Hospital, University of Parma, Italy
| | - Francesco Nicolini
- Cardiac Surgery Department, Parma General Hospital, University of Parma, Italy
| |
Collapse
|
155
|
Brownstein AJ, Ziganshin BA, Elefteriades JA. Human aortic aneurysm genomic dictionary: is it possible? Indian J Thorac Cardiovasc Surg 2018; 35:57-66. [PMID: 33061067 DOI: 10.1007/s12055-018-0659-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Thoracic aortic aneurysm (TAA), a typically silent but frequently lethal disease, is strongly influenced by underlying genetics. Approximately 30 genes have been associated with syndromic and non-syndromic familial thoracic aortic aneurysm and dissection (TAAD) to date. An estimated 30% of patients with non-syndromic familial TAAD, which is typically inherited in an autosomal dominant manner, have a mutation in one of these genes. The underlying genetic mutation helps predict patients' clinical presentation, risk of aortic dissection at small aortic sizes (< 5.0 cm), and risk of other cardiovascular disease. As a result, a TAAD genomic dictionary based on these genes is necessary to provide optimal patient care, but is not on its own sufficient as this disease is typically inherited with reduced penetrance and has widely variable expressivity. Next-generation sequencing has been and will continue to be critical for identifying novel genes and variants associated with TAAD as well as genotype-phenotype correlations that will allow for management to be targeted to not only the underlying gene harboring the pathogenic variant but also the specific mutation identified. The aortic dictionary, to which a clinician can turn to obtain information on clinical consequences of a specific genetic variants, is not only possible, but has been substantially written already. As additional entries to the dictionary are made, truly personalized, genetically based, aneurysm care can be delivered.
Collapse
Affiliation(s)
- Adam Joseph Brownstein
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| | - Bulat Ayratovich Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| | - John Alex Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| |
Collapse
|
156
|
Ouzounian M, LeMaire SA. How can genetic diagnosis inform the decision of when to operate? J Vis Surg 2018; 4:68. [PMID: 29780714 DOI: 10.21037/jovs.2018.03.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
Genetic discovery for heritable thoracic aortic disease (HTAD) has been progressing at a brisk pace. Surgical management of thoracic aortic aneurysms and dissections has become more personalized, with genetic factors increasingly informing the decision of when to operate on patients. An improved understanding of genotype-phenotype correlations in patients with HTAD will ultimately lead to gene- and mutation-specific recommendations for surgical repair. Until more robust data from larger cohorts can inform our decisions, patients with HTAD should be seen by an aortic specialist for a tailored approach to elective surgical repair.
Collapse
Affiliation(s)
- Maral Ouzounian
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, and the Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.,Cardiovascular Surgery Service, The Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
157
|
Abstract
Thoracic aortic aneurysm (TAA) has been associated with mutations affecting members of the TGF-β signaling pathway, or components and regulators of the vascular smooth muscle cell (VSMC) actomyosin cytoskeleton. Although both clinical groups present similar phenotypes, the existence of potential common mechanisms of pathogenesis remain obscure. Here we show that mutations affecting TGF-β signaling and VSMC cytoskeleton both lead to the formation of a ternary complex comprising the histone deacetylase HDAC9, the chromatin-remodeling enzyme BRG1, and the long noncoding RNA MALAT1. The HDAC9–MALAT1–BRG1 complex binds chromatin and represses contractile protein gene expression in association with gain of histone H3-lysine 27 trimethylation modifications. Disruption of Malat1 or Hdac9 restores contractile protein expression, improves aortic mural architecture, and inhibits experimental aneurysm growth. Thus, we highlight a shared epigenetic pathway responsible for VSMC dysfunction in both forms of TAA, with potential therapeutic implication for other known HDAC9-associated vascular diseases. Vascular smooth muscle cell (VSMC) dysfunction is a common feature of thoracic aortic aneurysms (TAAs). Here, Lino Cardenas and colleagues show that the formation of a HDAC9-MALAT1-BRG1 complex promotes VSMC dysfunction in TAA by epigenetically altering the expression of key components of the cytoskeleton in VSMCs.
Collapse
|
158
|
Lino Cardenas CL, Kessinger CW, MacDonald C, Jassar AS, Isselbacher EM, Jaffer FA, Lindsay ME. Inhibition of the methyltranferase EZH2 improves aortic performance in experimental thoracic aortic aneurysm. JCI Insight 2018. [PMID: 29515022 DOI: 10.1172/jci.insight.97493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss-of-function mutations in genes encoding contractile proteins have been observed in thoracic aortic aneurysms (TAA). To gain insight into the contribution of contractile protein deficiency in the pathogenesis of TAA, we examined human aneurysm samples. We found multiple contractile gene products deficient in TAA samples, and in particular, expression of SM22α was inversely correlated with aneurysm size. SM22α-deficient mice demonstrated pregnancy-induced aortic dissection, and SM22α deficiency worsened aortic aneurysm in Fbn1C1039G/+ (Marfan) mice, validating this gene product as a TAA effector. We found that repression of SM22α was enforced by increased activity of the methyltransferase EZH2. TGF-β effectors such as SMAD3 were excluded from binding SM22α-encoding chromatin (TAGLN) in TAA samples, while treatment with the EZH2 inhibitor GSK343 improved cytoskeletal architecture and restored SM22α expression. Finally, inhibition of EZH2 improved aortic performance in Fbn1C1039G/+ mice, in association with restoration of contractile protein expression (including SM22α). Together, these data inform our understanding of contractile protein deficiency in TAA and support the pursuit of chromatin modifying factors as therapeutic targets in aortic disease.
Collapse
Affiliation(s)
| | | | - Carolyn MacDonald
- Thoracic Aortic Center.,Cardiovascular Research Center.,Cardiology, Department of Medicine
| | - Arminder S Jassar
- Thoracic Aortic Center.,Division of Cardiothoracic Surgery, Department of Surgery, and
| | - Eric M Isselbacher
- Thoracic Aortic Center.,Cardiovascular Research Center.,Cardiology, Department of Medicine
| | - Farouc A Jaffer
- Cardiovascular Research Center.,Cardiology, Department of Medicine
| | - Mark E Lindsay
- Thoracic Aortic Center.,Cardiovascular Research Center.,Cardiology, Department of Medicine.,Pediatric Cardiology, Department of Pediatrics, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
159
|
Schepers D, Tortora G, Morisaki H, MacCarrick G, Lindsay M, Liang D, Mehta SG, Hague J, Verhagen J, van de Laar I, Wessels M, Detisch Y, van Haelst M, Baas A, Lichtenbelt K, Braun K, van der Linde D, Roos-Hesselink J, McGillivray G, Meester J, Maystadt I, Coucke P, El-Khoury E, Parkash S, Diness B, Risom L, Scurr I, Hilhorst-Hofstee Y, Morisaki T, Richer J, Désir J, Kempers M, Rideout AL, Horne G, Bennett C, Rahikkala E, Vandeweyer G, Alaerts M, Verstraeten A, Dietz H, Van Laer L, Loeys B. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum Mutat 2018; 39:621-634. [PMID: 29392890 PMCID: PMC5947146 DOI: 10.1002/humu.23407] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023]
Abstract
The Loeys–Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor‐β (TGF‐β) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF‐β signaling. More recently, TGF‐β ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF‐β pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF‐β signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.
