151
|
Yadav AK, Bachhawat AK. CgCYN1, a plasma membrane cystine-specific transporter of Candida glabrata with orthologues prevalent among pathogenic yeast and fungi. J Biol Chem 2011; 286:19714-23. [PMID: 21507960 PMCID: PMC3103350 DOI: 10.1074/jbc.m111.240648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/19/2011] [Indexed: 11/06/2022] Open
Abstract
We describe a novel plasma membrane cystine transporter, CgCYN1, from Candida glabrata, the first such transporter to be described from yeast and fungi. C. glabrata met15Δ strains, organic sulfur auxotrophs, were observed to utilize cystine as a sulfur source, and this phenotype was exploited in the discovery of CgCYN1. Heterologous expression of CgCYN1 in Saccharomyces cerevisiae met15Δ strains conferred the ability of S. cerevisiae strains to grow on cystine. Deletion of the CgCYN1 ORF (CAGL0M00154g) in C. glabrata met15Δ strains caused abrogation of growth on cystine with growth being restored when CgCYN1 was reintroduced. The CgCYN1 protein belongs to the amino acid permease family of transporters, with no similarity to known plasma membrane cystine transporters of bacteria and humans, or lysosomal cystine transporters of humans/yeast. Kinetic studies revealed a K(m) of 18 ± 5 μM for cystine. Cystine uptake was inhibited by cystine, but not by other amino acids, including cysteine. The structurally similar cystathionine, lanthionine, and selenocystine alone inhibited transport, confirming that the transporter was specific for cystine. CgCYN1 localized to the plasma membrane and transport was energy-dependent. Functional orthologues could be demonstrated from other pathogenic yeast like Candida albicans and Histoplasma capsulatum, but were absent in Schizosaccharomyces pombe and S. cerevisiae.
Collapse
Affiliation(s)
- Amit Kumar Yadav
- From the Institute of Microbial Technology (Council of Scientific and Industrial Research), Sector 39-A, Chandigarh 160 036, India and
| | - Anand Kumar Bachhawat
- From the Institute of Microbial Technology (Council of Scientific and Industrial Research), Sector 39-A, Chandigarh 160 036, India and
- the Indian Institute of Science Education and Research (IISER Mohali), Mahatma Gandhi State Institute of Public Administration Punjab Complex, Sector 26, Chandigarh 160 019, India
| |
Collapse
|
152
|
Inhibition studies with anions and small molecules of two novel β-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar Typhimurium. Bioorg Med Chem Lett 2011; 21:3591-5. [DOI: 10.1016/j.bmcl.2011.04.105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 01/24/2023]
|
153
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
154
|
Fisher JF, Kavanagh K, Sobel JD, Kauffman CA, Newman CA. Candida Urinary Tract Infection: Pathogenesis. Clin Infect Dis 2011; 52 Suppl 6:S437-51. [DOI: 10.1093/cid/cir110] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
155
|
Oxidative stress response and virulence factors in Candida glabrata clinical isolates. Folia Microbiol (Praha) 2011; 56:116-21. [PMID: 21416384 DOI: 10.1007/s12223-011-0016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/17/2011] [Indexed: 01/19/2023]
Abstract
We determined the susceptibility to oxidative stress and assessed the four virulence factors of the 38 Candida glabrata clinical isolates originating from two teaching hospitals in Slovakia. All the isolates were susceptible to hydrogen peroxide, diamide, and 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) inducing an increased formation of reactive oxygen species in fungal cells. The mean relative cell surface hydrophobicity (CSH) of isolates was 21.9, ranging from 1.92 to 56.96. All isolates showed biofilm formation. A high biofilm formation was observed among 60.5% of isolates. Positive correlations were observed between biofilm formation and moderate values of CSHs. The 76.3% and 84.2% of isolates displayed varying degrees of proteinase and phospholipase activity, respectively. These results demonstrate a differential distribution of factors contributing to virulence of C. glabrata clinical isolates and point to their significance in pathogenesis that would be targeted by novel antifungals.
Collapse
|
156
|
Masaki M, Sato T, Sugawara Y, Sasano T, Takahashi N. Detection and identification of non-Candida albicans species in human oral lichen planus. Microbiol Immunol 2011; 55:66-70. [PMID: 21175776 DOI: 10.1111/j.1348-0421.2010.00285.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Candida species were detected and identified in samples from the buccal mucosa, dorsal surface of the tongue and supragingival plaque of subjects with oral lichen planus (OLP). The Candida in the samples were cultured on selection agars, and identified by sequence analyses of 18S, 5.8S and 25/28S rRNA. The isolation frequency of Candida was higher in subjects with OLP than in those with healthy oral mucosa. Non-C. albicans were only isolated from people with OLP. These results support the notion that subjects with OLP are more likely to have oral colonization with Candida, and that non-C. albicans are specifically present in subjects with this condition.
Collapse
Affiliation(s)
- Mika Masaki
- Division of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
157
|
Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 2011; 6:e17589. [PMID: 21408004 PMCID: PMC3052359 DOI: 10.1371/journal.pone.0017589] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/27/2011] [Indexed: 12/20/2022] Open
Abstract
In Candida glabrata, the transcription factor CgPdr1 is involved
in resistance to azole antifungals via upregulation of ATP binding cassette
(ABC)-transporter genes including at least CgCDR1,
CgCDR2 and CgSNQ2. A high diversity of GOF
(gain-of-function) mutations in CgPDR1 exists for the
upregulation of ABC-transporters. These mutations enhance C.
glabrata virulence in animal models, thus indicating that
CgPDR1 might regulate the expression of yet unidentified
virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s)
should be commonly regulated by all GOF mutations in CgPDR1. As
deduced from transcript profiling with microarrays, a high number of genes (up
to 385) were differentially regulated by a selected number (7) of GOF mutations
expressed in the same genetic background. Surprisingly, the transcriptional
profiles resulting from expression of GOF mutations showed minimal overlap in
co-regulated genes. Only two genes, CgCDR1 and
PUP1 (for PDR1upregulated and encoding a mitochondrial protein), were
commonly upregulated by all tested GOFs. While both genes mediated azole
resistance, although to different extents, their deletions in an azole-resistant
isolate led to a reduction of virulence and decreased tissue burden as compared
to clinical parents. As expected from their role in C. glabrata
virulence, the two genes were expressed as well in vitro and
in vivo. The individual overexpression of these two genes
in a CgPDR1-independent manner could partially restore
phenotypes obtained in clinical isolates. These data therefore demonstrate that
at least these two CgPDR1-dependent and -upregulated genes
contribute to the enhanced virulence of C. glabrata that
acquired azole resistance.
Collapse
Affiliation(s)
- Sélène Ferrari
- Institute of Microbiology, University of
Lausanne and University Hospital Center, Lausanne, Switzerland
| | | | - Riccardo Torelli
- Institute of Microbiology, Università
Cattolica del Sacro Cuore, Rome, Italy
| | - Brunella Posteraro
- Institute of Microbiology, Università
Cattolica del Sacro Cuore, Rome, Italy
| | - Dominique Sanglard
- Institute of Microbiology, University of
Lausanne and University Hospital Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
158
|
Abstract
[URE3] is a prion (infectious protein) of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. We show that wild S. paradoxus can be infected with a [URE3] prion, supporting the use of S. cerevisiae as a prion test bed. We find that the Ure2p of Candida albicans and C. glabrata also regulate nitrogen catabolism. Conservation of amino acid sequence within the prion domain of Ure2p has been proposed as evidence that the [URE3] prion helps its host. We show that the C. albicans Ure2p, which does not conserve this sequence, can nonetheless form a [URE3] prion in S. cerevisiae, but the C. glabrata Ure2p, which does have the conserved sequence, cannot form [URE3] as judged by its performance in S. cerevisiae. These results suggest that the sequence is not conserved to preserve prion forming ability.
