151
|
Miao S, Cui H, Nowicki M, Xia L, Zhou X, Lee SJ, Zhu W, Sarkar K, Zhang Z, Zhang LG. Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. ADVANCED BIOSYSTEMS 2018; 2:1800101. [PMID: 30906853 PMCID: PMC6430203 DOI: 10.1002/adbi.201800101] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/12/2023]
Abstract
4D printing represents one of the most advanced fabrication techniques for prospective applications in tissue engineering, biomedical devices, and soft robotics, among others. In this study, a novel multiresponsive architecture is developed through stereolithography-based 4D printing, where a universal concept of stress-induced shape transformation is applied to achieve the 4D reprogramming. The light-induced graded internal stress followed by a subsequent solvent-induced relaxation, driving an autonomous and reversible change of the programmed configuration after printing, is employed and investigated in depth and details. Moreover, the fabricated construct possesses shape memory property, offering a characteristic of multiple shape change. Using this novel multiple responsive 4D technique, a proof-of-concept smart nerve guidance conduit is demonstrated on a graphene hybrid 4D construct providing outstanding multifunctional characteristics for nerve regeneration including physical guidance, chemical cues, dynamic self-entubulation, and seamless integration. By employing this fabrication technique, creating multiresponsive smart architectures, as well as demonstrating application potential, this work paves the way for truly initiation of 4D printing in various high-value research fields.
Collapse
Affiliation(s)
- Shida Miao
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Haitao Cui
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Margaret Nowicki
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Lang Xia
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Xuan Zhou
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Se-Jun Lee
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Wei Zhu
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Kausik Sarkar
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou City, Guangdong, Province 510150, P. R. China
| | - Lijie Grace Zhang
- Department of Aerospace and Mechanical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052, USA,
| |
Collapse
|
152
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M, Zhang LG. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018; 132:252-269. [PMID: 30053441 PMCID: PMC6226324 DOI: 10.1016/j.addr.2018.07.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Compared to traditional therapeutic strategies, three-dimensional (3D) bioprinting is one of the most advanced techniques for creating complicated cardiovascular implants with biomimetic features, which are capable of recapitulating both the native physiochemical and biomechanical characteristics of the cardiovascular system. The present review provides an overview of the cardiovascular system, as well as describes the principles of, and recent advances in, 3D bioprinting cardiovascular tissues and models. Moreover, this review will focus on the applications of 3D bioprinting technology in cardiovascular repair/regeneration and pharmacological modeling, further discussing current challenges and perspectives.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, USA
| | | | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
153
|
Miao S, Cui H, Nowicki M, Lee SJ, Almeida J, Zhou X, Zhu W, Yao X, Masood F, Plesniak MW, Mohiuddin M, Zhang LG. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication 2018; 10:035007. [PMID: 29651999 PMCID: PMC5978741 DOI: 10.1088/1758-5090/aabe0b] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
4D printing is a highly innovative additive manufacturing process for fabricating smart structures with the ability to transform over time. Significantly different from regular 4D printing techniques, this study focuses on creating novel 4D hierarchical micropatterns using a unique photolithographic-stereolithographic-tandem strategy (PSTS) with smart soybean oil epoxidized acrylate (SOEA) inks for effectively regulating human bone marrow mesenchymal stem cell (hMSC) cardiomyogenic behaviors. The 4D effect refers to autonomous conversion of the surficial-patterned scaffold into a predesigned construct through an external stimulus delivered immediately after printing. Our results show that hMSCs actively grew and were highly aligned along the micropatterns, forming an uninterrupted cellular sheet. The generation of complex patterns was evident by triangular and circular outlines appearing in the scaffolds. This simple, yet efficient, technique was validated by rapid printing of scaffolds with well-defined and consistent micro-surface features. A 4D dynamic shape change transforming a 2-D design into flower-like structures was observed. The printed scaffolds possessed a shape memory effect beyond the 4D features. The advanced 4D dynamic feature may provide seamless integration with damaged tissues or organs, and a proof of concept 4D patch for cardiac regeneration was demonstrated for the first time. The 4D-fabricated cardiac patch showed significant cardiomyogenesis confirmed by immunofluorescence staining and qRT-PCR analysis, indicating its promising potential in future tissue and organ regeneration applications.
Collapse
Affiliation(s)
- Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Margaret Nowicki
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Se-jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - José Almeida
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Xiaoliang Yao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Fahed Masood
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Michael W. Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Muhammad Mohiuddin
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
- Department of Medicine, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
154
|
Synthetic Materials for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:31-52. [DOI: 10.1007/978-3-319-76711-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
155
|
|
156
|
Lee S, Esworthy T, Stake S, Miao S, Zuo YY, Harris BT, Zhang LG. Advances in 3D Bioprinting for Neural Tissue Engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700213] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Se‐Jun Lee
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Seth Stake
- Department of Medicine George Washington University Washington DC 20052 USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Brent T. Harris
- Department of Neurology and Pathology Georgetown University Washington DC 20007 USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
- Department of Medicine George Washington University Washington DC 20052 USA
- Department of Biomedical Engineering George Washington University Washington DC 20052 USA
| |
Collapse
|
157
|
4D printing and its applications in Orthopaedics. J Clin Orthop Trauma 2018; 9:275-276. [PMID: 30202161 PMCID: PMC6128312 DOI: 10.1016/j.jcot.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/19/2023] Open
|