Collapse
Affiliation(s)
- Dorien Schepers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Giada Tortora
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Policlinico Sant'Orsola-Malpighi, Bologna, Italy.,Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Hiroko Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan.,Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Gretchen MacCarrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Lindsay
- Thoracic Aortic Center, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Liang
- Cardiovascular Medicine, Stanford University Medical Center, Stanford, California
| | - Sarju G Mehta
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Jennifer Hague
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Judith Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marja Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yvonne Detisch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mieke van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Annette Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Klaske Lichtenbelt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees Braun
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Josephina Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Elie El-Khoury
- Department of Diagnostic Cardiology, Clinique St Luc, Bouge (Namur), Belgium
| | - Sandhya Parkash
- Department of Pediatrics, Maritime Medical Genetics Service, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Birgitte Diness
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lotte Risom
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingrid Scurr
- Department of Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | | | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie Désir
- Centre de Génétique Humaine, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andrea L Rideout
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Gabrielle Horne
- Department of Medicine (Cardiology) and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chris Bennett
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elisa Rahikkala
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hal Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
160
|
Scott RM, Henske EP, Raby B, Boone PM, Rusk RA, Marciniak SJ. Familial pneumothorax: towards precision medicine. Thorax 2018; 73:270-276. [PMID: 29288214 DOI: 10.1136/thoraxjnl-2017-211169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
One in 10 patients suffering from primary spontaneous pneumothoraces has a family history of the disorder. Such familial pneumothoraces can occur in isolation, but can also be the presentation of serious genetic disorders with life-threatening vascular or cancerous complications. As the pneumothorax frequently precedes the more dangerous complications by many years, it provides an opportunity to intervene in a focused manner, permitting the practice of precision medicine. In this review, we will discuss the clinical manifestations and underlying biology of the genetic causes of familial pneumothorax.
Collapse
Affiliation(s)
- Rachel M Scott
- Wellcome Trust/MRC Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Raby
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Pulmonary Genetics Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip M Boone
- Harvard Genetics Training Program, Boston, Massachusetts, USA
| | | | - Stefan J Marciniak
- Wellcome Trust/MRC Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- Division of Respiratory Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
161
|
Brownstein AJ, Kostiuk V, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2018 Update and Clinical Implications. AORTA (STAMFORD, CONN.) 2018; 6:13-20. [PMID: 30079932 PMCID: PMC6136681 DOI: 10.1055/s-0038-1639612] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Thoracic aortic aneurysms, with an estimated prevalence in the general population of 1%, are potentially lethal, via rupture or dissection. Over the prior two decades, there has been an exponential increase in our understanding of the genetics of thoracic aortic aneurysm and/or dissection (TAAD). To date, 30 genes have been shown to be associated with the development of TAAD and ∼30% of individuals with nonsyndromic familial TAAD have a pathogenic mutation in one of these genes. This review represents the authors' yearly update summarizing the genes associated with TAAD, including implications for the surgical treatment of TAAD. Molecular genetics will continue to revolutionize the approach to patients afflicted with this devastating disease, permitting the application of genetically personalized aortic care.
Collapse
Affiliation(s)
- Adam J. Brownstein
- Department of Surgery, Section of Cardiac Surgery, Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Valentyna Kostiuk
- Department of Surgery, Section of Cardiac Surgery, Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Department of Surgery, Section of Cardiac Surgery, Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - Mohammad A. Zafar
- Department of Surgery, Section of Cardiac Surgery, Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Simon C. Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allen E. Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - John A. Elefteriades
- Department of Surgery, Section of Cardiac Surgery, Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
162
|
Boileau A, Lindsay ME, Michel JB, Devaux Y. Epigenetics in Ascending Thoracic Aortic Aneurysm and Dissection. AORTA (STAMFORD, CONN.) 2018; 6:1-12. [PMID: 30079931 PMCID: PMC6136679 DOI: 10.1055/s-0038-1639610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thoracic aortic aneurysm (TAA) is an asymptomatic and progressive dilatation of the thoracic aorta. Ascending aortic dissection (AAD) is an acute intraparietal tear, occurring or not on a pre-existing dilatation. AAD is a condition associated with a poor prognosis and a high mortality rate. TAA and AAD share common etiology as monogenic diseases linked to transforming growth factor β signaling pathway, extracellular matrix defect, or smooth muscle cell protein mutations. They feature a complex pathogenesis including loss of smooth muscle cells, altered phenotype, and extracellular matrix degradation in aortic media layer. A better knowledge of the mechanisms responsible for TAA progression and AAD occurrence is needed to improve healthcare, nowadays mainly consisting of aortic open surgery or endovascular replacement. Recent breakthrough discoveries allowed a deeper characterization of the mechanisms of gene regulation. Since alteration in gene expression has been linked to TAA and AAD, it is conceivable that a better knowledge of the causes of this alteration may lead to novel theranostic approaches. In this review article, the authors will focus on epigenetic regulation of gene expression, including the role of histone methylation and acetylation, deoxyribonucleic acid methylation, and noncoding ribonucleic acids in the pathogenesis of TAA and AAD. They will provide a translational perspective, presenting recent data that motivate the evaluation of the potential of epigenetics to diagnose TAA and prevent AAD.
Collapse
Affiliation(s)
- Adeline Boileau
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Mark E. Lindsay
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jean-Baptiste Michel
- UMRS 1148, INSERM, Paris 7-Denis Diderot University, Hôpital Xavier Bichat, Paris, France
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
163
|
Quiñones-Pérez B, VanNoy GE, Towne MC, Shen Y, Singh MN, Agrawal PB, Smith SE. Three-generation family with novel contiguous gene deletion on chromosome 2p22 associated with thoracic aortic aneurysm syndrome. Am J Med Genet A 2018; 176:560-569. [DOI: 10.1002/ajmg.a.38590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Bianca Quiñones-Pérez
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- Division of General Pediatrics; Boston Children's Hospital; Boston Massachusetts
| | - Grace E. VanNoy
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
| | - Meghan C. Towne
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
| | - Yiping Shen
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
| | - Michael N. Singh
- Department of Cardiology; Boston Children's Hospital; Boston Massachusetts
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
- The Manton Center for Orphan Disease Research; Boston Children's Hospital; Boston Massachusetts
- Division of Newborn Medicine; Boston Children's Hospital; Boston Massachusetts
| | - Sharon E. Smith
- Division of Genetics and Genomics; Boston Children's Hospital; Boston Massachusetts