Collapse
|
159
|
Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E, Rupp S, Gabaldón T, Kovarik P, Schüller C. Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 2011; 585:319-27. [PMID: 21156173 PMCID: PMC3022126 DOI: 10.1016/j.febslet.2010.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 01/07/2023]
Abstract
The human fungal pathogen Candida glabrata is related to Saccharomyces cerevisiae but has developed high resistance against reactive oxygen species. We find that induction of conserved genes encoding antioxidant functions is dependent on the transcription factors CgYap1 and CgSkn7 which cooperate for promoter recognition. Superoxide stress resistance of C. glabrata is provided by superoxide dismutase CgSod1, which is not dependent on CgYap1/Skn7. Only double mutants lacking both CgSod1 and CgYap1 were efficiently killed by primary mouse macrophages. Our results suggest that in C. glabrata the regulation of key genes providing stress protection is adopted to meet a host-pathogen situation.
Collapse
Affiliation(s)
- Andreas Roetzer
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, A-1030 Vienna, Austria
| | - Eva Klopf
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, A-1030 Vienna, Austria
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunology, A-1030 Vienna, Austria
| | - Marina Marcet-Houben
- Comparative Genomics Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 88 08003 Barcelona, Spain
| | - Ekkehard Hiller
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Toni Gabaldón
- Comparative Genomics Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 88 08003 Barcelona, Spain
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunology, A-1030 Vienna, Austria
| | - Christoph Schüller
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, A-1030 Vienna, Austria
| |
Collapse
|
160
|
Tscherner M, Schwarzmüller T, Kuchler K. Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida glabrata. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052548 DOI: 10.3390/ph4010169] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida glabrata is a major opportunistic human fungal pathogen causing superficial as well as systemic infections in immunocompromised individuals and several other patient cohorts. C. glabrata represents the second most prevalent cause of candidemia and a better understanding of its virulence and drug resistance mechanisms is thus of high medical relevance. In contrast to the diploid dimorphic pathogen C. albicans, whose ability to undergo filamentation is considered a major virulence trait, C. glabrata has a haploid genome and lacks the ability to switch to filamentous growth. A major impediment for the clinical therapy of C. glabrata infections is its high intrinsic resistance to several antifungal drugs, especially azoles. Further, the development of antifungal resistance, particularly during prolonged and prophylactic therapies is diminishing efficacies of therapeutic interventions. In addition, C. glabrata harbors a large repertoire of adhesins involved in the adherence to host epithelia. Interestingly, genome plasticity, phenotypic switching or the remarkable ability to persist and survive inside host immune cells further contribute to the pathogenicity of C. glabrata. In this comprehensive review, we want to emphasize and discuss the mechanisms underlying virulence and drug resistance of C. glabrata, and discuss its ability to escape from the host immune surveillance or persist inside host cells.
Collapse
Affiliation(s)
| | | | - Karl Kuchler
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-1-4277-61807; Fax: +43-1-4277-9618
| |
Collapse
|
161
|
Roetzer A, Gabaldón T, Schüller C. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 2011; 314:1-9. [PMID: 20846362 PMCID: PMC3015064 DOI: 10.1111/j.1574-6968.2010.02102.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/18/2010] [Accepted: 09/19/2010] [Indexed: 12/19/2022] Open
Abstract
The opportunistic human fungal pathogen Candida glabrata is closely related to Saccharomyces cerevisiae, yet it has evolved to survive within mammalian hosts. Which traits help C. glabrata to adapt to this different environment? Which specific responses are crucial for its survival in the host? The main differences seem to include an extended repertoire of adhesin genes, high drug resistance, an enhanced ability to sustain prolonged starvation and adaptations of the transcriptional wiring of key stress response genes. Here, we discuss the properties of C. glabrata with a focus on the differences to related fungi.
Collapse
Affiliation(s)
- Andreas Roetzer
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of ViennaVienna, Austria
| | - Toni Gabaldón
- Comparative Genomics Group, Bioinformatics and Genomics Programme, Centre for Genomic RegulationBarcelona, Spain
| | - Christoph Schüller
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of ViennaVienna, Austria
| |
Collapse
|
162
|
Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K, Bachhawat AK. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. MICROBIOLOGY-SGM 2010; 157:484-495. [PMID: 20966090 DOI: 10.1099/mic.0.045054-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Redox pathways play a key role in pathogenesis. Glutathione, a central molecule in redox homeostasis in yeasts, is an essential metabolite, but its requirements can be met either from endogenous biosynthesis or from the extracellular milieu. In this report we have examined the importance of glutathione biosynthesis in two major human opportunistic fungal pathogens, Candida albicans and Candida glabrata. As the genome sequence of C. glabrata had suggested the absence of glutathione transporters, we initially investigated exogenous glutathione utilization in C. glabrata by disruption of the MET15 gene, involved in methionine biosynthesis. We observed an organic sulphur auxotrophy in a C. glabrata met15Δ strain; however, unlike its Saccharomyces cerevisiae counterpart, the C. glabrata met15Δ strain was unable to grow on exogenous glutathione. This inability to grow on exogenous glutathione was demonstrated to be due to the lack of a functional glutathione transporter, despite the presence of a functional glutathione degradation machinery (the Dug pathway). In the absence of the ability to obtain glutathione from the extracellular medium, we examined and could demonstrate that γ-glutamyl cysteine synthase, the first enzyme of glutathione biosynthesis, was essential in C. glabrata. Further, although γ-glutamyl cysteine synthase has been reported to be non-essential in C. albicans, we report here for what is believed to be the first time that the enzyme is required for survival in human macrophages in vitro, as well as for virulence in a murine model of disseminated candidiasis. The essentiality of γ-glutamyl cysteine synthase in C. glabrata, and its essentiality for virulence in C. albicans, make the enzyme a strong candidate for antifungal development.