| |
Collapse
|
164
|
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23:1048-1080. [PMID: 29386878 PMCID: PMC5757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
165
|
Thoracic aortic aneurysm: unlocking the “silent killer” secrets. Gen Thorac Cardiovasc Surg 2017; 67:1-11. [DOI: 10.1007/s11748-017-0874-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
166
|
Kim YM, Lee YJ, Park JH, Lee HD, Cheon CK, Kim SY, Hwang JY, Jang JH, Yoo HW. High diagnostic yield of clinically unidentifiable syndromic growth disorders by targeted exome sequencing. Clin Genet 2017; 92:594-605. [PMID: 28425089 DOI: 10.1111/cge.13038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND As syndromic short stature and overgrowth are heterogeneous and the list of causative genes is rapidly expanding, there is an unmet need for identifying genetic causes based on conventional gene testing or karyotyping. Early diagnosis leads to the proper management of the patient and providing genetic counseling for family members at risk in a timely manner. MATERIALS AND METHODS We conducted targeted exome sequencing to identify the genetic causes of undiagnosed syndromic short stature or overgrowth in 15 pediatric patients from 13 families in Korea. We applied targeted exome sequencing using the Next Seq platform and a TruSight One panel. RESULTS Among the 13 families, 6 different disorders in 8 patients with short stature or overgrowth were identified, and the diagnostic yield was 46.2%. One boy with overgrowth had a TGFB3 gene mutation. In the short stature group, Coffin-Lowry syndrome (CLS), trichorhinophalangeal syndrome, DYRK1A haploinsufficiency syndrome, short stature with optic atrophy and Pelger-Huët anomaly syndrome with recurrent hepatitis, and type 4 Meier-Gorlin syndrome were identified. One CLS patient had a co-existing monogenic disease, congenital glaucoma, caused by the compound heterozygote mutations of the CYP1B1 gene. CONCLUSION Targeted exome sequencing is a powerful method for diagnosing syndromic growth disorders. It enables us to understand molecular pathophysiology and investigate new treatments for growth disorders.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Jae Hong Park
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Hyoung-Doo Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Su-Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Jae-Yeon Hwang
- Department of Radiology, Pusan National University College of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Ja-Hyun Jang
- Laboratory Medicine, Green Cross Genome, Yongin, Korea
| | - Han-Wook Yoo
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
167
|
Bai H, Lee JS, Hu H, Wang T, Isaji T, Liu S, Guo J, Liu H, Wolf K, Ono S, Guo X, Yatsula B, Xing Y, Fahmy TM, Dardik A. Transforming Growth Factor-β1 Inhibits Pseudoaneurysm Formation After Aortic Patch Angioplasty. Arterioscler Thromb Vasc Biol 2017; 38:195-205. [PMID: 29146747 DOI: 10.1161/atvbaha.117.310372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Pseudoaneurysms remain a significant complication after vascular procedures. We hypothesized that TGF-β (transforming growth factor-β) signaling plays a mechanistic role in the development of pseudoaneurysms. APPROACH AND RESULTS Rat aortic pericardial patch angioplasty was associated with a high incidence (88%) of pseudoaneurysms at 30 days, with increased smad2 phosphorylation in small pseudoaneurysms but not in large pseudoaneurysms; TGF-β1 receptors were increased in small pseudoaneurysms and preserved in large pseudoaneurysms. Delivery of TGF-β1 via nanoparticles covalently bonded to the patch stimulated smad2 phosphorylation both in vitro and in vivo and significantly decreased pseudoaneurysm formation (6.7%). Inhibition of TGF-β1 signaling with SB431542 decreased smad2 phosphorylation both in vitro and in vivo and significantly induced pseudoaneurysm formation by day 7 (66.7%). CONCLUSIONS Normal healing after aortic patch angioplasty is associated with increased TGF-β1 signaling, and recruitment of smad2 signaling may limit pseudoaneurysm formation; loss of TGF-β1 signaling is associated with the formation of large pseudoaneurysms. Enhancement of TGF-β1 signaling may be a potential mechanism to limit pseudoaneurysm formation after vascular intervention.
Collapse
Affiliation(s)
- Hualong Bai
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Jung Seok Lee
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Haidi Hu
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Tun Wang
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Toshihiko Isaji
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Shirley Liu
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Jianming Guo
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Haiyang Liu
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Katharine Wolf
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Shun Ono
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Xiangjiang Guo
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Bogdan Yatsula
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Ying Xing
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Tarek M Fahmy
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.)
| | - Alan Dardik
- From the Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China (H.B.); Basic Medical College of Zhengzhou University, Henan, China (H.B., Y.X.); Vascular Biology and Therapeutics Program (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), Department of Surgery (H.B., H.H., T.W., T.I., S.L., J.G., H.L., K.W., S.O., X.G., B.Y., A.D.), and Department of Immunobiology (T.M.F.), Yale University School of Medicine, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT (J.S.L., T.M.F.); and Department of Surgery, VA Connecticut Healthcare System, West Haven, CT (A.D.).
| |
Collapse
|
168
|
Wang L, Zhang S, Xu Z, Zhang J, Li L, Zhao G. The diagnostic value of microRNA-4787-5p and microRNA-4306 in patients with acute aortic dissection. Am J Transl Res 2017; 9:5138-5149. [PMID: 29218111 PMCID: PMC5714797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Acute aortic dissection (AAD) is a life-threatening cardiovascular disease with the high morbidity and mortality. Imaging modalities are the gold standard for the diagnosis of AAD; however, they are not always available in emergency department. Biomarker-assisted diagnosis is important for the early treatment of AAD. The aim of the present study was to identify potential microRNA (miRNA) biomarkers for AAD. Differentially expressed plasma miRNAs between AAD patients and age-matched healthy volunteers were analyzed by miRNA microarray. Quantitative RT-PCR was further performed to verify the expression of selected miRNAs (miR-4787-5p and miR-4306) with an increased number of samples. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of miR-4787-5p and miR-4306 as biomarkers for distinguishing AAD. Using TargetScan and miRanda, miR-4787-5p and miR-4306 were selected to predict target gene related to cytokines detecting by dual luciferase assay and western blotting. Nine upregulated and twelve downregulated miRNAs were identified in the circulating plasma of AAD patients. qRT-PCR verified statistically consistent expression of two selected miRNAs with microarray analysis. ROC analyses demonstrated that miR-4787-5p and miR-4306 were specific and sensitive for the early diagnosis of AAD. Bioinformatic predictions and dual luciferase assay suggested that polycystin-1 (PKD1) and transforming growth factor-β1 (TGF-β1) were respectively direct target of miR-4787-5p and miR-4306. Furthermore, the protein expression of the downstream targets of PKD1 and TGF-β1 were significantly reduced following overexpression of miR-4787-5p and miR-4306. These results revealed that miR-4787-5p and miR-4306 could be developed as diagnostic potential biomarkers for AAD, and they could be involved in the pathogenesis of AAD.
Collapse
Affiliation(s)
- Lei Wang
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Shijie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Zhigao Xu
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Jingjing Zhang
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Li Li
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
169
|
Koenig SN, LaHaye S, Feller JD, Rowland P, Hor KN, Trask AJ, Janssen PM, Radtke F, Lilly B, Garg V. Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight 2017; 2:91353. [PMID: 29093270 DOI: 10.1172/jci.insight.91353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/- aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.