Collapse
Affiliation(s)
- Amit Kumar Yadav
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160 036, India
| | | | - Maruti Nandan Rai
- Centre for DNA Fingerprinting and Diagnostics, Building 7, Gruhakalpa 5-4-399/B, Nampally, Hyderabad-500001, India
| | - Rupinder Kaur
- Centre for DNA Fingerprinting and Diagnostics, Building 7, Gruhakalpa 5-4-399/B, Nampally, Hyderabad-500001, India
| | - Kaliannan Ganesan
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160 036, India
| | | |
Collapse
|
163
|
Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol 2010; 110:44-53. [PMID: 20880146 DOI: 10.1111/j.1365-2672.2010.04865.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS A major problem in industrial fermentation of organic acids with micro-organisms is to ensure a suitable pH in the culture broth. To circumvent this problem, we investigated the effect of citrate, which is a widely used auxiliary energy co-substrate, on cell growth, organic acid production and pH homeostasis among extracellular environment, cytoplasm and vacuole, in the pyruvic acid production by Candida glabrata CCTCC M202019 under different pH conditions. METHODS AND RESULTS Analysis of intracellular ATP regeneration, cytoplasmic and vacuolar pH values under different culture conditions points towards a relief of stress when C. glabrata is exposed to lower pH, if citrate is added. When 50 mmol l(-1) citrate was added to the culture medium, the intracellular ATP concentrations increased by 20·5% (pH 5·5), 20·4% (pH 5·0) and 39·3% (pH 4·5), and higher pH gradients among the culture broth, cell cytoplasm and vacuoles resulted. As a consequence, the cell growth and pyruvic acid production of C. glabrata CCTCC M202019 were significantly improved under pH 5·0 and 4·5. CONCLUSIONS The acid tolerance of yeast can be improved by enhancing the ATP supply, which helps to maintain higher pH gradients in the system. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented here expand our understanding of the physiological characteristics in eukaryotic micro-organisms under low pH conditions and provide a potential route for the further improvement of organic acids production process by process optimization or metabolic engineering.
Collapse
Affiliation(s)
- J Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | |
Collapse
|
164
|
Palmer JM, Keller NP. Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 2010; 13:431-6. [PMID: 20627806 PMCID: PMC2922032 DOI: 10.1016/j.mib.2010.04.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Filamentous fungi produce a vast array of small molecules called secondary metabolites, which include toxins as well as antibiotics. Coregulated gene clusters are the hallmark of fungal secondary metabolism, and there is a growing body of evidence that suggests regulation is at least, in part, epigenetic. Chromatin-level control is involved in several silencing phenomena observed in fungi including mating type switching, telomere position effect (TPE), silencing of ribosomal DNA, regulation of genes involved in nutrient acquisition, and as presented here, secondary metabolite cluster expression. These phenomena are tied together by the underlying theme of chromosomal location, often near centromeres and telomeres, where facultative heterochromatin plays a role in transcription. Secondary metabolite gene clusters are often located subtelomerically and recently it has been shown that proteins involved in chromatin remodeling, such as LaeA, ClrD, CclA, and HepA mediate cluster regulation.
Collapse
Affiliation(s)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
165
|
Molecular Mechanisms of Resistance to 5-Fluorocytosine in Laboratory Mutants of Candida glabrata. Mycopathologia 2010; 171:11-21. [DOI: 10.1007/s11046-010-9342-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
166
|
Abstract
All humans are colonized with Candida species, mostly Candida albicans, yet some develop diseases due to Candida, among which genitourinary manifestations are extremely common. The forms of genitourinary candidiasis are distinct from each other and affect different populations. While vulvovaginal candidiasis affects mostly healthy women, candiduria occurs typically in elderly, hospitalized, or immunocompromised patients and in neonates. Despite its high incidence and clinical relevance, genitourinary candidiasis is understudied, and therefore, important questions about pathogenesis and treatment guidelines remain to be resolved. In this review, we summarize the current knowledge about genitourinary candidiasis.
Collapse
|
167
|
Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. mBio 2010; 1. [PMID: 20689743 PMCID: PMC2912663 DOI: 10.1128/mbio.00084-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/18/2010] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are globally distributed human fungal pathogens and the leading causes of fungal meningitis. Recent studies reveal that myo-inositol is an important factor for fungal sexual reproduction. That C. neoformans can utilize myo-inositol as a sole carbon source and the existence of abundant inositol in the human central nervous system suggest that inositol is important for Cryptococcus development and virulence. In accord with this central importance of inositol, an expanded myo-inositol transporter (ITR) gene family has been identified in Cryptococcus. This gene family contains two phylogenetically distinct groups, with a total of 10 or more members in C. neoformans and at least six members in the sibling species C. gattii. These inositol transporter genes are differentially expressed under inositol-inducing conditions based on quantitative real-time PCR analyses. Expression of ITR genes in a Saccharomyces cerevisiae itr1 itr2 mutant lacking inositol transport can complement the slow-growth phenotype of this strain, confirming that ITR genes are bona fide inositol transporters. Gene mutagenesis studies reveal that the Itr1 and Itr1A transporters are important for myo-inositol stimulation of mating and that functional redundancies among the myo-inositol transporters likely exist. Deletion of the inositol 1-phosphate synthase gene INO1 in an itr1 or itr1a mutant background compromised virulence in a murine inhalation model, indicating the importance of inositol sensing and acquisition for fungal infectivity. Our study provides a platform for further understanding the roles of inositol in fungal physiology and virulence. Cryptococcus neoformans is an AIDS-associated human fungal pathogen that causes over 1 million cases of meningitis annually and is the leading cause of fungal meningitis in immunosuppressed patients. The initial cryptococcal infection is caused predominantly via inhalation of sexual spores or desiccated yeast cells from the environment. How this fungus completes its sexual cycle and produces infectious spores in nature and why it frequently infects the central nervous system to cause fatal meningitis are critical questions that remain to be understood. In this study, we demonstrate that inositol acquisition is important not only for fungal sexual reproduction but also for fungal virulence. We identified an expanded inositol transporter gene family that contains over 10 members, important for both fungal sexual reproduction and virulence. Our work contributes to our understanding of how fungi respond to the environmental inositol availability and its impact on sexual reproduction and virulence.
Collapse
|
168
|
Berila N, Subik J. Molecular analysis of Candida glabrata clinical isolates. Mycopathologia 2010; 170:99-105. [PMID: 20232155 DOI: 10.1007/s11046-010-9298-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 03/03/2010] [Indexed: 11/30/2022]
Abstract
Candida glabrata is an important human pathogen, and an understanding of the genetic relatedness of its clinical isolates is essential for the prevention and control of fungal infections. In this study, we determined the relatedness of 38 Candida glabrata clinical isolates originating from two teaching hospitals in Slovakia. The 14 different genotypes were found by using microsatellite marker analysis (RPM2, MTI and Cg6) and DNA sequencing for analysis of the entire ERG11 gene. Subsequent sequencing of amplified DNA fragments of the PDR1, NMT1, TRP1 and URA3 loci in ten selected clinical isolates revealed identical DNA sequence profiles in five of them. They displayed the same microsatellite marker sizes and contained the same H576Y amino acid substitution recently described in the Pdr1p multidrug resistance transcription factor responsible for azole resistance. These results demonstrate the genetic diversity of C. glabrata clinical isolates in our hospitals and indicate a common clonal origin of some drug resistant ones.
Collapse
Affiliation(s)
- Norbert Berila
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic
| | | |
Collapse
|
169
|
Abegg MA, Alabarse PVG, Casanova A, Hoscheid J, Salomon TB, Hackenhaar FS, Medeiros TM, Benfato MS. Response to oxidative stress in eight pathogenic yeast species of the genus Candida. Mycopathologia 2010; 170:11-20. [PMID: 20229037 DOI: 10.1007/s11046-010-9294-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/02/2010] [Indexed: 01/24/2023]
Abstract
In the course of an infection, the formation of reactive oxygen species by phagocytes and the antioxidant defense mechanisms of microorganisms play a crucial role in pathogenesis. In this study, isolates representing 8 pathogenic Candida species-Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida guilliermondii, Candida krusei, Candida parapsilosis and Candida tropicalis-were compared with regard to their resistance to oxidative stress in vitro. We evaluated degree of resistance, induction of oxidative damage, capacity to adapt, and induction of antioxidant enzymes. The species showed variable sensitivity to oxidative attack. C. albicans, C. glabrata, and C. krusei were more resistant to oxidative stress under the conditions tested; C. parapsilosis and C. tropicalis presented medium resistance; and C. dubliniensis, C. famata, and C. guilliermondii were more sensitive. The overall greater resistance to oxidative stress of C. albicans and C. glabrata may provide an advantage to these species, which are the major causative agents of candidiasis.