Collapse
Affiliation(s)
- Sara N Koenig
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute
| | - Stephanie LaHaye
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - James D Feller
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patrick Rowland
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Aaron J Trask
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Paul Ml Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Brenda Lilly
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - Vidu Garg
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute.,Department of Molecular Genetics.,Department of Pediatrics, and
| |
Collapse
|
170
|
Meester JAN, Verstraeten A, Schepers D, Alaerts M, Van Laer L, Loeys BL. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Ann Cardiothorac Surg 2017; 6:582-594. [PMID: 29270370 DOI: 10.21037/acs.2017.11.03] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many different heritable connective tissue disorders (HCTD) have been described over the past decades. These syndromes often affect the connective tissue of various organ systems, including heart, blood vessels, skin, joints, bone, eyes, and lungs. The discovery of these HCTD was followed by the identification of mutations in a wide range of genes encoding structural proteins, modifying enzymes, or components of the TGFβ-signaling pathway. Three typical examples of HCTD are Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), and Loeys-Dietz syndrome (LDS). These syndromes show some degree of phenotypical overlap of cardiovascular, skeletal, and cutaneous features. MFS is typically characterized by cardiovascular, ocular, and skeletal manifestations and is caused by heterozygous mutations in FBN1, coding for the extracellular matrix (ECM) protein fibrillin-1. The most common cardiovascular phenotype involves aortic aneurysm and dissection at the sinuses of Valsalva. LDS is caused by mutations in TGBR1/2, SMAD2/3, or TGFB2/3, all coding for components of the TGFβ-signaling pathway. LDS can be distinguished from MFS by the unique presence of hypertelorism, bifid uvula or cleft palate, and widespread aortic and arterial aneurysm and tortuosity. Compared to MFS, LDS cardiovascular manifestations tend to be more severe. In contrast, no association is reported between LDS and the presence of ectopia lentis, a key distinguishing feature of MFS. Overlapping features between MFS and LDS include scoliosis, pes planus, anterior chest deformity, spontaneous pneumothorax, and dural ectasia. EDS refers to a group of clinically and genetically heterogeneous connective tissue disorders and all subtypes are characterized by variable abnormalities of skin, ligaments and joints, blood vessels, and internal organs. Typical presenting features include joint hypermobility, skin hyperextensibility, and tissue fragility. Up to one quarter of the EDS patients show aortic aneurysmal disease. The latest EDS nosology distinguishes 13 subtypes. Many phenotypic features show overlap between the different subtypes, which makes the clinical diagnosis rather difficult and highlights the importance of molecular diagnostic confirmation.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
171
|
Keschenau PR, Kotelis D, Bisschop J, Barbati ME, Grommes J, Mees B, Gombert A, Peppelenbosch AG, Schurink GWH, Kalder J, Jacobs MJ. Editor's Choice – Open Thoracic and Thoraco-abdominal Aortic Repair in Patients with Connective Tissue Disease. Eur J Vasc Endovasc Surg 2017; 54:588-596. [DOI: 10.1016/j.ejvs.2017.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023]
|
172
|
Targeting Interleukin-1β Protects from Aortic Aneurysms Induced by Disrupted Transforming Growth Factor β Signaling. Immunity 2017; 47:959-973.e9. [DOI: 10.1016/j.immuni.2017.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 10/26/2017] [Indexed: 01/11/2023]
|
173
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
174
|
Affiliation(s)
- Domenico Corrado
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Cristina Basso
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Daniel P. Judge
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| |
Collapse
|
175
|
Cousin MA, Zimmermann MT, Mathison AJ, Blackburn PR, Boczek NJ, Oliver GR, Lomberk GA, Urrutia RA, Deyle DR, Klee EW. Functional validation reveals the novel missense V419L variant in TGFBR2 associated with Loeys-Dietz syndrome (LDS) impairs canonical TGF-β signaling. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001727. [PMID: 28679693 PMCID: PMC5495030 DOI: 10.1101/mcs.a001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
TGF-β-related heritable connective tissue disorders are characterized by a similar pattern of cardiovascular defects, including aortic root dilatation, mitral valve prolapse, vascular aneurysms, and vascular dissections and exhibit incomplete penetrance and variable expressivity. Because of the phenotypic overlap of these disorders, panel-based genetic testing is frequently used to confirm the clinical findings. Unfortunately in many cases, variants of uncertain significance (VUSs) obscure the genetic diagnosis until more information becomes available. Here, we describe and characterize the functional impact of a novel VUS in the TGFBR2 kinase domain (c.1255G>T; p.Val419Leu), in a patient with the clinical diagnosis of Marfan syndrome spectrum. We assessed the structural and functional consequence of this VUS using molecular modeling, molecular dynamic simulations, and in vitro cell-based assays. A high-quality homology-based model of TGFBR2 was generated and computational mutagenesis followed by refinement and molecular dynamics simulations were used to assess structural and dynamic changes. Relative to wild type, the V419L induced conformational and dynamic changes that may affect ATP binding, increasing the likelihood of adopting an inactive state, and, we hypothesize, alter canonical signaling. Experimentally, we tested this by measuring the canonical TGF-β signaling pathway activation at two points; V419L significantly delayed SMAD2 phosphorylation by western blot and significantly decreased TGF-β-induced gene transcription by reporter assays consistent with known pathogenic variants in this gene. Thus, our results establish that the V419L variant leads to aberrant TGF-β signaling and confirm the diagnosis of Loeys-Dietz syndrome in this patient.
Collapse
Affiliation(s)
- Margot A Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michael T Zimmermann
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Angela J Mathison
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patrick R Blackburn
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida 32224, USA.,Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Nicole J Boczek
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gavin R Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Raul A Urrutia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - David R Deyle
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinic Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Eric W Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinic Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
176
|
Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Front Physiol 2017; 8:400. [PMID: 28659821 PMCID: PMC5469151 DOI: 10.3389/fphys.2017.00400] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ajay A Kumar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ilse Luyckx
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Elyssa Cannaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Gerarda van de Beek
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Björn Wieschendorf
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Maaike Alaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Nikhita Bolar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Geert Vandeweyer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Rustam Zhurayev
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Dmytro Zerbino
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Seema Mital
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Luc Mertens
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska InstituteStockholm, Sweden
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Lut Van Laer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Emmanuel Messas
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Guillaume Goudot
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Michaela Nemcikova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine-Charles University and Motol University HospitalPrague, Czechia
| | - Alice Krebsova
- Institute of Clinical and Experimental MedicinePrague, Czechia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Simone Salemink
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Toon Duijnhouwer
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Xavier Jeunemaitre
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Juliette Albuisson
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States.,Howard Hughes Medical InstituteBaltimore, MD, United States
| | - Aline Verstraeten
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Bart L Loeys
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | | |
Collapse
|
177
|
Guevara C, Farias G, Bulatova K, Alarcón P, Soruco W, Robles C, Morales M. NOTCH 1 Mutation in a Patient with Spontaneous and Recurrent Dissections of Extracranial Arteries. Front Neurol 2017. [PMID: 28649221 PMCID: PMC5465274 DOI: 10.3389/fneur.2017.00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dissections of extracranial arteries are estimated to account for only 2% of all ischemic strokes but for approximately 20% of strokes in patients younger than 45 years old. Most dissections of extracranial arteries involve some trauma stretch, mechanical stress, or connective tissue abnormalities. In the absence of these disorders, determining the etiology of recurrent extracranial dissections is quite challenging because the underlying nature of these cases is poorly understood. We report the case of a 44-year-old female with recurrent dissections of the vertebral and carotid arteries associated with a heterozygous mutation p.Pro2122Leu in the NOTCH 1 gene. Her mother with a thoracic aortic aneurysm was also positive for this variant.
Collapse
Affiliation(s)
- Carlos Guevara
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Gonzalo Farias
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Kateryna Bulatova
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Pablo Alarcón
- Sección Genética, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Wendy Soruco
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carlos Robles
- Sección Neurorradiologia, Servicio de Imágenes, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Marcelo Morales
- Clínica de Cardiologia, Hospital San Juan de Dios, Santiago, Chile
| |
Collapse
|
178
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
179
|
Brownstein AJ, Ziganshin BA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: An Update and Clinical Implications. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2017; 5:11-20. [PMID: 28868310 DOI: 10.12945/j.aorta.2017.17.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm (TAA) is a lethal disease, with a natural history of enlarging progressively until dissection or rupture occurs. Since the discovery almost 20 years ago that ascending TAAs are highly familial, our understanding of the genetics of thoracic aortic aneurysm and dissection (TAAD) has increased exponentially. At least 29 genes have been shown to be associated with the development of TAAD, the majority of which encode proteins involved in the extracellular matrix, smooth muscle cell contraction or metabolism, or the transforming growth factor-β signaling pathway. Almost one-quarter of TAAD patients have a mutation in one of these genes. In this review, we provide a summary of TAAD-associated genes, associated clinical features of the vasculature, and implications for surgical treatment of TAAD. With the widespread use of next-generation sequencing and development of novel functional assays, the future of the genetics of TAAD is bright, as both novel TAAD genes and variants within the genes will continue to be identified.
Collapse
Affiliation(s)
- Adam J Brownstein
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
180
|
Abstract
Aortic aneurysms are a major health problem because they account for 1-2% of all deaths in the Western population. Although abdominal aortic aneurysms (AAAs) are more prevalent than thoracic aortic aneurysms (TAAs), TAAs have been more exhaustively studied over the past 2 decades because they have a higher heritability and affect younger individuals. Gene identification in both syndromic and nonsyndromic TAA is proceeding at a rapid pace and has already pinpointed >20 genes associated with familial TAA risk. Whereas these genes explain <30% of all cases of familial TAA, their functional characterization has substantially improved our knowledge of the underlying pathological mechanisms. As such, perturbed extracellular matrix homeostasis, transforming growth factor-β signalling, and vascular smooth muscle cell contractility have been proposed as important processes in TAA pathogenesis. These new insights enable novel treatment options that are currently being investigated in large clinical trials. Moreover, together with the advent of next-generation sequencing approaches, these genetic findings are promoting a shift in the management of patients with TAA by enabling gene-tailored interventions. In this Review, we comprehensively describe the molecular landscape of familial TAA, and we discuss whether familial TAA, from a biological point of view, can serve as a paradigm for the genetically more complex forms of the condition, such as sporadic TAA or AAA.
Collapse
|
181
|
Abstract
Thoracic aortic aneurysm is a potentially life-threatening condition in that it places patients at risk for aortic dissection or rupture. However, our modern understanding of the pathogenesis of thoracic aortic aneurysm is quite limited. A genetic predisposition to thoracic aortic aneurysm has been established, and gene discovery in affected families has identified several major categories of gene alterations. The first involves mutations in genes encoding various components of the transforming growth factor beta (TGF-β) signaling cascade (FBN1, TGFBR1, TGFBR2, TGFB2, TGFB3, SMAD2, SMAD3 and SKI), and these conditions are known collectively as the TGF-β vasculopathies. The second set of genes encode components of the smooth muscle contractile apparatus (ACTA2, MYH11, MYLK, and PRKG1), a group called the smooth muscle contraction vasculopathies. Mechanistic hypotheses based on these discoveries have shaped rational therapies, some of which are under clinical evaluation. This review discusses published data on genes involved in thoracic aortic aneurysm and attempts to explain divergent hypotheses of aneurysm origin.
Collapse
Affiliation(s)
- Eric M Isselbacher
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christian Lacks Lino Cardenas
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark E Lindsay
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
182
|
De Backer J, Muiño-Mosquera L, Demulier L. Aortopathy. PREGNANCY AND CONGENITAL HEART DISEASE 2017. [DOI: 10.1007/978-3-319-38913-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
183
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
184
|
Milewicz DM, Trybus KM, Guo DC, Sweeney HL, Regalado E, Kamm K, Stull JT. Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections. Arterioscler Thromb Vasc Biol 2017; 37:26-34. [PMID: 27879251 PMCID: PMC5222685 DOI: 10.1161/atvbaha.116.303229] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
The importance of maintaining contractile function in aortic smooth muscle cells (SMCs) is evident by the fact that heterozygous mutations in the major structural proteins or kinases controlling contraction lead to the formation of aneurysms of the ascending thoracic aorta that predispose to life-threatening aortic dissections. Force generation by SMC requires ATP-dependent cyclic interactions between filaments composed of SMC-specific isoforms of α-actin (encoded by ACTA2) and myosin heavy chain (MYH11). ACTA2 and MYH11 mutations are predicted or have been shown to disrupt this cyclic interaction predispose to thoracic aortic disease. Movement of the myosin motor domain is controlled by phosphorylation of the regulatory light chain on the myosin filament, and loss-of-function mutations in the dedicated kinase for this phosphorylation, myosin light chain kinase (MYLK) also predispose to thoracic aortic disease. Finally, a mutation in the cGMP-activated protein kinase (PRKG1) results in constitutive activation of the kinase in the absence of cGMP, thus driving SMC relaxation in part through increased dephosphorylation of the regulatory light chain and predisposes to thoracic aortic disease. Furthermore, SMCs cannot generate force without connections to the extracellular matrix through focal adhesions, and mutations in the major protein in the extracellular matrix, fibrillin-1, linking SMCs to the matrix also cause thoracic aortic disease in individuals with Marfan syndrome. Thus, disruption of the ability of the aortic SMC to generate force through the elastin-contractile units in response to pulsatile blood flow may be a primary driver for thoracic aortic aneurysms and dissections.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Animals
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/genetics
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Dilatation, Pathologic
- Elastin/metabolism
- Genetic Markers
- Genetic Testing
- Heredity
- Humans
- Mechanotransduction, Cellular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/metabolism
- Phenotype
- Pulsatile Flow
- Vasoconstriction/genetics
Collapse
Affiliation(s)
- Dianna M Milewicz
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.).
| | - Kathleen M Trybus
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Dong-Chuan Guo
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - H Lee Sweeney
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Ellen Regalado
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Kristine Kamm
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - James T Stull
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| |
Collapse
|
185
|
Wilson NK, Gould RA, Gallo MacFarlane E, Consortium ML. Pathophysiology of aortic aneurysm: insights from human genetics and mouse models. Pharmacogenomics 2016; 17:2071-2080. [PMID: 27922338 DOI: 10.2217/pgs-2016-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aneurysms are local dilations of an artery that predispose the vessel to sudden rupture. They are often asymptomatic and undiagnosed, resulting in a high mortality rate. The predisposition to develop thoracic aortic aneurysms is often genetically inherited and associated with syndromes affecting connective tissue homeostasis. This review discusses how elucidation of the genetic causes of syndromic forms of thoracic aortic aneurysm has helped identify pathways that contribute to disease progression, including those activated by TGF-β, angiotensin II and Notch ligands. We also discuss how pharmacological manipulation of these signaling pathways has provided further insight into the mechanism of disease and identified compounds with therapeutic potential in these and related disorders.
Collapse
Affiliation(s)
- Nicole K Wilson
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
186
|
Al Maskari R, Yasmin, Cleary S, Figg N, Mehta S, Rassl D, Wilkinson I, O'Shaughnessy KM. A missense TGFB2 variant p.(Arg320Cys) causes a paradoxical and striking increase in aortic TGFB1/2 expression. Eur J Hum Genet 2016; 25:157-160. [PMID: 27782106 DOI: 10.1038/ejhg.2016.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is an autosomal dominant connective tissue disorder with a range of cardiovascular, skeletal, craniofacial and cutaneous manifestations. LDS type 4 is caused by mutations in TGFβ ligand 2 (TGFB2) and based on the family pedigrees described to date, appears to have a milder clinical phenotype, often presenting with isolated aortic disease. We sought to investigate its molecular basis in a new pedigree. We identified a missense variant p.(Arg320Cys) (NM_003238.3) in a highly evolutionary conserved region of TGFB2 in a new LDS type 4 pedigree with multiple cases of aortic aneurysms and dissections. There was striking upregulation of TGFB1 and TGFB2 expression on immunofluorescent staining, and western blotting of the aortic tissue from the index case confirming the functional importance of the variant. This case highlights the striking paradox of predicted loss-of-function mutations in TGFB2 causing enhanced TGFβ signaling in this emerging familial aortopathy.