Collapse
Affiliation(s)
- Maxwel Adriano Abegg
- Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. EUKARYOTIC CELL 2010; 9:806-14. [PMID: 20207853 DOI: 10.1128/ec.00349-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic manipulation of mitochondrial DNA (mtDNA) is the most direct method for investigating mtDNA, but until now, this has been achieved only in the diploid yeast Saccharomyces cerevisiae. In this study, the ATP6 gene on mtDNA of the haploid yeast Candida glabrata (Torulopsis glabrata) was deleted by biolistic transformation of DNA fragments with a recoded ARG8(m) mitochondrial genetic marker, flanked by homologous arms to the ATP6 gene. Transformants were identified by arginine prototrophy. However, in the transformants, the original mtDNA was not lost spontaneously, even under arginine selective pressure. Moreover, the mtDNA transformants selectively lost the transformed mtDNA under aerobic conditions. The mtDNA heteroplasmy in the transformants was characterized by PCR, quantitative PCR, and Southern blotting, showing that the heteroplasmy was relatively stable in the absence of arginine. Aerobic conditions facilitated the loss of the original mtDNA, and anaerobic conditions favored loss of the transformed mtDNA. Moreover, detailed investigations showed that increases in reactive oxygen species in mitochondria lacking ATP6, along with their equal cell division, played important roles in determining the dynamics of heteroplasmy. Based on our analysis of mtDNA heteroplasmy in C. glabrata, we were able to generate homoplasmic Deltaatp6 mtDNA strains.
Collapse
|
171
|
Abstract
Human fungal pathogens are associated with diseases ranging from dandruff and skin colonization to invasive bloodstream infections. The major human pathogens belong to the Candida, Aspergillus, and Cryptococcus clades, and infections have high and increasing morbidity and mortality. Many human fungal pathogens were originally assumed to be asexual. However, recent advances in genome sequencing, which revealed that many species have retained the genes required for the sexual machinery, have dramatically influenced our understanding of the biology of these organisms. Predictions of a rare or cryptic sexual cycle have been supported experimentally for some species. Here, I examine the evidence that human pathogens reproduce sexually. The evolution of the mating-type locus in ascomycetes (including Candida and Aspergillus species) and basidiomycetes (Malassezia and Cryptococcus) is discussed. I provide an overview of how sex is suppressed in different species and discuss the potential associations with pathogenesis.
Collapse
|
172
|
Carbonic anhydrase activators: Activation of the β-carbonic anhydrase from the pathogenic yeast Candida glabrata with amines and amino acids. Bioorg Med Chem Lett 2010; 20:1701-4. [DOI: 10.1016/j.bmcl.2010.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/08/2010] [Accepted: 01/10/2010] [Indexed: 11/22/2022]
|
173
|
Cuéllar-Cruz M, Castaño I, Arroyo-Helguera O, De Las Peñas A. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. Mem Inst Oswaldo Cruz 2010; 104:649-54. [PMID: 19722092 DOI: 10.1590/s0074-02762009000400020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 04/16/2009] [Indexed: 11/22/2022] Open
Abstract
Candida glabrata is an opportunistic fungal pathogen that can cause severe invasive infections and can evade phagocytic cell clearance. We are interested in understanding the virulence of this fungal pathogen, in particular its oxidative stress response. Here we investigated C. glabrata, Saccharomyces cerevisiae and Candida albicans responses to two different oxidants: menadione and cumene hydroperoxide (CHP). In log-phase, in the presence of menadione, C. glabrata requires Cta1p (catalase), while in a stationary phase (SP), Cta1p is dispensable. In addition, C. glabrata is less resistant to menadione than C. albicans in SP. The S. cerevisiae laboratory reference strain is less resistant to menadione than C. glabrata and C. albicans; however S. cerevisiaeclinical isolates (CIs) are more resistant than the lab reference strain. Furthermore, S. cerevisiae CIs showed an increased catalase activity. Interestingly, in SP C. glabrata and S. cerevisiae are more resistant to CHP than C. albicans and Cta1p plays no apparent role in detoxifying this oxidant.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216 , México
| | | | | | | |
Collapse
|
174
|
Brunke S, Seider K, Almeida RS, Heyken A, Fleck CB, Brock M, Barz D, Rupp S, Hube B. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Mol Microbiol 2010; 76:25-47. [PMID: 20199593 DOI: 10.1111/j.1365-2958.2010.07052.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.
Collapse
Affiliation(s)
- Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Stead DA, Walker J, Holcombe L, Gibbs SRS, Yin Z, Selway L, Butler G, Brown AJP, Haynes K. Impact of the transcriptional regulator, Ace2, on the Candida glabrata secretome. Proteomics 2010; 10:212-23. [PMID: 19941307 DOI: 10.1002/pmic.200800706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida glabrata is a major fungal pathogen of humans, and the virulence of C. glabrata is increased by inactivation of the transcription factor, Ace2. Our previous examination of the effects of Ace2 inactivation upon the intracellular proteome suggested that the hypervirulence of C. glabrata ace2 mutants might be caused by differences in the secretome. Therefore in this study we have characterised the C. glabrata secretome and examined the effects of Ace2 inactivation upon this extracellular proteome. We have identified 31 distinct proteins in the secretome of wild-type C. glabrata cells by MS/MS of proteins that were precipitated from the growth medium and enriched by affinity chromatography on concanavalin A. Most of these proteins are predicted to be cell wall proteins, cell wall modifying enzymes and aspartyl proteinases. The endochitinase Cts1 and the endoglucanase Egt2 were not detected in the C. glabrata secretome following Ace2 inactivation. This can account for the cell separation defect of C. glabrata ace2 cells. Ace2 inactivation also resulted in the detection of new proteins in the C. glabrata secretome. The release of such proteins might contribute to the hypervirulence of ace2 cells.