Collapse
Affiliation(s)
- Raya Al Maskari
- Department of Medicine (EMIT and CVD divisions), University of Cambridge, Cambridge, UK
| | - Yasmin
- Department of Medicine (EMIT and CVD divisions), University of Cambridge, Cambridge, UK
| | - S Cleary
- Department of Medicine (EMIT and CVD divisions), University of Cambridge, Cambridge, UK
| | - Nikki Figg
- Department of Medicine (EMIT and CVD divisions), University of Cambridge, Cambridge, UK
| | - Sarju Mehta
- Department of Medical Genetics, Addenbrookes Hospital, Cambridge, UK
| | - Doris Rassl
- Department of Pathology, Papworth Hospital, Cambridge, UK
| | - Ian Wilkinson
- Department of Medicine (EMIT and CVD divisions), University of Cambridge, Cambridge, UK
| | - Kevin M O'Shaughnessy
- Department of Medicine (EMIT and CVD divisions), University of Cambridge, Cambridge, UK.
| |
Collapse
|
187
|
Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Sci Rep 2016; 6:35444. [PMID: 27739498 PMCID: PMC5064316 DOI: 10.1038/srep35444] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF)-β signaling disorder has emerged as a common molecular signature for aortic aneurysm development. The timing of postnatal maturation plays a key role in dictating the biological outcome of TGF-β signaling disorders in the aortic wall. In this study, we investigated the impact of deficiency of TGFβ receptors on the structural homeostasis of mature aortas. We used an inducible Cre-loxP system driven by a Myh11 promoter to delete Tgfbr1, Tgfbr2, or both in smooth muscle cells (SMCs) of adult mice. TGFBR1 deficiency resulted in rapid and severe aneurysmal degeneration, with 100% penetrance of ascending thoracic aortas, whereas TGFBR2 deletion only caused mild aortic pathology with low (26%) lesion prevalence. Removal of TGFBR2 attenuated the aortic pathology caused by TGFBR1 deletion and correlated with a reduction of early ERK phosphorylation. In addition, the production of angiotensin (Ang)-converting enzyme was upregulated in TGFBR1 deficient aortas at the early stage of aneurysmal degeneration. Inhibition of ERK phosphorylation or blockade of AngII type I receptor AT1R prevented aneurysmal degeneration of TGFBR1 deficient aortas. In conclusion, loss of SMC-Tgfbr1 triggers multiple deleterious pathways, including abnormal TGFBR2, ERK, and AngII/AT1R signals that disrupt aortic wall homeostasis to cause aortic aneurysm formation.
Collapse
|
188
|
Loeys-Dietz syndrome and pregnancy: The first ten years. Int J Cardiol 2016; 226:21-25. [PMID: 27780078 DOI: 10.1016/j.ijcard.2016.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/14/2022]
Abstract
The physiological and haemodynamic changes that occur in pregnancy and the postpartum period increase the risk of aortic dissection. Loeys-Dietz syndrome results from mutations in the genes encoding components of the TGF-β signalling pathway; aortic pathology is of particular concern in this condition but other vascular abnormalities can also be present. Significant maternal morbidity and mortality has been described in patients with Loeys-Dietz syndrome, but successful and uncomplicated pregnancies are still possible. Nevertheless, all patients with this condition should, at present, be treated as very high risk in pregnancy and the postpartum period, until reliable risk prediction tools become available. This review summarises the recent advances in the understanding of the pathophysiology of this condition, and the management strategies currently advocated.
Collapse
|
189
|
Dickel DE, Barozzi I, Zhu Y, Fukuda-Yuzawa Y, Osterwalder M, Mannion BJ, May D, Spurrell CH, Plajzer-Frick I, Pickle CS, Lee E, Garvin TH, Kato M, Akiyama JA, Afzal V, Lee AY, Gorkin DU, Ren B, Rubin EM, Visel A, Pennacchio LA. Genome-wide compendium and functional assessment of in vivo heart enhancers. Nat Commun 2016; 7:12923. [PMID: 27703156 PMCID: PMC5059478 DOI: 10.1038/ncomms12923] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. Identification of non-coding variants has outstripped our ability to annotate and interpret them. Dickel et al. present a compendium of over 80,000 putative human heart enhancers and demonstrate that two conserved enhancers are required for proper cardiac function in mice.
Collapse
Affiliation(s)
- Diane E Dickel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Iros Barozzi
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yiwen Zhu
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yoko Fukuda-Yuzawa
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Marco Osterwalder
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Brandon J Mannion
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Dalit May
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Cailyn H Spurrell
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Ingrid Plajzer-Frick
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Catherine S Pickle
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Elizabeth Lee
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Tyler H Garvin
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Momoe Kato
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jennifer A Akiyama
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Veena Afzal
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - David U Gorkin
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093, USA
| | - Edward M Rubin
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.,U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.,U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,School of Natural Sciences, University of California, Merced, Merced, California 95343, USA
| | - Len A Pennacchio
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.,U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
190
|
Liu O, Xie W, Qin Y, Jia L, Zhang J, Xin Y, Guan X, Li H, Gong M, Liu Y, Wang X, Li J, Lan F, Zhang H. MMP-2 gene polymorphisms are associated with type A aortic dissection and aortic diameters in patients. Medicine (Baltimore) 2016; 95:e5175. [PMID: 27759651 PMCID: PMC5079335 DOI: 10.1097/md.0000000000005175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Matrix metalloproteinases-2 (MMP-2) plays an important role in the pathogenesis of type A aortic dissection (AD). The aim of this study was to evaluate the association of 3 single nucleotide polymorphisms (SNPs) in the MMP-2 gene with type A AD risk and aortic diameters in patients. We performed a case-control study with 172 unrelated type A AD patients and 439 controls. Three SNPs rs11644561, rs11643630, and rs243865 were genotyped through the MassARRAY platform. Allelic associations of SNPs and SNP haplotypes with type A AD and aortic diameters in patients were evaluated. The frequency of the G allele of the rs11643630 polymorphism was significantly lower in type A AD patients than in control subjects (odds ratio 0.705, 95% confidence interval 0.545-0.912, P = 0.008). The association remained significant after adjusting for clinical covariates (P = 0.008). Carriers of the GG genotype of the rs11643630 polymorphism had significantly smaller aortic diameters than those with GT genotype or TT genotype (P = 0.02). Further haplotype analysis identified 1 protective haplotype (GC; P = 0.008) for development of type A AD. Again, a significant correlation was observed between haplotype GC and AD size (P = 0.020). Our results suggest that MMP-2 gene polymorphisms contribute to type A AD susceptibility. In addition, MMP-2 gene SNPs are associated with AD size, which could be used as a target for the development of new drug therapy.