Collapse
Affiliation(s)
- David A Stead
- COGEME Proteomics Service Facility 1, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Bethea EK, Carver BJ, Montedonico AE, Reynolds TB. The inositol regulon controls viability in Candida glabrata. MICROBIOLOGY-SGM 2009; 156:452-462. [PMID: 19875437 DOI: 10.1099/mic.0.030072-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inositol is essential in eukaryotes, and must be imported or synthesized. Inositol biosynthesis in Saccharomyces cerevisiae is controlled by three non-essential genes that make up the inositol regulon: ScINO2 and ScINO4, which together encode a heterodimeric transcriptional activator, and ScOPI1, which encodes a transcriptional repressor. ScOpi1p inhibits the ScIno2-ScIno4p activator in response to extracellular inositol levels. An important gene controlled by the inositol regulon is ScINO1, which encodes inositol-3-phosphate synthase, a key enzyme in inositol biosynthesis. In the pathogenic yeast Candida albicans, homologues of the S. cerevisiae inositol regulon genes are 'transcriptionally rewired'. Instead of regulating the CaINO1 gene, CaINO2 and CaINO4 regulate ribosomal genes. Another Candida species that is a prevalent cause of infections is Candida glabrata; however, C. glabrata is phylogenetically more closely related to S. cerevisiae than C. albicans. Experiments were designed to determine if C. glabrata homologues of the inositol regulon genes function similarly to S. cerevisiae or are transcriptionally rewired. CgINO2, CgINO4 and CgOPI1 regulate CgINO1 in a manner similar to that observed in S. cerevisiae. However, unlike in S. cerevisiae, CgOPI1 is essential. Genetic data indicate that CgOPI1 is a repressor that affects viability by regulating activation of a target of the inositol regulon.
Collapse
Affiliation(s)
- Emily K Bethea
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Billy J Carver
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
177
|
Roetzer A, Gratz N, Kovarik P, Schüller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2009; 12:199-216. [PMID: 19811500 PMCID: PMC2816358 DOI: 10.1111/j.1462-5822.2009.01391.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The opportunistic human fungal pathogen Candida glabrata is confronted with phagocytic cells of the host defence system. Survival of internalized cells is thought to contribute to successful dissemination. We investigated the reaction of engulfed C. glabrata cells using fluorescent protein fusions of the transcription factors CgYap1 and CgMig1 and catalase CgCta1. The expression level and peroxisomal localization of catalase was used to monitor the metabolic and stress status of internalized C. glabrata cells. These reporters revealed that the phagocytosed C. glabrata cells were exposed to transient oxidative stress and starved for carbon source. Cells trapped within macrophages increased their peroxisome numbers indicating a metabolic switch. Prolonged phagocytosis caused a pexophagy-mediated decline in peroxisome numbers. Autophagy, and in particular pexophagy, contributed to survival of C. glabrata during engulfment. Mutants lacking CgATG11 or CgATG17, genes required for pexophagy and non-selective autophagy, respectively, displayed reduced survival rates. Furthermore, both CgAtg11 and CgAtg17 contribute to survival, since the double mutant was highly sensitive to engulfment. Inhibition of peroxisome formation by deletion of CgPEX3 partially restored viability of CgATG11 deletion mutants during engulfment. This suggests that peroxisome formation and maintenance might sequester resources required for optimal survival. Mobilization of intracellular resources via autophagy is an important virulence factor that supports the viability of C. glabrata in the phagosomal compartment of infected innate immune cells.
Collapse
Affiliation(s)
- Andreas Roetzer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
178
|
Innocenti A, Leewattanapasuk W, Mühlschlegel FA, Mastrolorenzo A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the pathogenic yeast Candida glabrata with anions. Bioorg Med Chem Lett 2009; 19:4802-5. [PMID: 19574046 DOI: 10.1016/j.bmcl.2009.06.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 11/26/2022]
Abstract
A beta-carbonic anhydrase (CA, EC 4.2.1.1), the protein encoded by the NCE103 gene of Candida glabrata which also present in Candida albicans and Saccharomycescerevisiae, was cloned, purified, characterized kinetically and investigated for its inhibition by a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate and some isosteric species. The enzyme showed significant CO(2) hydrase activity, with a k(cat) of 3.8 x 10(5)s(-1) and k(cat)/K(M) of 4.8 x 10(7)M(-1)s(-1). The Cà glabrata CA (CgCA) was moderately inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 0.60-1.12 mM) but strongly inhibited by bicarbonate, nitrate, nitrite and phenylarsonic acid (K(I)s of 86-98 microM). The other anions investigated showed inhibition constants in the low millimolar range, with the exception of bromide and iodide (K(I)s of 27-42 mM).
Collapse
Affiliation(s)
- Alessio Innocenti
- Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | | | |
Collapse
|
179
|
Abstract
Comparisons of the genomes of multiple Candida species reveals several shared traits associated with pathogenesis, but striking differences in sexual reproduction. Analysis of the genomes of multiple Candida species reveals shared traits associated with pathogenesis, but also striking differences in sexual reproduction.
Collapse
|
180
|
Batová M, Dzugasová V, Borecká S, Goffa E, Oblasová Z, Subík J. Molecular and phenotypic analysis of mutations causing anionic phospholipid deficiency in closely related yeast species. Folia Microbiol (Praha) 2009; 54:30-6. [PMID: 19330542 DOI: 10.1007/s12223-009-0005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/20/2008] [Indexed: 10/21/2022]
Abstract
The pel1 mutation in Saccharomyces cerevisiae and the Cgpgs1Delta mutation in Candida glabrata result in deficiency of mitochondrial phosphatidylglycerolphosphate synthase and lack of two anionic phospholipids, phosphatidylglycerol and cardiolipin. DNA sequence analysis of the PCR-amplified pel1 mutant allele revealed that the pel1 mutation resulted from a single amino-acid substitution (Glu(463)Lys) in the C-terminal part of encoded enzyme. The CgPGS1 gene cloned in a centromeric pFL38 vector functionally complemented the pel1 mutation in S. cerevisiae. Likewise, the ScPGS1 gene cloned in pCgACU5 plasmid fully complemented the Cgpgs1Delta mutation in C. glabrata. This mutation increased the cell surface hydrophobicity and decreased biofilm formation. These results support a close evolutionary relatedness of S. cerevisiae and C. glabrata and point to the relationship between expression of virulence factors and anionic phospholipid deficiency in pathogenic C. glabrata.
Collapse
Affiliation(s)
- M Batová
- Department of Microbiology and Virology, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
181
|
Conserved WCPL and CX4C domains mediate several mating adhesin interactions in Saccharomyces cerevisiae. Genetics 2009; 182:173-89. [PMID: 19299340 DOI: 10.1534/genetics.108.100073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several adhesins are induced by pheromones during mating in Saccharomyces cerevisiae, including Aga1p, Aga2p, Sag1p (Agalpha1p), and Fig2p. These four proteins all participate in or influence a well-studied agglutinin interaction mediated by Aga1p-Aga2p complexes and Sag1p; however, they also play redundant and essential roles in mating via an unknown mechanism. Aga1p and Fig2p both contain repeated, conserved WCPL and CX(4)C domains. This study was directed toward understanding the mechanism underlying the collective requirement of agglutinins and Fig2p for mating. Apart from the well-known agglutinin interaction between Aga2p and Sag1p, three more pairs of interactions in cells of opposite mating type were revealed by this study, including bilateral heterotypic interactions between Aga1p and Fig2p and a homotypic interaction between Fig2p and Fig2p. These four pairs of adhesin interactions are collectively required for maximum mating efficiency and normal zygote morphogenesis. GPI-less, epitope-tagged forms of Aga1p and Fig2p can be co-immunoprecipitated from the culture medium of mating cells in a manner dependent on the WCPL and CX(4)C domains in the R1 repeat of Aga1p. Using site-directed mutagenesis, the conserved residues in Aga1p that interact with Fig2p were identified. Aga1p is involved in two distinct adhesive functions that are independent of each other, which raises the possibility for combinatorial interactions of this protein with its different adhesion receptors, Sag1 and Fig2p, a property of many higher eukaryotic adhesins.
Collapse
|
182
|
ten Cate J, Klis F, Pereira-Cenci T, Crielaard W, de Groot P. Molecular and Cellular Mechanisms That Lead to Candida Biofilm Formation. J Dent Res 2009; 88:105-15. [DOI: 10.1177/0022034508329273] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fungal infections in the oral cavity are mainly caused by C. albicans, but other Candida species are also frequently identified. They are increasing in prevalence, especially in denture-wearers and aging people, and may lead to invasive infections, which have a high mortality rate. Attachment to mucosal tissues and to abiotic surfaces and the formation of biofilms are crucial steps for Candida survival and proliferation in the oral cavity. Candida species possess a wide arsenal of glycoproteins located at the exterior side of the cell wall, many of which play a determining role in these steps. In addition, C. albicans secretes signaling molecules that inhibit the yeast-to-hypha transition and biofilm formation. In vivo, Candida species are members of mixed biofilms, and subject to various antagonistic and synergistic interactions, which are beginning to be explored. We believe that these new insights will allow for more efficacious treatments of fungal oral infections. For example, the use of signaling molecules that inhibit biofilm formation should be considered. In addition, cell-wall biosynthetic enzymes, wall cross-linking enzymes, and wall proteins, which include adhesins, proteins involved in biofilm formation, fungal-bacterial interactions, and competition for surface colonization sites, offer a wide range of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- J.M. ten Cate
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - F.M. Klis
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - T. Pereira-Cenci
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - W. Crielaard
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - P.W.J. de Groot
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| |
Collapse
|
183
|
Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJP. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 2009; 9:44. [PMID: 19232129 PMCID: PMC2666651 DOI: 10.1186/1471-2148-9-44] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 02/21/2009] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. RESULTS The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol), oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. CONCLUSION Our data are consistent with the hypothesis that fungal stress signalling components have undergone rapid recent evolution to tune the stress responses in a niche-specific fashion.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Ino Agrafioti
- Centre for Bioinformatics, Division of Molecular Biosciences, Wolfson Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Michael Stumpf
- Centre for Bioinformatics, Division of Molecular Biosciences, Wolfson Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, 3rd Floor, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian Stansfield
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alistair JP Brown
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
184
|
|
185
|
Coleman DA, Hoyer LL. Interactions between pathogenic fungi and human epithelial and endothelial surfaces. CURRENT FUNGAL INFECTION REPORTS 2008. [DOI: 10.1007/s12281-008-0024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
186
|
A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother 2008; 52:3701-9. [PMID: 18694952 DOI: 10.1128/aac.00423-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike the molecular mechanisms that lead to azole drug resistance, the molecular mechanisms that lead to polyene resistance are poorly documented, especially in pathogenic yeasts. We investigated the molecular mechanisms responsible for the reduced susceptibility to polyenes of a clinical isolate of Candida glabrata. Sterol content was analyzed by gas-phase chromatography, and we determined the sequences and levels of expression of several genes involved in ergosterol biosynthesis. We also investigated the effects of the mutation harbored by this isolate on the morphology and ultrastructure of the cell, cell viability, and vitality and susceptibility to cell wall-perturbing agents. The isolate had a lower ergosterol content in its membranes than the wild type, and the lower ergosterol content was found to be associated with a nonsense mutation in the ERG6 gene and induction of the ergosterol biosynthesis pathway. Modifications of the cell wall were also seen, accompanied by increased susceptibility to cell wall-perturbing agents. Finally, this mutation, which resulted in a marked fitness cost, was associated with a higher rate of cell mortality. Wild-type properties were restored by complementation of the isolate with a centromeric plasmid containing a wild-type copy of the ERG6 gene. In conclusion, we have identified the molecular event responsible for decreased susceptibility to polyenes in a clinical isolate of C. glabrata. The nonsense mutation detected in the ERG6 gene of this isolate led to a decrease in ergosterol content. This isolate may constitute a useful tool for analysis of the relevance of protein trafficking in the phenomena of azole resistance and pseudohyphal growth.
Collapse
|
187
|
Roetzer A, Gregori C, Jennings AM, Quintin J, Ferrandon D, Butler G, Kuchler K, Ammerer G, Schüller C. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 2008; 69:603-20. [PMID: 18547390 PMCID: PMC2610386 DOI: 10.1111/j.1365-2958.2008.06301.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2008] [Indexed: 12/18/2022]
Abstract
We determined the genome-wide environmental stress response (ESR) expression profile of Candida glabrata, a human pathogen related to Saccharomyces cerevisiae. Despite different habitats, C. glabrata, S. cerevisiae, Schizosaccharomyces pombe and Candida albicans have a qualitatively similar ESR. We investigate the function of the C. glabrata syntenic orthologues to the ESR transcription factor Msn2. The C. glabrata orthologues CgMsn2 and CgMsn4 contain a motif previously referred to as HD1 (homology domain 1) also present in Msn2 orthologues from fungi closely related to S. cerevisiae. We show that regions including this motif confer stress-regulated intracellular localization when expressed in S. cerevisiae. Site-directed mutagenesis confirms that nuclear export of CgMsn2 in C. glabrata requires an intact HD1. Transcript profiles of CgMsn2/4 mutants and CgMsn2 overexpression strains show that they regulate a part of the CgESR. CgMsn2 complements a S. cerevisiae msn2 null mutant and in stressed C. glabrata cells, rapidly translocates from the cytosol to the nucleus. CgMsn2 is required for full resistance against severe osmotic stress and rapid and full induction of trehalose synthesis genes (TPS1, TPS2). Constitutive activation of CgMsn2 is detrimental for C. glabrata. These results establish an Msn2-regulated general stress response in C. glabrata.