Collapse
Affiliation(s)
- Ou Liu
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wuxiang Xie
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Yanwen Qin
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Lixin Jia
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jing Zhang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yi Xin
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xinliang Guan
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haiyang Li
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Gong
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuyong Liu
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaolong Wang
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianrong Li
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Hongjia Zhang
- Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Correspondence: Hongjia Zhang, Department of Cardiovascular Surgery, Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China (e-mail: )
| |
Collapse
|
191
|
Meester JAN, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S, Waitzman K, Young L, Markham LW, Vogt J, Richer J, Beauchesne LM, Unger S, Superti-Furga A, Prsa M, Dhillon R, Reyniers E, Dietz HC, Wuyts W, Mortier G, Verstraeten A, Van Laer L, Loeys BL. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med 2016; 19:386-395. [PMID: 27632686 PMCID: PMC5207316 DOI: 10.1038/gim.2016.126] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. METHODS We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. RESULTS We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. CONCLUSION In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Pintelon
- Department of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Martin Lammens
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Lana Van Hoorick
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Simon De Belder
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Kathryn Waitzman
- Department of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Luciana Young
- Department of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Larry W Markham
- Divisions of Pediatric and Adult Cardiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Luc M Beauchesne
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sheila Unger
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Milan Prsa
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rami Dhillon
- The Heart Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Edwin Reyniers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Harry C Dietz
- Howard Hughes Medical Institute, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
192
|
|
193
|
van der Pluijm I, van Vliet N, von der Thusen JH, Robertus JL, Ridwan Y, van Heijningen PM, van Thiel BS, Vermeij M, Hoeks SE, Buijs-Offerman RMGB, Verhagen HJM, Kanaar R, Bertoli-Avella AM, Essers J. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling. EBioMedicine 2016; 12:280-294. [PMID: 27688095 PMCID: PMC5078606 DOI: 10.1016/j.ebiom.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
Aneurysm-osteoarthritis syndrome characterized by unpredictable aortic aneurysm formation, is caused by SMAD3 mutations. SMAD3 is part of the SMAD2/3/4 transcription factor, essential for TGF-β-activated transcription. Although TGF-β-related gene mutations result in aneurysms, the underlying mechanism is unknown. Here, we examined aneurysm formation and progression in Smad3-/- animals. Smad3-/- animals developed aortic aneurysms rapidly, resulting in premature death. Aortic wall immunohistochemistry showed no increase in extracellular matrix and collagen accumulation, nor loss of vascular smooth muscle cells (VSMCs) but instead revealed medial elastin disruption and adventitial inflammation. Remarkably, matrix metalloproteases (MMPs) were not activated in VSMCs, but rather specifically in inflammatory areas. Although Smad3-/- aortas showed increased nuclear pSmad2 and pErk, indicating TGF-β receptor activation, downstream TGF-β-activated target genes were not upregulated. Increased pSmad2 and pErk staining in pre-aneurysmal Smad3-/- aortas implied that aortic damage and TGF-β receptor-activated signaling precede aortic inflammation. Finally, impaired downstream TGF-β activated transcription resulted in increased Smad3-/- VSMC proliferation. Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibilities for treatment of SMAD3 patients; instead of targeting TGF-β signaling, immune suppression may be more beneficial.
Collapse
Affiliation(s)
- I van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N van Vliet
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J H von der Thusen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J L Robertus
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Y Ridwan
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P M van Heijningen
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B S van Thiel
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Vermeij
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S E Hoeks
- Department of Anesthesiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R M G B Buijs-Offerman
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H J M Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A M Bertoli-Avella
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
194
|
Genetic testing of 248 Chinese aortopathy patients using a panel assay. Sci Rep 2016; 6:33002. [PMID: 27611364 PMCID: PMC5017237 DOI: 10.1038/srep33002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
Inherited aortopathy, which is characterized by a high risk of fatal aortic aneurysms/dissections, can occur secondarily to several syndromes. To identify genetic mutations and help make a precise diagnosis, we designed a gene panel containing 15 genes responsible for inherited aortopathy and tested 248 probands with aortic disease or Marfan syndrome. The results showed that 92 individuals (37.1%) tested positive for a (likely) pathogenic mutation, most of which were FBN1 mutations. We found that patients with a FBN1 truncating or splicing mutation were more prone to developing severe aortic disease or valvular disease. To date, this is the largest reported cohort of Chinese patients with aortic disease who have undergone genetic testing. Therefore, it can serve as a considerable dataset of next generation sequencing data analysis of Chinese population with inherited aortopathy. Additionally, according to the accumulated data, we optimized the analysis pipeline by adding quality control steps and lowering the false positive rate.
Collapse
|
195
|
Increased Prevalence of Inflammatory Bowel Disease in Patients with Mutations in Genes Encoding the Receptor Subunits for TGFβ. Inflamm Bowel Dis 2016; 22:2058-2062. [PMID: 27508510 PMCID: PMC4992461 DOI: 10.1097/mib.0000000000000872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND TGFβ is a multifunctional cytokine that is critical in regulating mucosal immunity. Murine studies have revealed that disruption of canonical TGFβ signaling leads to systemic inflammation including colitis. Loeys-Dietz syndrome (LDS) results from heterozygous mutations in the genes encoding the subunits of the TGFβ receptor. METHODS All patients with confirmed mutations in TGFBR1 or TGFBR2, seen in the Johns Hopkins Connective Tissue Disorders clinic, were asked to participate in the study. Ninety-three consecutive patients were enrolled, including 4 with inflammatory bowel disease (IBD). Using the Illumina Immunochip array, we undertook an exploratory analysis to evaluate the potential genetic risk factors that could predict which patients with LDS would develop IBD. RESULTS We report an increased prevalence of IBD in patients with LDS types I and II. We describe the course of several patients. In this small sample, the 3 whites with IBD had a genetic risk score in the top 6 highest scores of patients evaluated. CONCLUSION We report a 10-fold increase in the prevalence of IBD in patients with LDS compared with the general population. Onset of disease in 3 of the 4 patients was at less than 18 years, and the clinical course in 2 of the 4 was severe with a poor response to traditional medications. Further evaluation of the genetic risk score is needed to determine whether it can predict which patients with LDS are most likely to develop IBD. This case series of patients with LDS with IBD suggests that defective TGFβ signaling may have an influence on IBD risk.
Collapse
|
196
|
Forte A, Galderisi U, Cipollaro M, De Feo M, Della Corte A. Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta. Clin Sci (Lond) 2016; 130:1389-1405. [PMID: 27389586 DOI: 10.1042/cs20160222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 01/21/2023]
Abstract
The term 'epigenetics' refers to heritable, reversible DNA or histone modifications that affect gene expression without modifying the DNA sequence. Epigenetic modulation of gene expression also includes the RNA interference mechanism. Epigenetic regulation of gene expression is fundamental during development and throughout life, also playing a central role in disease progression. The transforming growth factor β1 (TGF-β1) and its downstream effectors are key players in tissue repair and fibrosis, extracellular matrix remodelling, inflammation, cell proliferation and migration. TGF-β1 can also induce cell switch in epithelial-to-mesenchymal transition, leading to myofibroblast transdifferentiation. Cellular pathways triggered by TGF-β1 in thoracic ascending aorta dilatation have relevant roles to play in remodelling of the vascular wall by virtue of their association with monogenic syndromes that implicate an aortic aneurysm, including Loeys-Dietz and Marfan's syndromes. Several studies and reviews have focused on the progression of aneurysms in the abdominal aorta, but research efforts are now increasingly being focused on pathogenic mechanisms of thoracic ascending aorta dilatation. The present review summarizes the most recent findings concerning the epigenetic regulation of effectors of TGF-β1 pathways, triggered by sporadic dilative aortopathy of the thoracic ascending aorta in the presence of a tricuspid or bicuspid aortic valve, a congenital malformation occurring in 0.5-2% of the general population. A more in-depth comprehension of the epigenetic alterations associated with TGF-β1 canonical and non-canonical pathways in dilatation of the ascending aorta could be helpful to clarify its pathogenesis, identify early potential biomarkers of disease, and, possibly, develop preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Amalia Forte
- Experimental Medicine, Second University of Naples, Naples, Italy
| | | | | | - Marisa De Feo
- Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | | |
Collapse
|
197
|
FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016; 591:279-291. [PMID: 27437668 DOI: 10.1016/j.gene.2016.07.033] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
FBN1 encodes the gene for fibrillin-1, a structural macromolecule that polymerizes into microfibrils. Fibrillin microfibrils are morphologically distinctive fibrils, present in all connective tissues and assembled into tissue-specific architectural frameworks. FBN1 is the causative gene for Marfan syndrome, an inherited disorder of connective tissue whose major features include tall stature and arachnodactyly, ectopia lentis, and thoracic aortic aneurysm and dissection. More than one thousand individual mutations in FBN1 are associated with Marfan syndrome, making genotype-phenotype correlations difficult. Moreover, mutations in specific regions of FBN1 can result in the opposite features of short stature and brachydactyly characteristic of Weill-Marchesani syndrome and other acromelic dysplasias. How can mutations in one molecule result in disparate clinical syndromes? Current concepts of the fibrillinopathies require an appreciation of tissue-specific fibrillin microfibril microenvironments and the collaborative relationship between the structures of fibrillin microfibril networks and biological functions such as regulation of growth factor signaling.