Collapse
Affiliation(s)
- Andreas Roetzer
- University of Vienna, Max F. Perutz Laboratories, Department of BiochemistryA-1030 Vienna, Austria
| | - Christa Gregori
- Medical University Vienna, Max F. Perutz Laboratories, CD Laboratory for Infection BiologyA-1030 Vienna, Austria
| | - Ann Marie Jennings
- School of Biomolecular and Biomedical Science, Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Jessica Quintin
- FranceEquipe Fondation Recherche MédicaleUPR 9022 du CNRS, IBMC, 15, rue R. Descartes F67084 Strasbourg Cedex France
| | - Dominique Ferrandon
- FranceEquipe Fondation Recherche MédicaleUPR 9022 du CNRS, IBMC, 15, rue R. Descartes F67084 Strasbourg Cedex France
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Karl Kuchler
- Medical University Vienna, Max F. Perutz Laboratories, CD Laboratory for Infection BiologyA-1030 Vienna, Austria
| | - Gustav Ammerer
- University of Vienna, Max F. Perutz Laboratories, Department of BiochemistryA-1030 Vienna, Austria
| | - Christoph Schüller
- University of Vienna, Max F. Perutz Laboratories, Department of BiochemistryA-1030 Vienna, Austria
| |
Collapse
|
188
|
Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L, Castaño I, De Las Peñas A. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. EUKARYOTIC CELL 2008; 7:814-25. [PMID: 18375620 PMCID: PMC2394966 DOI: 10.1128/ec.00011-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
Abstract
We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H(2)O(2) and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H(2)O(2) in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | | | | | | | | | | | | |
Collapse
|
189
|
Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 2008; 68:547-59. [DOI: 10.1111/j.1365-2958.2008.06184.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
190
|
Batova M, Borecka-Melkusova S, Simockova M, Dzugasova V, Goffa E, Subik J. Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata. Curr Genet 2008; 53:313-22. [PMID: 18343926 DOI: 10.1007/s00294-008-0187-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Cardiolipin and its precursor phosphatidylglycerol are two anionic phospholipids that are essential for the biogenesis of functional mitochondria. To assess their role in mitochondrial and cellular functions in the pathogenic yeast Candida glabrata, a functional characterization of the CgPGS1 gene encoding the phosphatidylglycerolphosphate synthase has been carried out. Transposon insertion mutation in CgPGS1 resulted in the loss of phosphatidylglycerolphosphate synthase activity and in deficiency of both phosphatidylglycerol and cardiolipin. The Cgpgs1 Delta mutant cells displayed reduced amounts of cytochrome b and cytochrome a, and had impaired growth on minimal media containing non-fermentable carbon and energy sources. They did not grow at elevated temperatures and failed to form colonies after induction of mitochondrial DNA deletions. The mutant cells also displayed a decreased susceptibility to fluconazole, ketoconazole, clotrimazole, voriconazole and posaconazole. In the Cgpgs1 Delta mutant, a quantitative real time PCR revealed enhanced mRNA levels for multidrug resistance associated genes such as CgPDR1 encoding transcriptional activator and CgCDR1, CgPDH1 and CgSNQ2 coding for drug efflux transporters. These results indicate that CgPGS1 and anionic phospholipids are required for optimal mitochondrial functions and maintenance of yeast susceptibility to azole antifungals.
Collapse
Affiliation(s)
- Monika Batova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-2, 842 15 Bratislava 4, Slovak Republic
| | | | | | | | | | | |
Collapse
|
191
|
de Groot PWJ, Klis FM. The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity. Mol Microbiol 2008; 68:535-7. [PMID: 18331471 DOI: 10.1111/j.1365-2958.2008.06182.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yeast cell wall-associated, lectin-like adhesins form large families that mediate flocculation and host cell recognition. The glycan specificity of individual adhesins is largely unknown. Zupancic et al. (this issue of Molecular Microbiology) used glycan microarrays to compare the glycan-binding characteristics of individual adhesins (Epa proteins) of the pathogenic yeast Candida glabrata produced in the non-adherent yeast Saccharomyces cerevisiae. By sequence swapping between the conserved PA14 domains of two related Epa proteins, they identified a pentapeptide that determines binding specificity and cell adherence and is located on a surface loop of the known crystal structure of the anthrax toxin PA14 domain.
Collapse
Affiliation(s)
- Piet W J de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | | |
Collapse
|
192
|
Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol 2008; 68:186-201. [PMID: 18312269 DOI: 10.1111/j.1365-2958.2008.06143.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous investigation on Candida glabrata azole-resistant isolates identified two isolates with unaltered expression of CgCDR1/CgCDR2, but with upregulation of another ATP-binding cassette transporter, CgSNQ2, which is a gene highly similar to ScSNQ2 from Saccharomyces cerevisiae. One of the two isolates (BPY55) was used here to elucidate this phenomenon. Disruption of CgSNQ2 in BPY55 decreased azole resistance, whereas reintroduction of the gene in a CgSNQ2 deletion mutant fully reversed this effect. Expression of CgSNQ2 in a S. cerevisiae strain lacking PDR5 mediated not only resistance to azoles but also to 4-nitroquinoline N-oxide, which is a ScSNQ2-specific substrate. A putative gain-of-function mutation, P822L, was identified in CgPDR1 from BPY55. Disruption of CgPDR1 in BPY55 conferred enhanced azole susceptibility and eliminated CgSNQ2 expression, whereas introduction of the mutated allele in a susceptible strain where CgPDR1 had been disrupted conferred azole resistance and CgSNQ2 upregulation, indicating that CgSNQ2 was controlled by CgPDR1. Finally, CgSNQ2 was shown to be involved in the in vivo response to fluconazole. Together, our data first demonstrate that CgSNQ2 contributes to the development of CgPDR1-dependent azole resistance in C. glabrata. The overlapping in function and regulation between CgSNQ2 and ScSNQ2 further highlight the relationship between S. cerevisiae and C. glabrata.
Collapse
Affiliation(s)
- Riccardo Torelli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
193
|
Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit. Med Mycol 2008; 46:1-15. [PMID: 17852717 PMCID: PMC2742883 DOI: 10.1080/13693780701435317] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The agglutinin-like sequence (ALS) family of Candida albicans includes eight genes that encode large cell-surface glycoproteins. The high degree of sequence relatedness between the ALS genes and the tremendous allelic variability often present in the same C. albicans strain complicated definition and characterization of the gene family. The main hypothesis driving ALS family research is that the genes encode adhesins, primarily involved in host-pathogen interactions. Although adhesive function has been demonstrated for several Als proteins, the challenge of studying putative adhesins in a highly adhesive organism like C. albicans has led to varying ideas about how best to pursue such investigations, and results that are sometimes contradictory. Recent analysis of alsdelta/alsdelta strains suggested roles for Als proteins outside of adhesion to host surfaces, and a broader scope of Als protein function than commonly believed. The availability and use of experimental methodologies to study C. albicans at the genomic level, and the ALS family en masse, have advanced knowledge of these genes and emphasized their importance in C. albicans biology and pathogenesis.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | |
Collapse
|
194
|
Pacheco M, Pisa D, García-Gómez P, Carrasco L, Juarranz A. Attachment and entry of Candida famata in monocytes and epithelial cells. Microsc Res Tech 2008; 70:975-86. [PMID: 17661391 DOI: 10.1002/jemt.20503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Candida albicans is considered the main pathogenic yeast responsible for a multitude of infective disorders. However, other yeasts, such as Candida famata, are being recognized as potential emerging pathogens that cause several types of infections in humans and animals. Consequently, we have investigated the adhesion and internalization of Candida famata into monocytes and epithelial cells. The interaction of the yeast with the cells is very rapid and takes place during the first 15 min of injection. However, the affinity of the yeast for the cells varies, THP-1 (human monocytes) being the highest and followed in decreasing order by HeLa (human carcinoma), HaCaT, and Pam-212 (human and mouse keratinocytes, respectively). Heat inactivation or treatment with nystatin, significantly decreases yeast adhesion to cells. Immunofluorescence, as well as scanning and transmission electron microscopy, reveals that cell lines are able to internalize C. famata. At 48 h after infection, most of the yeasts located inside cells appear degraded, but some yeasts recovered from lysed cells, were still viable. Adhesion and internalization of C. famata into HeLa cells were found to be lower than those of C. albicans and C. glabrata, but higher than those of S. cerevisiae. In addition, infection with C. famata results in actin microfilaments rearrangement. This article presents novel data in the interaction of this pathogenic yeast with mammalian cells.