Collapse
|
198
|
Du J, Deng J. Associations Between TGFA/TGFB3/MSX1 Gene Polymorphisms and Congenital Non-Syndromic Hearing Impairment in a Chinese Population. Med Sci Monit 2016; 22:2253-2266. [PMID: 27356075 PMCID: PMC4930271 DOI: 10.12659/msm.896527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/17/2015] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate whether the TGFA/TGFB3/MSX1 gene polymorphisms and haplotypes lead to individual differences between congenital non-syndromic hearing impairment (NSHI) patients and normal people in a Chinese population and to analyze the risk factors for NSHI. MATERIAL AND METHODS Between December 2010 and September 2014, 343 congenital NSHI patients were recruited as cases, and 272 healthy subjects were recruited as controls. Denaturing high-performance liquid chromatography (DHPLC) was used to identify genotypes, SHEsis software was used to conduct gene linkage disequilibrium and haplotype analyses, and regression analysis was performed to identify risk factors for congenital NSHI. RESULTS The distribution of genotype frequencies and allele frequencies of TGFA rs3771494, TGFB3 rs3917201 and rs2268626, and MSX1 rs3821949 and rs62636562 were significantly different between the case and the control groups (all P<0.05). TGFA/TGFB3/MSX1 gene rs3771494, rs1058213, rs3917201, rs2268626, rs3821949, and rs62636562 haplotype analysis showed that haplotype CCGTAC and TTACGT might be protective factors (both P<0.001), while TTGCGC might be a risk factor for the normal population (P<0.001). The other risk factors include paternal smoking, advanced maternal age, maternal sickness history, maternal contact with pesticides or similar drugs, maternal abortion history, maternal medication history, maternal passive smoking history during pregnancy, rs3771494 CT, rs2268626 CC and TC, and rs3821949 GG and AG genotypes were risk factors (all P<0.05), while maternal vitamin supplements during pregnancy, rs3917201 GA, rs62636562 TT and CT genotypes were protective factors for congenital NSHI (all P<0.05). CONCLUSIONS rs3771494, rs3917201, rs2268626, rs3821949 and rs62636562 might be associated with congenital NSHI.
Collapse
|
199
|
Lin AE, Michot C, Cormier-Daire V, L'Ecuyer TJ, Matherne GP, Barnes BH, Humberson JB, Edmondson AC, Zackai E, O'Connor MJ, Kaplan JD, Ebeid MR, Krier J, Krieg E, Ghoshhajra B, Lindsay ME. Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. Am J Med Genet A 2016; 170:2617-31. [PMID: 27302097 DOI: 10.1002/ajmg.a.37739] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/28/2016] [Indexed: 02/03/2023]
Abstract
Myhre syndrome is a rare, distinctive syndrome due to specific gain-of-function mutations in SMAD4. The characteristic phenotype includes short stature, dysmorphic facial features, hearing loss, laryngotracheal anomalies, arthropathy, radiographic defects, intellectual disability, and a more recently appreciated spectrum of cardiovascular defects with a striking fibroproliferative response to surgical intervention. We report four newly described patients with typical features of Myhre syndrome who had (i) a mildly narrow descending aorta and restrictive cardiomyopathy; (ii) recurrent pericardial and pleural effusions; (iii) a large persistent ductus arteriosus with juxtaductal aortic coarctation; and (iv) restrictive pericardial disease requiring pericardiectomy. Additional information is provided about a fifth previously reported patient with fatal pericardial disease. A literature review of the cardiovascular features of Myhre syndrome was performed on 54 total patients, all with a SMAD4 mutation. Seventy percent had a cardiovascular abnormality including congenital heart defects (63%), pericardial disease (17%), restrictive cardiomyopathy (9%), and systemic hypertension (15%). Pericarditis and restrictive cardiomyopathy are associated with high mortality (three patients each among 10 deaths); one patient with restrictive cardiomyopathy also had epicarditis. Cardiomyopathy and pericardial abnormalities distinguish Myhre syndrome from other disorders caused by mutations in the TGF-β signaling cascade (Marfan, Loeys-Dietz, or Shprintzen-Goldberg syndromes). We hypothesize that the expanded spectrum of cardiovascular abnormalities relates to the ability of the SMAD4 protein to integrate diverse signaling pathways, including canonical TGF-β, BMP, and Activin signaling. The co-occurrence of congenital and acquired phenotypes demonstrates that the gene product of SMAD4 is required for both developmental and postnatal cardiovascular homeostasis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela E Lin
- Genetics Unit, Massachusetts General Hospital, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts.
| | - Caroline Michot
- INSERM UMR1163 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Valerie Cormier-Daire
- INSERM UMR1163 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Thomas J L'Ecuyer
- Division of Cardiology, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia
| | - G Paul Matherne
- Division of Cardiology, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Barrett H Barnes
- Division of Gastroenterology, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Jennifer B Humberson
- Division of Genetics, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Andrew C Edmondson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew J O'Connor
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julie D Kaplan
- Division of Medical Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Makram R Ebeid
- Division of Cardiology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joel Krier
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Krieg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian Ghoshhajra
- Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark E Lindsay
- Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Pediatric Cardiology, Department of Pediatrics, MassGeneral Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
200
|
Kay WA. Molecular and Genetic Insights into Thoracic Aortic Dilation in Conotruncal Heart Defects. Front Cardiovasc Med 2016; 3:18. [PMID: 27376074 PMCID: PMC4894874 DOI: 10.3389/fcvm.2016.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic dilation (AD) has commonly been described in conotruncal defects (CTDs), such as tetralogy of Fallot, double outlet right ventricle and transposition of the great arteries, and truncus arteriosus. Several theories for this have been devised, but fairly recent data indicate that there is likely an underlying histologic abnormality, similar to that seen in Marfan and other connective tissue disease. The majority of aortic dissection in the general population occurs after the age of 45 years, and there have been very few case reports of aortic dissection in CTD. Given advances in cardiac surgery and increasing survival over the past several decades, there has been rising concern that, as patients who have survived surgical correction of these defects age, there may be increased morbidity and mortality due to aortic dissection and aortic regurgitation. This review discusses the most recent developments in research into AD in CTD, including associated genetic mutations.
Collapse
Affiliation(s)
- W Aaron Kay
- Department of Medicine, Krannert Institute of Cardiology, Indiana University School of Medicine , Indianapolis, IN , USA
| |
Collapse
|