Collapse
Affiliation(s)
- María Pacheco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
195
|
Gregori C, Schüller C, Roetzer A, Schwarzmüller T, Ammerer G, Kuchler K. The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast. EUKARYOTIC CELL 2007; 6:1635-45. [PMID: 17616630 PMCID: PMC2043364 DOI: 10.1128/ec.00106-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/26/2007] [Indexed: 01/26/2023]
Abstract
The high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway mediates adaptation to high-osmolarity stress in the yeast Saccharomyces cerevisiae. Here we investigate the function of HOG in the human opportunistic fungal pathogen Candida glabrata. C. glabrata sho1Delta (Cgsho1Delta) deletion strains from the sequenced ATCC 2001 strain display severe growth defects under hyperosmotic conditions, a phenotype not observed for yeast sho1Delta mutants. However, deletion of CgSHO1 in other genetic backgrounds fails to cause osmostress hypersensitivity, whereas cells lacking the downstream MAP kinase Pbs2 remain osmosensitive. Notably, ATCC 2001 Cgsho1Delta cells also display methylglyoxal hypersensitivity, implying the inactivity of the Sln1 branch in ATCC 2001. Genomic sequencing of CgSSK2 in different C. glabrata backgrounds demonstrates that ATCC 2001 harbors a truncated and mutated Cgssk2-1 allele, the only orthologue of yeast SSK2/SSK22 genes. Thus, the osmophenotype of ATCC 2001 is caused by a point mutation in Cgssk2-1, which debilitates the second HOG pathway branch. Functional complementation experiments unequivocally demonstrate that HOG signaling in yeast and C. glabrata share similar functions in osmostress adaptation. In contrast to yeast, however, Cgsho1Delta mutants display hypersensitivity to weak organic acids such as sorbate and benzoate. Hence, CgSho1 is also implicated in modulating weak acid tolerance, suggesting that HOG signaling in C. glabrata mediates the response to multiple stress conditions.
Collapse
Affiliation(s)
- Christa Gregori
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, ,Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
196
|
Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 2007; 71:282-94. [PMID: 17554046 PMCID: PMC1899881 DOI: 10.1128/mmbr.00037-06] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.
Collapse
Affiliation(s)
- Anne M Dranginis
- Department of Biological Science, St John's University, Queens, New York, USA
| | | | | | | |
Collapse
|
197
|
Linder T, Gustafsson CM. Molecular phylogenetics of ascomycotal adhesins--a novel family of putative cell-surface adhesive proteins in fission yeasts. Fungal Genet Biol 2007; 45:485-97. [PMID: 17870620 DOI: 10.1016/j.fgb.2007.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
In this work, we identify a family of putative adhesins in the fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. The members of this family share a conserved tandem repeat related to those found in the Candida albicans Als family of adhesins. Unlike previously characterised adhesins that possess conserved ligand-binding domains at the N-terminus, this group of proteins carry ligand-binding domains at their C-termini. We demonstrate that one such domain--the uncharacterised GLEYA domain, is related to the lectin-like ligand-binding domain found in the Saccharomyces cerevisiae Flo proteins. Unlike the Flo and Als proteins, the fission yeast adhesins do not contain detectable glycosyl phosphatidyl inositol (GPI) membrane anchor signals to mediate their attachment to the cell wall, which may suggest a novel cell wall attachment mechanism. Further sequence analysis identified several putative adhesins in the sub-phylum of Pezizomycotina, where only a few adhesins have been described to date.
Collapse
Affiliation(s)
- Tomas Linder
- Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Stockholm, Sweden.
| | | |
Collapse
|
198
|
Weig M, Brown AJP. Genomics and the development of new diagnostics and anti-Candida drugs. Trends Microbiol 2007; 15:310-7. [PMID: 17570672 DOI: 10.1016/j.tim.2007.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/11/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Pathogenic Candida species remain a significant medical problem despite the availability of antifungal therapies. Two key issues must be addressed to improve the treatment of life-threatening systemic Candida infections. First, advanced diagnostic tools are required to facilitate the early identification of these infections, when therapeutic intervention is more likely to be effective. Second, improved antifungal therapies are needed. These therapies, which might include combinations of antifungals, need to be less toxic to the patient and more potent in killing a broader range of Candida species. Recent advances in unravelling the genomics of these species should facilitate efforts to achieve these goals. We discuss the contribution of genomics to the development of novel antifungals and new diagnostic tools.
Collapse
Affiliation(s)
- Michael Weig
- Institute of Medical Microbiology and German National Reference Centre for Systemic Mycoses, University of Goettingen, Kreuzbergring 57, D-37075 Goettingen, Germany.
| | | |
Collapse
|
199
|
Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A 2007; 104:7628-33. [PMID: 17456602 PMCID: PMC1863504 DOI: 10.1073/pnas.0611195104] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida glabrata is a yeast pathogen of humans. We have established a tissue culture model to analyze the interaction of C. glabrata with macrophages. Transcript profiling of yeast ingested by macrophages reveals global changes in metabolism as well as increased expression of a gene family (YPS genes) encoding extracellular glycosylphosphatidylinositol-linked aspartyl proteases. Eight of these YPS genes are found in a cluster that is unique to C. glabrata. Genetic analysis shows that the C. glabrata YPS genes are required for cell wall integrity, adherence to mammalian cells, survival in macrophages and virulence. By monitoring the processing of a cell wall adhesin, Epa1, we also show that Yps proteases play an important role in cell wall re-modeling by removal and release of glycosylphosphatidylinositol-anchored cell wall proteins.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Hunterian 617, 725 North Wolfe Street, Baltimore, MD 21205-2185
| | - Biao Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Hunterian 617, 725 North Wolfe Street, Baltimore, MD 21205-2185
| | - Brendan P. Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Hunterian 617, 725 North Wolfe Street, Baltimore, MD 21205-2185
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
200
|
Abstract
Following the widespread use of immunosuppressive therapy and broad-spectrum antimycotic prophylaxis, C. glabrata has emerged as an important opportunistic pathogen in the oral mucosa. In the past, studies on the virulence factors and host-pathogen interactions of this organism were scarce, but continued to rise in recent years. Denture-wearing, immunosuppression, antibiotic therapy, and aging are risk factors for oral colonization or infection with C. glabrata. Compared with C. albicans, C. glabrata exhibits lower oral keratinocyte-adherence capacity, but higher denture-surface-adherence ability. The role of extracellular hydrolase production in the virulence of this organism does not appear to be as important as it is in C. albicans pathogenesis. Although traditionally thought of as a non-transforming yeast organism, both phenotypic switching and pseudohyphal formation have recently been identified in C. glabrata, but their role in pathogenesis is not known. With the exception of granulocyte monocyte colony-stimulating factor, C. glabrata triggers a lower proinflammatory cytokine response in oral epithelial cells than does C. albicans, in a strain-dependent manner. C. glabrata is less susceptible to killing by human beta-defensins than is C. albicans and exhibits various degrees of resistance to the antifungal activity of salivary histatins and mucins. In addition, C. glabrata possesses both innate and acquired resistance against antifungal drugs, due to its ability to modify ergosterol biosynthesis, mitochondrial function, or antifungal efflux. This resistance allows for its relative overgrowth over other susceptible species and may contribute to the recent emergence of C. glabrata infections in chronically immunocompromised populations. Further investigations on the virulence and host-pathogen interactions of C. glabrata are needed to better define the pathogenesis of oral C. glabrata infection in susceptible hosts.
Collapse
Affiliation(s)
- L Li
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT 06030-1710, USA
| | | | | |
Collapse
|